SlideShare a Scribd company logo
Powerful Full-Text Search
with Solr
Jay Bharat
jay@carmatec.com
Carmatec It solution, Bangalore
1 July 2013

1
An introduction to Solr
Implementing search with free
software

2
Solr Tm -1/2

3
Solr Tm-2/2

4
What is Solr?
•  Solr is an open source enterprise search
server based on the Lucene Java search
library.
•  Solr runs in a Java servlet container such
as Tomcat or Jetty
•  Solr is free software and a project of the
Apache Software Foundation
•  Solr is a sub-project of Lucene and can be
found at http://lucene.apache.org/solr/

5
Key Features
•  Advanced Full-Text search
•  Optimized for High Volume Web Traffic
•  Standards Based Open Interfaces – XML and
HTTP
•  Comprehensive HTML Administration Interface
•  Server statistics exposed over JMX for monitoring
•  Scalability through efficient replication
•  Flexibility with XML configuration and Plugins
•  Push vs Crawl indexing method
6
Solr Clients
•  Solr can be integrated with, among others…
–  Ruby
–  PHP
–  Java
–  Python
–  JSON
–  Forrest/Cocoon
–  C# or Deveel Solr Client or solrnet
–  Coldfusion
–  Drupal or apacheSolr project for Drupal
7
Indexing
• 
• 
• 
• 

Push vs Crawl
Schema.xml
Add documents
HTML interface
–  Update
–  Delete
–  Commit

•  DataImportHandler
–  For searching databases

8
Searching
•  Full text search
http://localhost:8983/solr/select?q=Iraq
§  Search only within a field
http://localhost:8983/solr/select?
q=category:news
§  Control which fields are displayed in result
http://localhost:8983/solr/select?
q=video&fl=id,category
9
§  Provide ranges to fields
More Searching
•  Faceting information
http://localhost:8983/solr/select?
q=news&fl=id,description&facet=true&facet.fi
eld=category
§  More like this (MLT)
http://localhost:8983/solr/select?
q=Iraq&mlt=true&mlt.fl=headline&mlt.mindf=1
&mlt.mintf=1&fl=id,score&rows=100
•  More information on how this works and the
options available can be found at
http://wiki.apache.org/solr/MoreLikeThis
10
QueryResponseWriter
§  A QueryResponseWriter is a Solr Plugin
that defines the response format for any
request
§  All of the requests we have made so far
are formatted with the
XMLResponseWriter
§  Other formats can be applied by
appending wt=format to the search string
like this:
http://localhost:8983/solr/select?q=date:

11
Acknowledgements
•  Search smarter with Apache Solr, Part 1:
Essential features and the Solr schema
–  http://www.ibm.com/developerworks/java/
library/j-solr1/

•  Solr Tutorial from Lucid Imagination
–  http://www.lucidimagination.com/Community/
Hear-from-the-Experts/Podcasts-and-Videos/
Solr-Tutorial

•  Solr Wiki
–  http://wiki.apache.org/solr/

12
Powered by Lucene
•  Wikipedia
•  Internet Archive
•  LinkedIn
•  monster.com

13
Indexing
aardvark

0

Little Red Riding Hood
hood

0

1

little

0

2

1

Robin Hood
red

0

riding

0

robin

1

2

Little Women
women
zoo

2
14
Search
•  Core parameters
•  qt – query type (request handler)
•  wt – writer type (response writer)

•  Common parameters
•  q
•  sort
•  start
•  rows
•  fq – filters
•  fl – return fields
15
Search Syntax
•  field:term (*:* returns everything)
•  A score is generated at query time, the value itself doesn’t have any meaning, the
scores are relevant only when relative to each other (a scale)
•  fq can filter query based on some supplied condition
•  wt is the return type of the results (xml,json, etc.)
•  qt is the request handler used to process the request (default is “standard”)
•  fl is the list of fields to return (field must be stored)
•  q is the query string
•  You can specify the start value and maxrows

16
Search Syntax
•  field:term (*:* returns everything)
•  A score is generated at query time, the value itself
doesn’t have any meaning, the scores are relevant only
when relative to each other (a scale)
•  fq can filter query based on some supplied condition
•  wt is the return type of the results (xml,json, etc.)
•  qt is the request handler used to process the request
(default is “standard”)
•  fl is the list of fields to return (field must be stored)
•  q is the query string
•  You can specify the start value and maxrows
17
What is Lucene
•  High performance, scalable, full-text
search library
•  Focus: Indexing + Searching Documents
–  “Document” is just a list of name+value pairs

•  No crawlers or document parsing
•  Flexible Text Analysis (tokenizers + token
filters)
•  100% Java, no dependencies, no config
files
18
What is SOLR
•  Solr (pronounced "solar") is an open source
enterprise search platform from the Apache
Lucene project. Its major features include fulltext search, hit highlighting, faceted search,
dynamic clustering, database integration, and
rich document (e.g., Word, PDF) handling.
Providing distributed search and index
replication, Solr is highly scalable.[1] Solr is the
most popular enterprise search engine.[2] Solr 4
adds NoSQL features.[3]
19
What is SOLR
•  Solr (pronounced "solar") is an open source
enterprise search platform from the Apache
Lucene project. Its major features include fulltext search, hit highlighting, faceted search,
dynamic clustering, database integration, and
rich document (e.g., Word, PDF) handling.
Providing distributed search and index
replication, Solr is highly scalable.[1] Solr is the
most popular enterprise search engine.[2] Solr 4
adds NoSQL features.[3]
20
Solr Features
•  Advanced Full-Text Search Capabilities
•  Optimized for High Volume Web Traffic
•  Standards Based Open Interfaces - XML, JSON and
HTTP
•  Comprehensive HTML Administration Interfaces
•  Linearly scalable, auto index replication, auto failover
and recovery
•  Near Real-time indexing
•  Flexible and Adaptable with XML configuration
•  Extensible Plugin Architecture
21
Indexing Data
HTTP POST to http://localhost:8983/solr/update
<add><doc>
<field name=“id”>05991</field>
<field name=“name”>Peter Parker</field>
<field name=“supername”>Spider-Man</field>
<field name=“category”>superhero</field>
<field name=“powers”>agility</field>
<field name=“powers”>spider-sense</field>
</doc></add>
22
Indexing CSV data
Guru, Saurabh, Vivek, Siddhartha | Lubaib
, Venugopal|superhero, php|bangalore|benguluru,
Magneto, Mumbai|Bombay, GB|gigabytes, cm|centimeter,
Purvankara

http://localhost:8983/solr/update/csv?
fieldnames=supername,Vivek,Magento,gb
&separator=,
&f.name.split=true&f.name.separator=|
&f.powers.split=true&f.powers.separator=|
23
Data upload methods
URL=http://localhost:8983/solr/update/csv

•  HTTP POST body (curl, HttpClient, etc)
curl $URL -H 'Content-type:text/plain;
charset=utf-8' --data-binary @info.csv

•  Multi-part file upload (browsers)
•  Request parameter
?stream.body=‘Cyclops, Scott Summers,…’

•  Streaming from URL (must enable)
?stream.url=file://data/info.csv

24
Indexing with SolrJ
// Solr’s Java Client API… remote or embedded/local!
SolrServer server = new
CommonsHttpSolrServer("http://localhost:8983/solr");
SolrInputDocument doc = new SolrInputDocument();
doc.addField(”player","Dravid");
doc.addField("name",”Kumar Rahul");
doc.addField(“category",“superhero");
server.add(doc);
server.commit();

25
Deleting Documents
•  Delete by Id, most efficient
<delete>
<id>05591</id>
<id>32552</id>
</delete>
•  Delete by Query
<delete>
<query>category:supervillain</query>
</delete>
26
Commit
•  <commit/> makes changes visible
–  Triggers static cache warming in
solrconfig.xml
–  Triggers autowarming from existing caches
default on

•  <optimize/> same as commit, merges all
index segments for faster searching
_0.fnm
_0.fdt
_0.fdx
_0.frq
_0.tis
_0.tii
_0.prx
_0.nrm
_0_1.del

Lucene Index Segments
_1.fnm
_1.fdt
_1.fdx
[…]

27
Searching
http://localhost:8983/solr/select?q=powers:agility
&start=0&rows=2&fl=supername,category
<response>
<result numFound=“427" start="0">
<doc>
<str name=“supername">Spider-Man</str>
<str name=“category”>superhero</str>
</doc>
<doc>
<str name=“supername">Msytique</str>
<str name=“category”>supervillain</str>
</doc>
</result>
</response>

28
Response Format
•  Add &wt=json for JSON formatted response
{“result": {"numFound":427, "start":0,
"docs": [
{“supername”:”Spider-Man”, “category”:”superhero”},
{“supername”:” Magento”, “category”:” Purvankara”}
]
}
•  Also Python, Ruby, PHP, SerializedPHP, XSLT
29
Scoring
• 
• 
• 
• 
• 
• 

Query results are sorted by score descending
VSM – Vector Space Model
tf – term frequency: numer of matching terms in field
lengthNorm – number of tokens in field
idf – inverse document frequency
coord – coordination factor, number of matching
terms
•  document boost
•  query clause boost
http://lucene.apache.org/java/docs/scoring.html
30
Explain
http://solr/select?q=super fast&indent=on&debugQuery=on
<lst name="debug">
<lst name="explain">
<str name="id=Flash,internal_docid=6">
0.16389132 = (MATCH) product of:
0.32778263 = (MATCH) sum of:
0.32778263 = (MATCH) weight(text:fast in 6), product of:
0.5012072 = queryWeight(text:fast), product of:
2.466337 = idf(docFreq=5)
0.20321926 = queryNorm
0.65398633 = (MATCH) fieldWeight(text:fast in 6), product of:
1.4142135 = tf(termFreq(text:fast)=2)
2.466337 = idf(docFreq=5)
0.1875 = fieldNorm(field=fast, doc=6)
0.5 = coord(1/2)
</str>
<str name="id=Superman,internal_docid=7">
0.1365761 = (MATCH) product of:

31
Lucene Query Syntax
1.  justice league
•  Equiv: justice OR league
•  QueryParser default operator is “OR”/optional
2.  +justice +league –name:aquaman
•  Equiv: justice AND league NOT name:aquaman
3.  “justice league” –name:aquaman
4.  title:spiderman^10 description:spiderman
5.  description:“spiderman movie”~100

32
Lucene Query Examples2
1.  releaseDate:[2000 TO 2007]
2.  Wildcard searches: sup?r, su*r, super*
3.  spider~
• 
• 

Fuzzy search: Levenshtein distance
Optional minimum similarity: spider~0.7

4.  *:*
5.  (Superman AND “Lex Luthor”) OR
(+Batman +Joker)
33
DisMax Query Syntax
• 

Good for handling raw user queries

–  Balanced quotes for phrase query
–  ‘+’ for required, ‘-’ for prohibited
–  Separates query terms from query structure
http://solr/select?qt=dismax
&q=super man
// the user query
&qf=title^3 subject^2 body
// field to query
&pf=title^2,body
// fields to do phrase queries
&ps=100
// slop for those phrase q’s
&tie=.1
// multi-field match reward
&mm=2
// # of terms that should match
&bf=popularity
// boost function
34
DisMax Query Form
•  The expanded Lucene Query:

+( DisjunctionMaxQuery( title:super^3 |
subject:super^2 | body:super)
DisjunctionMaxQuery( title:man^3 |
subject:man^2 | body:man)
)
DisjunctionMaxQuery(title:”super man”~100^2
body:”super man”~100)
FunctionQuery(popularity)
•  Tip: set up your own request handler with default parameters
35
to avoid clients having to specify them
Function Query
•  Allows adding function of field value to score
–  Boost recently added or popular documents

•  Current parser only supports function
notation
•  Example: log(sum(popularity,1))
•  sum, product, div, log, sqrt, abs, pow
•  scale(x, target_min, target_max)
–  calculates min & max of x across all docs

•  map(x, min, max, target)
–  useful for dealing with defaults

36
Boosted Query
•  Score is multiplied instead of added
–  New local params <!...> syntax added

&q=<!boost b=sqrt(popularity)>super man
•  Parameter dereferencing in local params
&q=<!boost b=$boost v=$userq>
&boost=sqrt(popularity)
&userq=super man
37
Configuring Relevancy

<fieldType name="text" class="solr.TextField">
<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.SynonymFilterFactory"
synonyms="synonyms.txt“/>
<filter class="solr.StopFilterFactory“
words=“stopwords.txt”/>
<filter class="solr.EnglishPorterFilterFactory"
protected="protwords.txt"/>
</analyzer>
</fieldType>
38
Field Definitions
•  Field Attributes: name, type, indexed, stored,
multiValued, omitNorms, termVectors
<field name="id“
type="string"
indexed="true" stored="true"/>
<field name="sku“
type="textTight” indexed="true" stored="true"/>
<field name="name“ type="text“
indexed="true" stored="true"/>
<field name=“inStock“ type=“boolean“ indexed="true“ stored=“false"/>
<field name=“price“
type=“sfloat“
indexed="true“ stored=“false"/>
<field name="category“ type="text_ws“ indexed="true" stored="true“
multiValued="true"/>

•  Dynamic Fields
<dynamicField name="*_i" type="sint“ indexed="true" stored="true"/>
<dynamicField name="*_s" type="string“ indexed="true" stored="true"/>
<dynamicField name="*_t" type="text“ indexed="true" stored="true"/>
39
copyField
•  Copies one field to another at index time
•  Usecase #1: Analyze same field different ways
–  copy into a field with a different analyzer
–  boost exact-case, exact-punctuation matches
–  language translations, thesaurus, soundex

<field name=“title” type=“text”/>
<field name=“title_exact” type=“text_exact”
stored=“false”/>
<copyField source=“title” dest=“title_exact”/>
•  Usecase #2: Index multiple fields into single
searchable field
40
41
42
43
Facet Query

http://solr/select?q=foo&wt=json&indent=on
&facet=true&facet.field=cat
&facet.query=price:[0 TO 100]
&facet.query=manu:IBM
{"response":{"numFound":26,"start":0,"docs":[…]},
“facet_counts":{
"facet_queries":{
"price:[0 TO 100]":6,
“manu:IBM":2},
"facet_fields":{
"cat":[ "electronics",14, "memory",3,
"card",2, "connector",2]
44
}}}
Filters
•  Filters are restrictions in addition to the query
•  Use in faceting to narrow the results
•  Filters are cached separately for speed
1. User queries for memory, query sent to solr is
&q=memory&fq=inStock:true&facet=true&…
2. User selects 1GB memory size
&q=memory&fq=inStock:true&fq=size:1GB&…
3. User selects DDR2 memory type
&q=memory&fq=inStock:true&fq=size:1GB
&fq=type:DDR2&…
45
Highlighting
http://solr/select?q=lcd&wt=json&indent=on
&hl=true&hl.fl=features
{"response":{"numFound":5,"start":0,"docs":[
{"id":"3007WFP", “price”:899.95}, …]
"highlighting":{
"3007WFP":{ "features":["30" TFT active matrix
<em>LCD</em>, 2560 x 1600”
"VA902B":{ "features":["19" TFT active matrix
<em>LCD</em>, 8ms response time, 1280 x
46
1024 native resolution"]}}}
MoreLikeThis
•  Selects documents that are “similar” to the
documents matching the main query.
&q=id:6H500F0
&mlt=true&mlt.fl=name,cat,features
"moreLikeThis":{ "6H500F0":{"numFound":
5,"start":0,
"docs”: [
{"name":"Apple 60 GB iPod with Video
Playback Black", "price":399.0,
"inStock":true, "popularity":10, […]
}, […]
]
[…]

47
High Availability

Dynamic
HTML
Generation

Appservers

HTTP search
requests

Load Balancer
Solr Searchers

Index Replication
admin queries
updates

updates
admin terminal

Updater

DB

Solr Master
48
Resources
•  WWW
–  http://lucene.apache.org/solr
–  http://lucene.apache.org/solr/tutorial.html
–  http://wiki.apache.org/solr/

•  Mailing Lists
–  solr-user-subscribe@lucene.apache.org
–  solr-dev-subscribe@lucene.apache.org

49

More Related Content

PPTX
Approaching Join Index - Lucene/Solr Revolution 2014
PDF
Approaching Join Index: Presented by Mikhail Khludnev, Grid Dynamics
PDF
Mikhail khludnev: approaching-join index for lucene
PDF
Grouping and Joining in Lucene/Solr
PDF
Building Applications with a Graph Database
PDF
Choosing the right NOSQL database
KEY
State-of-the-Art Drupal Search with Apache Solr
PDF
Introduction to Apache Solr
Approaching Join Index - Lucene/Solr Revolution 2014
Approaching Join Index: Presented by Mikhail Khludnev, Grid Dynamics
Mikhail khludnev: approaching-join index for lucene
Grouping and Joining in Lucene/Solr
Building Applications with a Graph Database
Choosing the right NOSQL database
State-of-the-Art Drupal Search with Apache Solr
Introduction to Apache Solr

What's hot (20)

PDF
Sem tech 2010_integrity_constraints
PPTX
Tagging search solution design Advanced edition
PDF
Stardog Linked Data Catalog
PPTX
Integrate ManifoldCF with Solr
PPTX
RDFa Tutorial
PDF
Practical Elasticsearch - real world use cases
PDF
Bea con anatomy-of-web-attack
PPTX
Linked Open Data - Masaryk University in Brno 8.11.2016
PDF
Solr Distributed Indexing in WalmartLabs: Presented by Shengua Wan, WalmartLabs
PDF
Designing RESTful APIs
PDF
Side by Side with Elasticsearch and Solr
PDF
Introduction to Elasticsearch
PDF
How Solr Search Works
PPT
Solr vs ElasticSearch
PPTX
Battle of the giants: Apache Solr vs ElasticSearch
PPTX
Madrid SPARQL handson
PDF
쉽게 이해하는 LOD
ODP
NoSQL and Triple Stores
PPTX
Solr introduction
PDF
Rapid Prototyping with Solr
Sem tech 2010_integrity_constraints
Tagging search solution design Advanced edition
Stardog Linked Data Catalog
Integrate ManifoldCF with Solr
RDFa Tutorial
Practical Elasticsearch - real world use cases
Bea con anatomy-of-web-attack
Linked Open Data - Masaryk University in Brno 8.11.2016
Solr Distributed Indexing in WalmartLabs: Presented by Shengua Wan, WalmartLabs
Designing RESTful APIs
Side by Side with Elasticsearch and Solr
Introduction to Elasticsearch
How Solr Search Works
Solr vs ElasticSearch
Battle of the giants: Apache Solr vs ElasticSearch
Madrid SPARQL handson
쉽게 이해하는 LOD
NoSQL and Triple Stores
Solr introduction
Rapid Prototyping with Solr
Ad

Similar to Solr search engine with multiple table relation (20)

PDF
Introduction to Solr
PDF
Solr Powered Lucene
PPTX
Introduction to Lucene & Solr and Usecases
PDF
Introduction to Solr
KEY
Apache Solr - Enterprise search platform
PDF
20150210 solr introdution
PDF
Solr Recipes
PDF
Scaling SolrCloud to a Large Number of Collections - Fifth Elephant 2014
PPTX
Apache Solr Workshop
PDF
Oslo Solr MeetUp March 2012 - Solr4 alpha
PDF
Apache Solr Workshop
PPTX
The Apache Solr Smart Data Ecosystem
PPTX
What's new in Lucene and Solr 4.x
PDF
Apache Solr crash course
KEY
Solr 101
PPTX
Introduction to Apache Lucene/Solr
PDF
Meet Solr For The Tirst Again
PPTX
Self-learned Relevancy with Apache Solr
Introduction to Solr
Solr Powered Lucene
Introduction to Lucene & Solr and Usecases
Introduction to Solr
Apache Solr - Enterprise search platform
20150210 solr introdution
Solr Recipes
Scaling SolrCloud to a Large Number of Collections - Fifth Elephant 2014
Apache Solr Workshop
Oslo Solr MeetUp March 2012 - Solr4 alpha
Apache Solr Workshop
The Apache Solr Smart Data Ecosystem
What's new in Lucene and Solr 4.x
Apache Solr crash course
Solr 101
Introduction to Apache Lucene/Solr
Meet Solr For The Tirst Again
Self-learned Relevancy with Apache Solr
Ad

Recently uploaded (20)

PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Modernizing your data center with Dell and AMD
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Machine learning based COVID-19 study performance prediction
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPT
Teaching material agriculture food technology
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Per capita expenditure prediction using model stacking based on satellite ima...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
MYSQL Presentation for SQL database connectivity
The Rise and Fall of 3GPP – Time for a Sabbatical?
Modernizing your data center with Dell and AMD
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Machine learning based COVID-19 study performance prediction
20250228 LYD VKU AI Blended-Learning.pptx
Network Security Unit 5.pdf for BCA BBA.
Diabetes mellitus diagnosis method based random forest with bat algorithm
Understanding_Digital_Forensics_Presentation.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Teaching material agriculture food technology
Encapsulation_ Review paper, used for researhc scholars
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...

Solr search engine with multiple table relation

  • 1. Powerful Full-Text Search with Solr Jay Bharat jay@carmatec.com Carmatec It solution, Bangalore 1 July 2013 1
  • 2. An introduction to Solr Implementing search with free software 2
  • 5. What is Solr? •  Solr is an open source enterprise search server based on the Lucene Java search library. •  Solr runs in a Java servlet container such as Tomcat or Jetty •  Solr is free software and a project of the Apache Software Foundation •  Solr is a sub-project of Lucene and can be found at http://lucene.apache.org/solr/ 5
  • 6. Key Features •  Advanced Full-Text search •  Optimized for High Volume Web Traffic •  Standards Based Open Interfaces – XML and HTTP •  Comprehensive HTML Administration Interface •  Server statistics exposed over JMX for monitoring •  Scalability through efficient replication •  Flexibility with XML configuration and Plugins •  Push vs Crawl indexing method 6
  • 7. Solr Clients •  Solr can be integrated with, among others… –  Ruby –  PHP –  Java –  Python –  JSON –  Forrest/Cocoon –  C# or Deveel Solr Client or solrnet –  Coldfusion –  Drupal or apacheSolr project for Drupal 7
  • 8. Indexing •  •  •  •  Push vs Crawl Schema.xml Add documents HTML interface –  Update –  Delete –  Commit •  DataImportHandler –  For searching databases 8
  • 9. Searching •  Full text search http://localhost:8983/solr/select?q=Iraq §  Search only within a field http://localhost:8983/solr/select? q=category:news §  Control which fields are displayed in result http://localhost:8983/solr/select? q=video&fl=id,category 9 §  Provide ranges to fields
  • 10. More Searching •  Faceting information http://localhost:8983/solr/select? q=news&fl=id,description&facet=true&facet.fi eld=category §  More like this (MLT) http://localhost:8983/solr/select? q=Iraq&mlt=true&mlt.fl=headline&mlt.mindf=1 &mlt.mintf=1&fl=id,score&rows=100 •  More information on how this works and the options available can be found at http://wiki.apache.org/solr/MoreLikeThis 10
  • 11. QueryResponseWriter §  A QueryResponseWriter is a Solr Plugin that defines the response format for any request §  All of the requests we have made so far are formatted with the XMLResponseWriter §  Other formats can be applied by appending wt=format to the search string like this: http://localhost:8983/solr/select?q=date: 11
  • 12. Acknowledgements •  Search smarter with Apache Solr, Part 1: Essential features and the Solr schema –  http://www.ibm.com/developerworks/java/ library/j-solr1/ •  Solr Tutorial from Lucid Imagination –  http://www.lucidimagination.com/Community/ Hear-from-the-Experts/Podcasts-and-Videos/ Solr-Tutorial •  Solr Wiki –  http://wiki.apache.org/solr/ 12
  • 13. Powered by Lucene •  Wikipedia •  Internet Archive •  LinkedIn •  monster.com 13
  • 14. Indexing aardvark 0 Little Red Riding Hood hood 0 1 little 0 2 1 Robin Hood red 0 riding 0 robin 1 2 Little Women women zoo 2 14
  • 15. Search •  Core parameters •  qt – query type (request handler) •  wt – writer type (response writer) •  Common parameters •  q •  sort •  start •  rows •  fq – filters •  fl – return fields 15
  • 16. Search Syntax •  field:term (*:* returns everything) •  A score is generated at query time, the value itself doesn’t have any meaning, the scores are relevant only when relative to each other (a scale) •  fq can filter query based on some supplied condition •  wt is the return type of the results (xml,json, etc.) •  qt is the request handler used to process the request (default is “standard”) •  fl is the list of fields to return (field must be stored) •  q is the query string •  You can specify the start value and maxrows 16
  • 17. Search Syntax •  field:term (*:* returns everything) •  A score is generated at query time, the value itself doesn’t have any meaning, the scores are relevant only when relative to each other (a scale) •  fq can filter query based on some supplied condition •  wt is the return type of the results (xml,json, etc.) •  qt is the request handler used to process the request (default is “standard”) •  fl is the list of fields to return (field must be stored) •  q is the query string •  You can specify the start value and maxrows 17
  • 18. What is Lucene •  High performance, scalable, full-text search library •  Focus: Indexing + Searching Documents –  “Document” is just a list of name+value pairs •  No crawlers or document parsing •  Flexible Text Analysis (tokenizers + token filters) •  100% Java, no dependencies, no config files 18
  • 19. What is SOLR •  Solr (pronounced "solar") is an open source enterprise search platform from the Apache Lucene project. Its major features include fulltext search, hit highlighting, faceted search, dynamic clustering, database integration, and rich document (e.g., Word, PDF) handling. Providing distributed search and index replication, Solr is highly scalable.[1] Solr is the most popular enterprise search engine.[2] Solr 4 adds NoSQL features.[3] 19
  • 20. What is SOLR •  Solr (pronounced "solar") is an open source enterprise search platform from the Apache Lucene project. Its major features include fulltext search, hit highlighting, faceted search, dynamic clustering, database integration, and rich document (e.g., Word, PDF) handling. Providing distributed search and index replication, Solr is highly scalable.[1] Solr is the most popular enterprise search engine.[2] Solr 4 adds NoSQL features.[3] 20
  • 21. Solr Features •  Advanced Full-Text Search Capabilities •  Optimized for High Volume Web Traffic •  Standards Based Open Interfaces - XML, JSON and HTTP •  Comprehensive HTML Administration Interfaces •  Linearly scalable, auto index replication, auto failover and recovery •  Near Real-time indexing •  Flexible and Adaptable with XML configuration •  Extensible Plugin Architecture 21
  • 22. Indexing Data HTTP POST to http://localhost:8983/solr/update <add><doc> <field name=“id”>05991</field> <field name=“name”>Peter Parker</field> <field name=“supername”>Spider-Man</field> <field name=“category”>superhero</field> <field name=“powers”>agility</field> <field name=“powers”>spider-sense</field> </doc></add> 22
  • 23. Indexing CSV data Guru, Saurabh, Vivek, Siddhartha | Lubaib , Venugopal|superhero, php|bangalore|benguluru, Magneto, Mumbai|Bombay, GB|gigabytes, cm|centimeter, Purvankara http://localhost:8983/solr/update/csv? fieldnames=supername,Vivek,Magento,gb &separator=, &f.name.split=true&f.name.separator=| &f.powers.split=true&f.powers.separator=| 23
  • 24. Data upload methods URL=http://localhost:8983/solr/update/csv •  HTTP POST body (curl, HttpClient, etc) curl $URL -H 'Content-type:text/plain; charset=utf-8' --data-binary @info.csv •  Multi-part file upload (browsers) •  Request parameter ?stream.body=‘Cyclops, Scott Summers,…’ •  Streaming from URL (must enable) ?stream.url=file://data/info.csv 24
  • 25. Indexing with SolrJ // Solr’s Java Client API… remote or embedded/local! SolrServer server = new CommonsHttpSolrServer("http://localhost:8983/solr"); SolrInputDocument doc = new SolrInputDocument(); doc.addField(”player","Dravid"); doc.addField("name",”Kumar Rahul"); doc.addField(“category",“superhero"); server.add(doc); server.commit(); 25
  • 26. Deleting Documents •  Delete by Id, most efficient <delete> <id>05591</id> <id>32552</id> </delete> •  Delete by Query <delete> <query>category:supervillain</query> </delete> 26
  • 27. Commit •  <commit/> makes changes visible –  Triggers static cache warming in solrconfig.xml –  Triggers autowarming from existing caches default on •  <optimize/> same as commit, merges all index segments for faster searching _0.fnm _0.fdt _0.fdx _0.frq _0.tis _0.tii _0.prx _0.nrm _0_1.del Lucene Index Segments _1.fnm _1.fdt _1.fdx […] 27
  • 28. Searching http://localhost:8983/solr/select?q=powers:agility &start=0&rows=2&fl=supername,category <response> <result numFound=“427" start="0"> <doc> <str name=“supername">Spider-Man</str> <str name=“category”>superhero</str> </doc> <doc> <str name=“supername">Msytique</str> <str name=“category”>supervillain</str> </doc> </result> </response> 28
  • 29. Response Format •  Add &wt=json for JSON formatted response {“result": {"numFound":427, "start":0, "docs": [ {“supername”:”Spider-Man”, “category”:”superhero”}, {“supername”:” Magento”, “category”:” Purvankara”} ] } •  Also Python, Ruby, PHP, SerializedPHP, XSLT 29
  • 30. Scoring •  •  •  •  •  •  Query results are sorted by score descending VSM – Vector Space Model tf – term frequency: numer of matching terms in field lengthNorm – number of tokens in field idf – inverse document frequency coord – coordination factor, number of matching terms •  document boost •  query clause boost http://lucene.apache.org/java/docs/scoring.html 30
  • 31. Explain http://solr/select?q=super fast&indent=on&debugQuery=on <lst name="debug"> <lst name="explain"> <str name="id=Flash,internal_docid=6"> 0.16389132 = (MATCH) product of: 0.32778263 = (MATCH) sum of: 0.32778263 = (MATCH) weight(text:fast in 6), product of: 0.5012072 = queryWeight(text:fast), product of: 2.466337 = idf(docFreq=5) 0.20321926 = queryNorm 0.65398633 = (MATCH) fieldWeight(text:fast in 6), product of: 1.4142135 = tf(termFreq(text:fast)=2) 2.466337 = idf(docFreq=5) 0.1875 = fieldNorm(field=fast, doc=6) 0.5 = coord(1/2) </str> <str name="id=Superman,internal_docid=7"> 0.1365761 = (MATCH) product of: 31
  • 32. Lucene Query Syntax 1.  justice league •  Equiv: justice OR league •  QueryParser default operator is “OR”/optional 2.  +justice +league –name:aquaman •  Equiv: justice AND league NOT name:aquaman 3.  “justice league” –name:aquaman 4.  title:spiderman^10 description:spiderman 5.  description:“spiderman movie”~100 32
  • 33. Lucene Query Examples2 1.  releaseDate:[2000 TO 2007] 2.  Wildcard searches: sup?r, su*r, super* 3.  spider~ •  •  Fuzzy search: Levenshtein distance Optional minimum similarity: spider~0.7 4.  *:* 5.  (Superman AND “Lex Luthor”) OR (+Batman +Joker) 33
  • 34. DisMax Query Syntax •  Good for handling raw user queries –  Balanced quotes for phrase query –  ‘+’ for required, ‘-’ for prohibited –  Separates query terms from query structure http://solr/select?qt=dismax &q=super man // the user query &qf=title^3 subject^2 body // field to query &pf=title^2,body // fields to do phrase queries &ps=100 // slop for those phrase q’s &tie=.1 // multi-field match reward &mm=2 // # of terms that should match &bf=popularity // boost function 34
  • 35. DisMax Query Form •  The expanded Lucene Query: +( DisjunctionMaxQuery( title:super^3 | subject:super^2 | body:super) DisjunctionMaxQuery( title:man^3 | subject:man^2 | body:man) ) DisjunctionMaxQuery(title:”super man”~100^2 body:”super man”~100) FunctionQuery(popularity) •  Tip: set up your own request handler with default parameters 35 to avoid clients having to specify them
  • 36. Function Query •  Allows adding function of field value to score –  Boost recently added or popular documents •  Current parser only supports function notation •  Example: log(sum(popularity,1)) •  sum, product, div, log, sqrt, abs, pow •  scale(x, target_min, target_max) –  calculates min & max of x across all docs •  map(x, min, max, target) –  useful for dealing with defaults 36
  • 37. Boosted Query •  Score is multiplied instead of added –  New local params <!...> syntax added &q=<!boost b=sqrt(popularity)>super man •  Parameter dereferencing in local params &q=<!boost b=$boost v=$userq> &boost=sqrt(popularity) &userq=super man 37
  • 38. Configuring Relevancy <fieldType name="text" class="solr.TextField"> <analyzer> <tokenizer class="solr.WhitespaceTokenizerFactory"/> <filter class="solr.LowerCaseFilterFactory"/> <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt“/> <filter class="solr.StopFilterFactory“ words=“stopwords.txt”/> <filter class="solr.EnglishPorterFilterFactory" protected="protwords.txt"/> </analyzer> </fieldType> 38
  • 39. Field Definitions •  Field Attributes: name, type, indexed, stored, multiValued, omitNorms, termVectors <field name="id“ type="string" indexed="true" stored="true"/> <field name="sku“ type="textTight” indexed="true" stored="true"/> <field name="name“ type="text“ indexed="true" stored="true"/> <field name=“inStock“ type=“boolean“ indexed="true“ stored=“false"/> <field name=“price“ type=“sfloat“ indexed="true“ stored=“false"/> <field name="category“ type="text_ws“ indexed="true" stored="true“ multiValued="true"/> •  Dynamic Fields <dynamicField name="*_i" type="sint“ indexed="true" stored="true"/> <dynamicField name="*_s" type="string“ indexed="true" stored="true"/> <dynamicField name="*_t" type="text“ indexed="true" stored="true"/> 39
  • 40. copyField •  Copies one field to another at index time •  Usecase #1: Analyze same field different ways –  copy into a field with a different analyzer –  boost exact-case, exact-punctuation matches –  language translations, thesaurus, soundex <field name=“title” type=“text”/> <field name=“title_exact” type=“text_exact” stored=“false”/> <copyField source=“title” dest=“title_exact”/> •  Usecase #2: Index multiple fields into single searchable field 40
  • 41. 41
  • 42. 42
  • 43. 43
  • 44. Facet Query http://solr/select?q=foo&wt=json&indent=on &facet=true&facet.field=cat &facet.query=price:[0 TO 100] &facet.query=manu:IBM {"response":{"numFound":26,"start":0,"docs":[…]}, “facet_counts":{ "facet_queries":{ "price:[0 TO 100]":6, “manu:IBM":2}, "facet_fields":{ "cat":[ "electronics",14, "memory",3, "card",2, "connector",2] 44 }}}
  • 45. Filters •  Filters are restrictions in addition to the query •  Use in faceting to narrow the results •  Filters are cached separately for speed 1. User queries for memory, query sent to solr is &q=memory&fq=inStock:true&facet=true&… 2. User selects 1GB memory size &q=memory&fq=inStock:true&fq=size:1GB&… 3. User selects DDR2 memory type &q=memory&fq=inStock:true&fq=size:1GB &fq=type:DDR2&… 45
  • 46. Highlighting http://solr/select?q=lcd&wt=json&indent=on &hl=true&hl.fl=features {"response":{"numFound":5,"start":0,"docs":[ {"id":"3007WFP", “price”:899.95}, …] "highlighting":{ "3007WFP":{ "features":["30" TFT active matrix <em>LCD</em>, 2560 x 1600” "VA902B":{ "features":["19" TFT active matrix <em>LCD</em>, 8ms response time, 1280 x 46 1024 native resolution"]}}}
  • 47. MoreLikeThis •  Selects documents that are “similar” to the documents matching the main query. &q=id:6H500F0 &mlt=true&mlt.fl=name,cat,features "moreLikeThis":{ "6H500F0":{"numFound": 5,"start":0, "docs”: [ {"name":"Apple 60 GB iPod with Video Playback Black", "price":399.0, "inStock":true, "popularity":10, […] }, […] ] […] 47
  • 48. High Availability Dynamic HTML Generation Appservers HTTP search requests Load Balancer Solr Searchers Index Replication admin queries updates updates admin terminal Updater DB Solr Master 48
  • 49. Resources •  WWW –  http://lucene.apache.org/solr –  http://lucene.apache.org/solr/tutorial.html –  http://wiki.apache.org/solr/ •  Mailing Lists –  solr-user-subscribe@lucene.apache.org –  solr-dev-subscribe@lucene.apache.org 49