The document discusses soft computing and its techniques, including artificial neural networks (ANN). It provides an overview of ANN, including how biological neurons inspired the basic ANN model. A neuron has inputs, outputs, weights, and an activation function. Networks can be single or multilayer. Learning involves updating weights to minimize error, with backpropagation commonly used for multilayer networks. Applications include pattern recognition, function approximation, and parameter estimation. A simple example is provided to estimate the slope and intercept of a line using ANN.
Related topics: