SlideShare a Scribd company logo
Smiling twice: The Heston++ model
C. Pacati1 G. Pompa2 R. Renò3
1Dipartimento di Economia Politica e Statistica
Università di Siena, Italy
2,IMT School for Advanced Studies Lucca, Italy
3Dipartimento di Scienze Economiche
Università degli Studi di Verona, Italy
XVII Workshop on Quantitative Finance, Pisa 2016
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The problem
There is growing demand, and correspondingly a liquid market, for trading
volatility derivatives and managing volatility risk.
SPX and VIX derivatives both provide informations on the same volatility
process, a model which is able to price one market, but not the other, is
inherently misspecified.
There is need of a pricing framework for consistent pricing both equity
derivatives and volatility derivatives;
Affine models are unable to reproduce VIX Futures and Options features;
Non-affine models are often analitically intractable and computationally heavy.
We tackle the problem of jointly fit the IV surface of SPX index
options, together with the term structure of VIX futures and the
surface of VIX options, leveraging on an affinity-preserving
deterministic shift extension of the volatility process.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The problem
There is growing demand, and correspondingly a liquid market, for trading
volatility derivatives and managing volatility risk.
SPX and VIX derivatives both provide informations on the same volatility
process, a model which is able to price one market, but not the other, is
inherently misspecified.
There is need of a pricing framework for consistent pricing both equity
derivatives and volatility derivatives;
Affine models are unable to reproduce VIX Futures and Options features;
Non-affine models are often analitically intractable and computationally heavy.
We tackle the problem of jointly fit the IV surface of SPX index
options, together with the term structure of VIX futures and the
surface of VIX options, leveraging on an affinity-preserving
deterministic shift extension of the volatility process.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX: the Fear Index
Since 1993, VIX reflects the 30-day expected risk-neutral
S&P500 index volatility.
Leverage effect: inverse relationship SPX-VIX (2004-2016)
Jan04 Jan06 Jan08 Jan10 Jan12 Jan14 Jan16
0
250
500
750
1000
1250
1500
1750
2000
S&P500
0
10
20
30
40
50
60
70
80
90
VIXDailyClose
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX: the Fear Index
Since 1993, VIX reflects the 30-day expected risk-neutral
S&P500 index volatility.
Positively skewed and leptokurtic (2004-2016)
0 10 20 30 40 50 60 70 80 90
0
0.02
0.04
0.06
0.08
0.1
0.12
VIX Daily Close
EmpiricalPDF
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX Futures: the term structure of Fear
Traded since 2004, convey market visions on volatility of
S&P500 (2004-2014).
0
1
2
3
4
5
6
7
Nov−14
Feb−13
May−11
Jul−09
Oct−07
Jan−06
Mar−04
0
10
20
30
40
50
60
70
DateTenor (months)
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX Futures: the term structure of Fear
Traded since 2004, convey market visions on volatility of
S&P500 (2004-2014).
Humped term structure (June 29, 2009)
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX Options: the cross-section of Fear
Traded since 2006, provide insurance from equity market
downturns: S&P500 vanilla below (June 29, 2009)
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX Options: the cross-section of Fear
Traded since 2006, provide insurance from equity market
downturns: VIX options below (June 29, 2009).
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
Modeling VIX and VIX derivatives: literature review
Standalone approach: volatility is directly modeled,
separated from the underlying stock price process. Whaley
1993 (GBM), Grünbichler and Longstaff 1996 (SQR),
Detemple and Osakwe 2000 (LOU), Mencia and Sentana
2013 (CTLOUSV), Goard and Mazur 2013 (3/2).
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
Modeling VIX and VIX derivatives: literature review
Standalone approach: volatility is directly modeled,
separated from the underlying stock price process. Whaley
1993 (GBM), Grünbichler and Longstaff 1996 (SQR),
Detemple and Osakwe 2000 (LOU), Mencia and Sentana
2013 (CTLOUSV), Goard and Mazur 2013 (3/2).
Consistent approach: VIX is derived from the specification
of SPX dynamics. Sepp 2008 (SVVJ), Lian Zhu 2013
(SVCJ), Lo et al. 2013 (2-SVCJ), Bardgett et al. 2013
(2-SMRSVCJ), Branger et al. 2014 (2-SVSVJ), Baldeaux
and Badran 2014 (3/2J), Pacati et al. 2015 (2-SVCVJ++).
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model: motivation
++ extension of an affine processes:
Brigo and Mercurio (2001): CIR++ fits observed term
structure of forward rates.
Pacati, Renò and Santilli (2014): Heston++ reproduces
ATM term structure of FX options.
Two sources of jumps:
CO- market downturns correlated with volatility spikes
(Todorov and Tauchen, 2011, Bandi and Renò, 2015).
Idiosyncratic- direct channel for right skewness of volatility.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model



dSt
St−
= (r − q − λ¯µ) dt + σ2
1,t + φt dWS
1,t + σ2,t dWS
2,t + (ecx
− 1)dNt
dσ2
1,t = α1(β1 − σ2
1,t )dt + Λ1σ1,t dWσ
1,t + cσdNt + cσdNt
dσ2
2,t = α2(β2 − σ2
2,t )dt + Λ2σ2,t dWσ
2,t
under Q, where φ0 = 0, φt ≥ 0, cx ∼ N µx + ρJcσ, δ2
x |cσ,
cσ ∼ E(µco,σ) and cσ ∼ E(µid,σ). The model is affine provided
corr(dWS
1,t , dWσ
1,t ) = ρ1
σ2
1,t
σ2
1,t + φt
corr(dWS
2,t , dWσ
2,t ) = ρ2
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model: nested models
Taxonomy of the H++ models used in the empirical analysis.
All models have two factors.
jumps in price volatility volatility displacement
(idiosyncratic) (co-jumps) φt
2-SVJ
2-SVJ++
2-SVCJ
2-SVCJ++
2-SVVJ
2-SVVJ++
2-SVCVJ
2-SVCVJ++
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model: affinity
Lemma (Conditional Characteristic Functions)
Under the H++ models, the conditional characteristic function of
returns fH++
x (z) = EQ
eizxT Ft and of the two stochastic volatility
factors fH++
σ (z1, z2) = EQ
eiz1σ2
1,T +iz2σ2
2,T Ft are given by:
fH++
x (z; xt , σ2
1,t , σ2
2,t , t, T, φ) = fH
x (z; xt , σ2
1,t , σ2
2,t , τ)e−1
2
z(i+z)Iφ(t,T)
fH++
σ (z1, z2; σ2
1,t , σ2
2,t , τ) = fH
σ (z1, z2; σ2
1,t , σ2
2,t , τ)
where τ = T − t, z, z1, z2 ∈ C and Iφ(t, T) =
T
t φsds.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model: S&P500 Options
Proposition (Price of SPX Options)
Under the H++ models, the arbitrage-free price at time t of a
European call option on the underlying St , with strike price K
and time to maturity τ = T − t, is given by (Lewis 2000, 2001)
CH++
SPX
(K, t, T)
= St e−qτ
−
1
π
St Ke− 1
2
(r+q)τ
∞
0
Re eiuk
fH
x u −
i
2
e
− u2
+ 1
4
Iφ(t,T)
u2 + 1
4
du
where k = log St
K + (r − q)τ.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model: VIX Index
Proposition (VIX Index)
Under the H++ models,
VIXH++
t,¯τ
100
2
=
VIXH
t,¯τ
100
2
+
1
¯τ
Iφ(t, t + ¯τ)
where ¯τ = 30 days, VIXH
t,¯τ is the corresponding quotation under
H models, which is an affine function of the volatility factors σ2
1,t
and σ2
2,t
VIXH
t,¯τ
100
2
=
1
¯τ


k=1,2
ak (¯τ)σ2
k,t + bk (¯τ)


where Iφ(t, t + ¯τ) =
t+¯τ
t φsds.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
The 2-SVCVJ++ model: VIX Futures and Options
Proposition (Price of VIX derivatives)
Under H++ models, the time t value of a futures on VIXt,¯τ settled at time T and the
arbitrage-free price at time t of a call option on VIXt,¯τ , with strike price K and time to
maturity τ = T − t are given respectively by
FH++
VIX
(t, T)
100
=
1
2
√
π
∞
0
Re


f
H
σ −z
a1(¯τ)
¯τ
, −z
a2(¯τ)
¯τ
e
−iz k=1,2 bk ( ¯τ)+Iφ(T,T+ ¯τ) / ¯τ
(−iz)3/2


 d Re(z)
and
CH++
VIX
(K, t, T)
100
=
e−rτ
2
√
π
∞
0
Re f
H
σ −z
a1(¯τ)
¯τ
, −z
a2(¯τ)
¯τ
×
e
−iz k=1,2 bk ( ¯τ)+Iφ(T,T+ ¯τ) / ¯τ
1 − erf(K/100
√
−iz)
(−iz)3/2


 d Re(z)
where z = Re(z) + i Im(z) ∈ C, 0 < Im(z) < ζc(τ) and erf(z) = 2√
π
z
0 e−s2
ds.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
SPX Vanilla (September 2, 2009)
800 1000
20
25
30
35
40
45
50
55
Strike
Vol(%)
17 days
Calls
Puts
900 1000 1100
20
25
30
35
Strike
Vol(%)
28 days
2−SVCVJ
2−SVCVJ++
600 800 1000 1200
20
30
40
50
60
Strike
Vol(%)
45 days
600 800 1000 1200
20
25
30
35
40
45
50
55
Strike
Vol(%)
80 days
600 800 1000 1200
20
25
30
35
40
45
50
55
Strike
Vol(%)
108 days
500 1000
20
25
30
35
40
45
50
Strike
Vol(%)
199 days
500 1000
20
25
30
35
40
45
50
Strike
Vol(%)
290 days
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX Futures (September 2, 2009)
0 20 40 60 80 100 120 140 160 180 200
29
29.5
30
30.5
31
31.5
32
32.5
33
Tenor (days)
SettlePrice(US$)
Data
2−SVCVJ
2−SVCVJ++
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
VIX Options (September 2, 2009)
34 36 38 40 42 44
90
100
110
120
130
Strike
Vol(%)
14 days
Data
30 40 50
60
65
70
75
80
85
90
95
Strike
Vol(%)
49 days
2−SVCVJ
2−SVCVJ++
30 40 50 60 70 80
60
70
80
90
100
Strike
Vol(%)
77 days
20 30 40 50
50
55
60
65
70
75
80
85
Strike
Vol(%)
105 days
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
Calibration Errors (in %)
2-SVJ 2-SVJ++ 2-SVCJ 2-SVCJ++ 2-SVVJ 2-SVVJ++ 2-SVCVJ 2-SVCVJ++
Panel A: RMSE
RMSESPX 1.17 0.99 1.04 0.86 0.99 0.77 0.90 0.65
(6.01) (3.75) (4.11) (2.42) (4.28) (3.15) (4.28) (1.64)
RMSEFut 0.70 0.49 0.59 0.34 0.59 0.31 0.53 0.22
(3.49) (1.85) (1.62) (1.32) (1.66) (1.19) (1.50) (1.07)
RMSEVIX 5.73 3.82 4.12 2.45 4.06 2.32 3.39 1.64
(27.91) (17.58) (17.66) (9.03) (15.55) (8.76) (14.70) (4.03)
RMSEAll 2.20 1.56 1.70 1.16 1.64 1.07 1.42 0.82
(8.80) (4.84) (5.44) (3.14) (7.12) (3.97) (4.57) (2.11)
Panel B: RMSRE
RMSRESPX 4.06 3.30 3.55 2.73 3.42 2.51 3.07 2.02
(16.79) (9.29) (10.93) (6.04) (11.31) (8.25) (11.31) (3.95)
RMSREFut 2.32 1.61 2.01 1.13 1.98 1.02 1.81 0.74
(9.11) (5.01) (6.48) (3.73) (6.14) (2.92) (6.13) (2.60)
RMSREVIX 7.38 4.66 5.69 3.12 5.59 2.88 4.78 2.04
(28.32) (16.50) (25.14) (13.11) (23.66) (12.98) (23.56) (4.34)
RMSREAll 4.63 3.51 3.91 2.80 3.77 2.56 3.34 2.01
(15.75) (9.90) (10.54) (6.15) (10.70) (7.94) (10.70) (3.94)
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
Agenda
Infer the true dynamics of S&P500: change of measure
between P and Q measure, non-standard Kalman filtering
of latent variables, pricing kernel and variance risk-premia
estimation.
Understanding the meaning of φt :
1 Is it an affine approximation of some non-affine (true)
model?
2 Is it (and to what extent) an additionally volatility state
vector?
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
Thanks for your attention!
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
References I
Chicago Board Options Exchange. The CBOE volatility index-VIX. White Paper
(2009).
Grünbichler, A., and Longstaff, F. A. Valuing futures and options on volatility.
Journal of Banking & Finance 20 (6), 985-1001.
Mencía, J. and Sentana, E. Valuation of VIX derivatives. Journal of Financial
Economics 108 (2), 367-391.
Bardgett, C., Gourier, E., and Leipold, M. Inferring volatility dynamics and risk
premia from the S&P 500 and VIX markets. Working paper.
Cont, R., and Kokholm, T. A consistent pricing model for index options and
volatility derivatives. Mathematical Finance 23.2 (2013): 248-274.
Sepp, A. Pricing options on realized variance in the Heston model with jumps in
returns and volatility. Journal of Computational Finance 11 (4), 33Ð70.
Sepp, A. VIX option pricing in a jump-diffusion model. Risk (April), 84-89.
Pacati, C., Renò, R. and Santilli, M. (2014). Heston Model: shifting on the
volatility surface. Risk (November), 54-59.
Brigo, D-, and Mercurio, F. A deterministic-shift extension of analytically-tractable
and time-homogeneous short-rate models. Finance & Stochastics 5, 369-388.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
References II
Bakshi, G., and Madan, D. Spanning and derivative-security valuation. Journal of
Financial Economics 55.2 (2000): 205-238.
Schoutens, W. Levy processes in Finance: Pricing Financial Derivatives. Wiley,
2003.
Duffie, D., Pan, J., and Singleton, K. Transform analysis and asset pricing for
affine jump-diffusions. Econometrica 68.6 (2000): 1343-1376.
Zhu, S.-P., and Lian, G.-H. An analytical formula for VIX futures and its
applications. Journal of Futures Markets 32.2 (2012): 166-190.
Lian, G.-H., and Zhu S.-P. Pricing VIX options with stochastic volatility and
random jumps. Decisions in Economics and Finance 36.1 (2013): 71-88.
Heston, S. L. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of financial studies 6.2 (1993):
327-343.
Christoffersen, P., Heston, S., and Jacobs, K.. The shape and term structure of
the index option smirk: Why multifactor stochastic volatility models work so well.
Bates, D. S. Jumps and stochastic volatility: Exchange rate processes implicit in
deutsche mark options. Review of financial studies 9.1 (1996): 69-107.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
References III
Branger, N., and Völkert, C. The fine structure of variance: Consistent pricing of
VIX derivatives. Working paper.
C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model

More Related Content

PDF
Consistent Pricing of VIX Derivatives and SPX Options with the Heston++ model
PDF
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
PDF
Statistical Clustering and Portfolio Management
PDF
Sesión 8. análisis de estilos
PDF
Correlation modeling and portfolio optimization - CIPEFA
PDF
Statistical Clustering and Portfolio Management
PDF
3. Finance
PDF
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr
Consistent Pricing of VIX Derivatives and SPX Options with the Heston++ model
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Statistical Clustering and Portfolio Management
Sesión 8. análisis de estilos
Correlation modeling and portfolio optimization - CIPEFA
Statistical Clustering and Portfolio Management
3. Finance
Econophysics II: Detailed Look at Stock Markets and Trading - Thomas Guhr

Viewers also liked (11)

PDF
Deterministic Shift Extension of Affine Models for Variance Derivatives
PDF
Why is she smiling? v2
PPT
Many Face House
DOC
Smail BELKHIRI CV1
PPSX
اعراض القولون العصبى واهم انواعه والاسباب
PPSX
مرض السيلان الاسباب ,الاعراض وطرق الوقاية منه والعلاج الفعال
PDF
Effective Presentation & Communication Skills For Business Leaders
DOC
موقع سلايد شير
PPTX
Communication skills ppt slides
PPTX
Communication skills ppt
PPTX
Slideshare.Com Powerpoint
Deterministic Shift Extension of Affine Models for Variance Derivatives
Why is she smiling? v2
Many Face House
Smail BELKHIRI CV1
اعراض القولون العصبى واهم انواعه والاسباب
مرض السيلان الاسباب ,الاعراض وطرق الوقاية منه والعلاج الفعال
Effective Presentation & Communication Skills For Business Leaders
موقع سلايد شير
Communication skills ppt slides
Communication skills ppt
Slideshare.Com Powerpoint
Ad

Similar to Smiling Twice: The Heston++ Model (20)

PDF
Achieving Consistent Modeling Of VIX and Equities Derivatives
PPT
Financial Markets with Stochastic Volatilities - markov modelling
PDF
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
PDF
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
PDF
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
PDF
Stochastic Local Volatility Models: Theory and Implementation
PDF
Volatility derivatives and default risk
PDF
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
PDF
Banque de France's Workshop on Granularity: Basile Grassi's slides, June 2016
DOCX
Option Pricing under non constant volatilityEcon 643 Fina.docx
PDF
Expanding further the universe of exotic options closed pricing formulas in t...
PDF
Numerical method for pricing american options under regime
PPSX
Pres-Fibe2015-pbs-Org
PPSX
Pres fibe2015-pbs-org
PDF
Slides ensae-2016-9
PDF
Optimal debt maturity management
PDF
Scalable inference for a full multivariate stochastic volatility
PDF
Volatility Smiles and Stylised Facts in the Heston Model
PDF
On building FX Volatility surface - The Vanna Volga method
PDF
Last my paper equity, implied, and local volatilities
Achieving Consistent Modeling Of VIX and Equities Derivatives
Financial Markets with Stochastic Volatilities - markov modelling
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
CRITICAL POINT ON STOCHASTIC VOLATILITY OPTION PRICING.
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Stochastic Local Volatility Models: Theory and Implementation
Volatility derivatives and default risk
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Banque de France's Workshop on Granularity: Basile Grassi's slides, June 2016
Option Pricing under non constant volatilityEcon 643 Fina.docx
Expanding further the universe of exotic options closed pricing formulas in t...
Numerical method for pricing american options under regime
Pres-Fibe2015-pbs-Org
Pres fibe2015-pbs-org
Slides ensae-2016-9
Optimal debt maturity management
Scalable inference for a full multivariate stochastic volatility
Volatility Smiles and Stylised Facts in the Heston Model
On building FX Volatility surface - The Vanna Volga method
Last my paper equity, implied, and local volatilities
Ad

Recently uploaded (20)

PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Pharmacology of Autonomic nervous system
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
famous lake in india and its disturibution and importance
PPTX
INTRODUCTION TO EVS | Concept of sustainability
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PPT
protein biochemistry.ppt for university classes
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
The scientific heritage No 166 (166) (2025)
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
2. Earth - The Living Planet earth and life
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Pharmacology of Autonomic nervous system
HPLC-PPT.docx high performance liquid chromatography
famous lake in india and its disturibution and importance
INTRODUCTION TO EVS | Concept of sustainability
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
The KM-GBF monitoring framework – status & key messages.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
protein biochemistry.ppt for university classes
Biophysics 2.pdffffffffffffffffffffffffff
Classification Systems_TAXONOMY_SCIENCE8.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
The scientific heritage No 166 (166) (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
2Systematics of Living Organisms t-.pptx
2. Earth - The Living Planet earth and life

Smiling Twice: The Heston++ Model

  • 1. Smiling twice: The Heston++ model C. Pacati1 G. Pompa2 R. Renò3 1Dipartimento di Economia Politica e Statistica Università di Siena, Italy 2,IMT School for Advanced Studies Lucca, Italy 3Dipartimento di Scienze Economiche Università degli Studi di Verona, Italy XVII Workshop on Quantitative Finance, Pisa 2016 C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 2. The problem There is growing demand, and correspondingly a liquid market, for trading volatility derivatives and managing volatility risk. SPX and VIX derivatives both provide informations on the same volatility process, a model which is able to price one market, but not the other, is inherently misspecified. There is need of a pricing framework for consistent pricing both equity derivatives and volatility derivatives; Affine models are unable to reproduce VIX Futures and Options features; Non-affine models are often analitically intractable and computationally heavy. We tackle the problem of jointly fit the IV surface of SPX index options, together with the term structure of VIX futures and the surface of VIX options, leveraging on an affinity-preserving deterministic shift extension of the volatility process. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 3. The problem There is growing demand, and correspondingly a liquid market, for trading volatility derivatives and managing volatility risk. SPX and VIX derivatives both provide informations on the same volatility process, a model which is able to price one market, but not the other, is inherently misspecified. There is need of a pricing framework for consistent pricing both equity derivatives and volatility derivatives; Affine models are unable to reproduce VIX Futures and Options features; Non-affine models are often analitically intractable and computationally heavy. We tackle the problem of jointly fit the IV surface of SPX index options, together with the term structure of VIX futures and the surface of VIX options, leveraging on an affinity-preserving deterministic shift extension of the volatility process. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 4. VIX: the Fear Index Since 1993, VIX reflects the 30-day expected risk-neutral S&P500 index volatility. Leverage effect: inverse relationship SPX-VIX (2004-2016) Jan04 Jan06 Jan08 Jan10 Jan12 Jan14 Jan16 0 250 500 750 1000 1250 1500 1750 2000 S&P500 0 10 20 30 40 50 60 70 80 90 VIXDailyClose C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 5. VIX: the Fear Index Since 1993, VIX reflects the 30-day expected risk-neutral S&P500 index volatility. Positively skewed and leptokurtic (2004-2016) 0 10 20 30 40 50 60 70 80 90 0 0.02 0.04 0.06 0.08 0.1 0.12 VIX Daily Close EmpiricalPDF C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 6. VIX Futures: the term structure of Fear Traded since 2004, convey market visions on volatility of S&P500 (2004-2014). 0 1 2 3 4 5 6 7 Nov−14 Feb−13 May−11 Jul−09 Oct−07 Jan−06 Mar−04 0 10 20 30 40 50 60 70 DateTenor (months) C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 7. VIX Futures: the term structure of Fear Traded since 2004, convey market visions on volatility of S&P500 (2004-2014). Humped term structure (June 29, 2009) C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 8. VIX Options: the cross-section of Fear Traded since 2006, provide insurance from equity market downturns: S&P500 vanilla below (June 29, 2009) C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 9. VIX Options: the cross-section of Fear Traded since 2006, provide insurance from equity market downturns: VIX options below (June 29, 2009). C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 10. Modeling VIX and VIX derivatives: literature review Standalone approach: volatility is directly modeled, separated from the underlying stock price process. Whaley 1993 (GBM), Grünbichler and Longstaff 1996 (SQR), Detemple and Osakwe 2000 (LOU), Mencia and Sentana 2013 (CTLOUSV), Goard and Mazur 2013 (3/2). C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 11. Modeling VIX and VIX derivatives: literature review Standalone approach: volatility is directly modeled, separated from the underlying stock price process. Whaley 1993 (GBM), Grünbichler and Longstaff 1996 (SQR), Detemple and Osakwe 2000 (LOU), Mencia and Sentana 2013 (CTLOUSV), Goard and Mazur 2013 (3/2). Consistent approach: VIX is derived from the specification of SPX dynamics. Sepp 2008 (SVVJ), Lian Zhu 2013 (SVCJ), Lo et al. 2013 (2-SVCJ), Bardgett et al. 2013 (2-SMRSVCJ), Branger et al. 2014 (2-SVSVJ), Baldeaux and Badran 2014 (3/2J), Pacati et al. 2015 (2-SVCVJ++). C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 12. The 2-SVCVJ++ model: motivation ++ extension of an affine processes: Brigo and Mercurio (2001): CIR++ fits observed term structure of forward rates. Pacati, Renò and Santilli (2014): Heston++ reproduces ATM term structure of FX options. Two sources of jumps: CO- market downturns correlated with volatility spikes (Todorov and Tauchen, 2011, Bandi and Renò, 2015). Idiosyncratic- direct channel for right skewness of volatility. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 13. The 2-SVCVJ++ model    dSt St− = (r − q − λ¯µ) dt + σ2 1,t + φt dWS 1,t + σ2,t dWS 2,t + (ecx − 1)dNt dσ2 1,t = α1(β1 − σ2 1,t )dt + Λ1σ1,t dWσ 1,t + cσdNt + cσdNt dσ2 2,t = α2(β2 − σ2 2,t )dt + Λ2σ2,t dWσ 2,t under Q, where φ0 = 0, φt ≥ 0, cx ∼ N µx + ρJcσ, δ2 x |cσ, cσ ∼ E(µco,σ) and cσ ∼ E(µid,σ). The model is affine provided corr(dWS 1,t , dWσ 1,t ) = ρ1 σ2 1,t σ2 1,t + φt corr(dWS 2,t , dWσ 2,t ) = ρ2 C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 14. The 2-SVCVJ++ model: nested models Taxonomy of the H++ models used in the empirical analysis. All models have two factors. jumps in price volatility volatility displacement (idiosyncratic) (co-jumps) φt 2-SVJ 2-SVJ++ 2-SVCJ 2-SVCJ++ 2-SVVJ 2-SVVJ++ 2-SVCVJ 2-SVCVJ++ C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 15. The 2-SVCVJ++ model: affinity Lemma (Conditional Characteristic Functions) Under the H++ models, the conditional characteristic function of returns fH++ x (z) = EQ eizxT Ft and of the two stochastic volatility factors fH++ σ (z1, z2) = EQ eiz1σ2 1,T +iz2σ2 2,T Ft are given by: fH++ x (z; xt , σ2 1,t , σ2 2,t , t, T, φ) = fH x (z; xt , σ2 1,t , σ2 2,t , τ)e−1 2 z(i+z)Iφ(t,T) fH++ σ (z1, z2; σ2 1,t , σ2 2,t , τ) = fH σ (z1, z2; σ2 1,t , σ2 2,t , τ) where τ = T − t, z, z1, z2 ∈ C and Iφ(t, T) = T t φsds. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 16. The 2-SVCVJ++ model: S&P500 Options Proposition (Price of SPX Options) Under the H++ models, the arbitrage-free price at time t of a European call option on the underlying St , with strike price K and time to maturity τ = T − t, is given by (Lewis 2000, 2001) CH++ SPX (K, t, T) = St e−qτ − 1 π St Ke− 1 2 (r+q)τ ∞ 0 Re eiuk fH x u − i 2 e − u2 + 1 4 Iφ(t,T) u2 + 1 4 du where k = log St K + (r − q)τ. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 17. The 2-SVCVJ++ model: VIX Index Proposition (VIX Index) Under the H++ models, VIXH++ t,¯τ 100 2 = VIXH t,¯τ 100 2 + 1 ¯τ Iφ(t, t + ¯τ) where ¯τ = 30 days, VIXH t,¯τ is the corresponding quotation under H models, which is an affine function of the volatility factors σ2 1,t and σ2 2,t VIXH t,¯τ 100 2 = 1 ¯τ   k=1,2 ak (¯τ)σ2 k,t + bk (¯τ)   where Iφ(t, t + ¯τ) = t+¯τ t φsds. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 18. The 2-SVCVJ++ model: VIX Futures and Options Proposition (Price of VIX derivatives) Under H++ models, the time t value of a futures on VIXt,¯τ settled at time T and the arbitrage-free price at time t of a call option on VIXt,¯τ , with strike price K and time to maturity τ = T − t are given respectively by FH++ VIX (t, T) 100 = 1 2 √ π ∞ 0 Re   f H σ −z a1(¯τ) ¯τ , −z a2(¯τ) ¯τ e −iz k=1,2 bk ( ¯τ)+Iφ(T,T+ ¯τ) / ¯τ (−iz)3/2    d Re(z) and CH++ VIX (K, t, T) 100 = e−rτ 2 √ π ∞ 0 Re f H σ −z a1(¯τ) ¯τ , −z a2(¯τ) ¯τ × e −iz k=1,2 bk ( ¯τ)+Iφ(T,T+ ¯τ) / ¯τ 1 − erf(K/100 √ −iz) (−iz)3/2    d Re(z) where z = Re(z) + i Im(z) ∈ C, 0 < Im(z) < ζc(τ) and erf(z) = 2√ π z 0 e−s2 ds. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 19. SPX Vanilla (September 2, 2009) 800 1000 20 25 30 35 40 45 50 55 Strike Vol(%) 17 days Calls Puts 900 1000 1100 20 25 30 35 Strike Vol(%) 28 days 2−SVCVJ 2−SVCVJ++ 600 800 1000 1200 20 30 40 50 60 Strike Vol(%) 45 days 600 800 1000 1200 20 25 30 35 40 45 50 55 Strike Vol(%) 80 days 600 800 1000 1200 20 25 30 35 40 45 50 55 Strike Vol(%) 108 days 500 1000 20 25 30 35 40 45 50 Strike Vol(%) 199 days 500 1000 20 25 30 35 40 45 50 Strike Vol(%) 290 days C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 20. VIX Futures (September 2, 2009) 0 20 40 60 80 100 120 140 160 180 200 29 29.5 30 30.5 31 31.5 32 32.5 33 Tenor (days) SettlePrice(US$) Data 2−SVCVJ 2−SVCVJ++ C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 21. VIX Options (September 2, 2009) 34 36 38 40 42 44 90 100 110 120 130 Strike Vol(%) 14 days Data 30 40 50 60 65 70 75 80 85 90 95 Strike Vol(%) 49 days 2−SVCVJ 2−SVCVJ++ 30 40 50 60 70 80 60 70 80 90 100 Strike Vol(%) 77 days 20 30 40 50 50 55 60 65 70 75 80 85 Strike Vol(%) 105 days C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 22. Calibration Errors (in %) 2-SVJ 2-SVJ++ 2-SVCJ 2-SVCJ++ 2-SVVJ 2-SVVJ++ 2-SVCVJ 2-SVCVJ++ Panel A: RMSE RMSESPX 1.17 0.99 1.04 0.86 0.99 0.77 0.90 0.65 (6.01) (3.75) (4.11) (2.42) (4.28) (3.15) (4.28) (1.64) RMSEFut 0.70 0.49 0.59 0.34 0.59 0.31 0.53 0.22 (3.49) (1.85) (1.62) (1.32) (1.66) (1.19) (1.50) (1.07) RMSEVIX 5.73 3.82 4.12 2.45 4.06 2.32 3.39 1.64 (27.91) (17.58) (17.66) (9.03) (15.55) (8.76) (14.70) (4.03) RMSEAll 2.20 1.56 1.70 1.16 1.64 1.07 1.42 0.82 (8.80) (4.84) (5.44) (3.14) (7.12) (3.97) (4.57) (2.11) Panel B: RMSRE RMSRESPX 4.06 3.30 3.55 2.73 3.42 2.51 3.07 2.02 (16.79) (9.29) (10.93) (6.04) (11.31) (8.25) (11.31) (3.95) RMSREFut 2.32 1.61 2.01 1.13 1.98 1.02 1.81 0.74 (9.11) (5.01) (6.48) (3.73) (6.14) (2.92) (6.13) (2.60) RMSREVIX 7.38 4.66 5.69 3.12 5.59 2.88 4.78 2.04 (28.32) (16.50) (25.14) (13.11) (23.66) (12.98) (23.56) (4.34) RMSREAll 4.63 3.51 3.91 2.80 3.77 2.56 3.34 2.01 (15.75) (9.90) (10.54) (6.15) (10.70) (7.94) (10.70) (3.94) C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 23. Agenda Infer the true dynamics of S&P500: change of measure between P and Q measure, non-standard Kalman filtering of latent variables, pricing kernel and variance risk-premia estimation. Understanding the meaning of φt : 1 Is it an affine approximation of some non-affine (true) model? 2 Is it (and to what extent) an additionally volatility state vector? C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 24. Thanks for your attention! C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 25. References I Chicago Board Options Exchange. The CBOE volatility index-VIX. White Paper (2009). Grünbichler, A., and Longstaff, F. A. Valuing futures and options on volatility. Journal of Banking & Finance 20 (6), 985-1001. Mencía, J. and Sentana, E. Valuation of VIX derivatives. Journal of Financial Economics 108 (2), 367-391. Bardgett, C., Gourier, E., and Leipold, M. Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets. Working paper. Cont, R., and Kokholm, T. A consistent pricing model for index options and volatility derivatives. Mathematical Finance 23.2 (2013): 248-274. Sepp, A. Pricing options on realized variance in the Heston model with jumps in returns and volatility. Journal of Computational Finance 11 (4), 33Ð70. Sepp, A. VIX option pricing in a jump-diffusion model. Risk (April), 84-89. Pacati, C., Renò, R. and Santilli, M. (2014). Heston Model: shifting on the volatility surface. Risk (November), 54-59. Brigo, D-, and Mercurio, F. A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models. Finance & Stochastics 5, 369-388. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 26. References II Bakshi, G., and Madan, D. Spanning and derivative-security valuation. Journal of Financial Economics 55.2 (2000): 205-238. Schoutens, W. Levy processes in Finance: Pricing Financial Derivatives. Wiley, 2003. Duffie, D., Pan, J., and Singleton, K. Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68.6 (2000): 1343-1376. Zhu, S.-P., and Lian, G.-H. An analytical formula for VIX futures and its applications. Journal of Futures Markets 32.2 (2012): 166-190. Lian, G.-H., and Zhu S.-P. Pricing VIX options with stochastic volatility and random jumps. Decisions in Economics and Finance 36.1 (2013): 71-88. Heston, S. L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of financial studies 6.2 (1993): 327-343. Christoffersen, P., Heston, S., and Jacobs, K.. The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. Bates, D. S. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of financial studies 9.1 (1996): 69-107. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model
  • 27. References III Branger, N., and Völkert, C. The fine structure of variance: Consistent pricing of VIX derivatives. Working paper. C. Pacati, G. Pompa, R. Renò Smiling twice: The Heston++ model