SlideShare a Scribd company logo
1
Building distributed search applications
using Apache Solr
Saumitra Srivastav
saumitra.srivastav@glassbeam.com
@_saumitra_
2
Agenda
1. What is Solr? Architecture Overview
2. Solr schema, config, tokenizers and filters
3. Indexing data:
a. From disk using SolrJ
b. Importing from database(MySQL) with DataImport Handler
4. Querying Solr
a. Filters, Faceting, highlighting, sorting, grouping, boosting, range, function and
fuzzy queries)
b. Using 'More Like This' component to show similar docs
c. Adding 'Auto Suggest' component to auto complete user queries
d. Using 'Clustering' component to cluster similar results.
5. SolrCloud
a. Architecture
b. Setting up a multinode cluster with Zookeeper
c. Creating a distributed index
d. Collections API
6. Solr Admin UI
7. Understanding Solr performance factors
8. Solr vs. ElasticSearch - Overview
3
Demo App
Demo app which we will use for reference - http://saumitra.me/solrdemo/
4
Apache Lucene
• Apache Lucene is a high-performance, full-featured text search engine library
• Provides API to add search and indexing to your applications
• Provides scalable, High-Performance Indexing
• 150GB/hour on modern hardware
• small RAM requirements -- only 1MB heap
• Powerful, Accurate and Efficient Search Algorithms
• scoring
• phrase queries, wildcard queries, proximity queries, range queries
• sorting
• allows simultaneous update and searching
• flexible faceting, highlighting, joins and result grouping
• fast, memory-efficient and typo-tolerant suggesters
• With Lucene you need to write code for doing all this.
5
Apache Solr
• Search server build on top of Apache Lucene
• Provides API to access Lucene over HTTP
• Add more features on top of lucene
• Most of the programming tasks in Lucene are configurations in Solr
• Provides SolrCloud which adds
• Distributed search and indexing
• High Scalability
• Replication
• Load Balancing
• Fault Tolerance
• Solr is NOT a database
• Can be used a NoSQL store, as long as it is not abused
• Provides lot of other feature like Faceting, More Like This, Clustering, Data Import
Handler, Multiple language support, Rich document support
6
Lucene Indexing and Querying Overview
7
Inverted Index
8
Basic Concepts
• tf (t in d) : term frequency in a document
• measure of how often a term appears in the document
• the number of times term t appears in the currently scored document d
• idf (t) : inverse document frequency
• measure of whether the term is common or rare across all documents, i.e. how often the
term appears across the index
• obtained by dividing the total number of documents by the number of documents
containing the term, and then taking the logarithm of that quotient.
• coord : coordinate-level matching
• number of terms in the query that were found in the document,
• e.g. term ‘x’ and ‘y’ found in doc1 but only term ‘x’ is found in doc2 so for a query of ‘x’ OR
‘y’ doc1 will receive a higher score.
• boost (index) : boost of the field at index-time
• boost (query) : boost of the field at query-time
8
9
Apache Solr architecture
10
Enough talk...lets get our hands dirty
11
Hands-On Activity 1
Objective:
1. Solr directories walkthrough
2. Start single node solr instance
3. Index some sample documents
4. Admin UI overview
12
Getting Started - Start a solr node
• Go to Solr directory
• cd /home/solruser/work/solr-4.8.1/
• Make a copy of example folder
• cp -r example node0
• Go to node0 and start solr instance.
• cd /home/solruser/work/solr-4.8.1/node0
• java -jar start.jar
• This will launch jetty with the Solr war and the example configs.
• By default solr starts on port 8983. To give a custom port:
• java -Djetty.port=9000 -jar start.jar
• Open your browser and point to http://localhost:8983/solr to see Solr Admin UI
• You will see a default collection named collection1.
13
Solr Schema
• Before indexing document, you need to define a schema. A schema serves multiple
purpose.
• Field related information
• Fields in you document
• Datatype of those fields
• Whether you want to index the field or store it or both
• Other configurations for each field like termVectors, termPositions, docValues, etc
• Dynamic fields
• Copy Fields
• Datatypes
• A datatype is a collection of tokenizers and filters which can be chained
• It tells Solr what operations to perform on the content of a field
• You can define different analyzers for indexing and querying
• Solr also provides a schemaless mode where it can auto-detect the dataypes of fields.
14
Analyzers
• Analyzers are components that pre-process input text at index time and/or at query
time.
• You can define separate analyzer for indexing and querying
• Make sure that you define indexing and querying analyzers in a compatible
manner.
• Analyzer consists of:
• Char Filter
• Tokenizers
• Token Filters
15
Analyzers
Char Filter
Tokenizers
Token Filters
Char Filter (solr.HTMLStripCharFilterFactory)
Text Data
This is a sample HTML document.
Tokenizer (solr.WhitespaceTokenizerFactory)
[This] [is] [a] [sample] [HTML] [document.]
Token Filters
(solr.StopFilterFactory &
solr. LowerCaseFilterFactory)
Tokens Tokens: [sample] [html] [document]
<html> <body>
<h1> This is a sample HTML document .</h1>
</body></html>
Analyzer Analyzer
16
Analyzers - Example
17
Separate index and query analyzer
18
Char Filters
• Char Filter is a component that pre-processes input characters (consuming and
producing a character stream) that can add, change, or remove characters while
preserving character position information.
• CharFilters can be chained.
• Example:
<charFilter
class="solr.PatternReplaceCharFilterFactory"
pattern="([^a-z])"
replacement="“
/>
19
Tokenizers
• A Tokenizer splits a stream of characters (from each individual field value) into a series
of tokens.
• There can be only one Tokenizer in each Analyzer.
• Solr provides following tokenization factories
• solr.KeywordTokenizerFactory
• solr.LetterTokenizerFactory
• solr.WhitespaceTokenizerFactory
• solr.LowerCaseTokenizerFactory
• solr.StandardTokenizerFactory
• solr.ClassicTokenizerFactory
• solr.UAX29URLEmailTokenizerFactory
• solr.PatternTokenizerFactory
• solr.PathHierarchyTokenizerFactory
• solr.ICUTokenizerFactory
20
Token Filters
• Tokens produced by the Tokenizer are passed through a series of Token Filters
• TokenFilters can add, change, or remove tokens.
• The field is then indexed by the resulting token stream.
• Detailed information about analyzers can be obtained from
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers,+Tokenizer
s,+and+Filters
21
Dynamic Fields
• Dynamic fields allow Solr to index fields that you did not explicitly define in your
schema.
• A dynamic field is just like a regular field except it has a name with a wildcard in it.
• When you are indexing documents, a field that does not match any explicitly defined
fields can be matched with a dynamic field.
22
Copy field
• CopyField directive can be used to copy the data of one(or more field) into another
field.
23
Fields Parameters
1. Indexed
2. Stored
3. Multivalued
4. DocValues
5. OmitNorms
6. TermVectors
7. TermPositions
8. TermOffsets
24
Hands-On Activity 2
Objective:
1. Create a new collection
2. Understand schema.xml contents
3. Create a custom datatype
4. Create schema for stackexchange data
5. Learn how to use Admin UI to analyze and tune fieldTypes
25
Solr Schema-less mode
26
Indexing Data
• You can modify a Solr index by POSTing commands to Solr to add (or update)
documents, delete documents, and commit pending adds and deletes.
• Add:
• ID field is the uniqueKey (aka primary key). In some cases you don’t need it. But you
should always define one. ID can be autogenerated.
http://wiki.apache.org/solr/UniqueKey
curl
http://localhost:8983/solr/update?commit=true
-H "Content-Type: text/xml“
--data-binary '<add><doc>
<field name="id">id1</field>
<field name=“content">My First Doc</field>
</doc></add>'
27
Indexing Data (cont...)
• Solr natively supports indexing structured documents in XML, CSV and JSON.
• Provides multiple request handlers called index handlers to add, delete and update
documents to the index.
• There is a unified update request handler that supports XML, CSV, JSON, and javabin
update requests:
• You can define new requestHandlers and register them in solrconfig.xml.
• https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handle
rs
<requestHandler name="/update" class="solr.UpdateRequestHandler" />
28
Atomic Updates
• Sending an update request with an existing ID will overwrite that document.
• Solr also supports simple atomic updates where you can modify only parts of a single
document.
• Solr supports several modifiers that atomically update values of a document.
1. set – set or replace a particular value, or remove the value if null is specified as
the new value
2. add – adds an additional value to a list
3. inc – increments a numeric value by a specific amount
curl http://localhost:8983/solr/update
-H 'Content-type:application/json'
-d '[{
"id" : “message1",
“source" : {"set":“error_log"},
“count" : {"inc":4},
“tags" : {"add":“apache"}
}]'
29
Solr Clients
• There are lot of clients for indexing and querying Solr.
http://wiki.apache.org/solr/IntegratingSolr
• Clinet Languages
• Ruby
• PHP
• Java
• Scala
• Python
• .NET
• Perl
• JavaScript
30
Indexing with SolrJ
• SolrJ is a java client to access solr. It offers a java interface to add, update, and query
the solr index.
SolrServer server = new HttpSolrServer("http://HOST:8983/solr/");
SolrInputDocument doc1 = new SolrInputDocument();
doc1.addField( "id", “doc1");
doc1.addField( “content", “This is first document” );
SolrInputDocument doc2 = new SolrInputDocument();
doc2.addField( "id", “doc2")
.addField( “content", “This is second document” );
Collection<SolrInputDocument> docs = new
ArrayList<SolrInputDocument>();
docs.add( doc1 );
docs.add( doc2 );
server.add(docs);
server.commit();
31
Indexing with SolrJ (cont…)
• SolrJ includes a client for SolrCloud, which is ZooKeeper aware
• To interact with SolrCloud, you should use an instance of CloudSolrServer, and pass it
your zooKeeper host(s).
• More on SolrCloud later.
CloudSolrServer server = new CloudSolrServer("localhost:2181");
server.setDefaultCollection(“mycollection");
SolrInputDocument doc = new SolrInputDocument();
....
....
server.commit();
32
Transaction Log and Commit
• Transaction log(tlog):
• File where the raw documents are written for recovery purposes
• On update, the entire document gets written to the tlog
• Commits:
• Hard commit
• Soft Commit
• Soft commits are about visibility, hard commits are about durability.
• More on this when we discuss SolrCloud
33
Hands-On Activity 3
Objective:
1. Creating a java project and add SolrJ dependency
2. Indexing single doc using SolrJ
3. Indexing in batch mode
4. Understand commit
34
Data Import Handler
• DataImportHandler provides a configuration driven way to import data from external
source into Solr
• External sources can be:
• Databases
• ftp, scp, etc
• XML, JSON, etc
• Provides options for full or delta imports
35
Data Import Handler (cont...)
• A SolrRequestHandler must be defined in solr-config.xml
• The data source can be added inline, or it can be put directly into the data-config.xml
• data-config.xml tells Solr:
1. How to fetch data (queries,url etc)
2. What to read ( resultset columns, xml fields etc)
3. How to process (modify/add/remove fields)
https://cwiki.apache.org/confluence/display/solr/Uploading+Structured+Data+Store+Data
+with+the+Data+Import+Handler
<requestHandler name="/dataimport"
class="org.apache.solr.handler.dataimport.DataImportHandler">
<lst name="defaults">
<str name="config">data-config.xml</str>
</lst>
</requestHandler>
36
Data Import Handler - Script Transformers
• You can specify different types of transformation on data read from external source
before indexing in Solr
• Can be used to index dynamic fields using data import handlers
<dataConfig>
<script><![CDATA[
function WareAttributes(row){
row.put('attr_' + row.get('id'), row.get('raw_value') );
row.remove('id');
row.remove('raw_value');
return row;
}
]]></script>
...
<entity
name="attrs"
query="SELECT attribute_id as id, raw_value
FROM
ware_wareattribute WHERE ware_id = ${ware.id}"
transformer="script:WareAttributes"/>
</entity>
</document>
</dataConfig>
37
Objective:
1. Create MySQL tables for storing stackechange data
• Posts
• Users
• Comments
2. Load stackexchange dumps in MySQL
3. Define a data import handler
• Adding dependency and request handler in solrconfig.xml
• Define a data-config.xml file for solr to mysql fields mapping
4. Index document in Solr using data import handler
• Full import
• Delta import
5. Defining transformer
Hands-On Activity 4
38
Querying
• Solr supports multiple query syntaxes through query parser plugins
• A Query Parser is a component responsible for parsing the textual query and convert it
into corresponding Lucene Query objects.
• Solr provides a lot of in-built parsers
• lucene - The default "lucene" parser
• dismax - allows querying across multiple fields with different weights
• edismax - builds on dismax but with more features
• Func
• Boost
and many more (https://wiki.apache.org/solr/QueryParser)
• There are multiple ways to select which query parser to use for a certain request
1. defType - The default type parameter selects which query parser to use by default
for the main query.
Example: &q=foo bar&defType=lucene
2. LocalParams - Inside the main q or fq parameter you can select query parser using
the localParam syntax.
Example: &q={!dismax}foo bar
39
Defining a search handler
40
Querying (cont...)
• Simple text search
• http://localhost:8983/solr/collection1/stacksearch?q=da
ta
• Change number of rows retrieved
• http://localhost:8983/solr/collection1/stacksearch?q=da
ta&rows=20
• Pagination
• http://localhost:8983/solr/collection1/stacksearch?q=da
ta&rows=20&start=50
41
Querying (cont...)
• Searching on a field
• http://localhost:8983/solr/collection1/stacksearch?q=st
_post:data
• http://localhost:8983/solr/collection1/stacksearch?q=st
_posttype:data
• Specifying list of fields to be retrieved
• http://localhost:8983/solr/collection1/stacksearch?q=st
_post:data&fl=id,st_post,st_tags
• Delete all documents
• http://localhost:8983/solr/collection1/update?stream.body=<delete><query>*:*
</query></delete>&commit=true
42
Querying (cont...)
• Searching multiple fields
• http://localhost:8983/solr/collection1/stacksearch?q=st
_post:data AND st_posttype:QUESTION
• NOT query
• http://localhost:8983/solr/collection1/stacksearch?q=NO
T st_post:data
• Boolean query
• http://localhost:8983/solr/collection1/stacksearch?q=st_post:(data+sensor)
• http://localhost:8983/solr/collection1/stacksearch?q=st_post:(data OR sensor)
• Sort Query
• http://localhost:8983/solr/collection1/stacksearch?q=st_post:data&fl=id,st_post,s
t_score&sort=st_score desc
43
Querying - Faceting
44
Querying - Faceting
• Enable faceting on 2 fields
• http://localhost:8983/solr/collection1/stacksearch?q=st
_post:data&facet=true&facet.field=st_posttype&facet.fie
ld=st_tags
• Changing limit and mincount
• http://localhost:8983/solr/collection1/stacksearch?q=st
_post:data&facet=true&facet.field=st_posttype&facet.fie
ld=st_tags&facet.limit=1000&facet.mincount=1
• Changing facet method
• http://localhost:8983/solr/collection1/stacksearch?q=st
_post:data&facet=true&facet.field=st_posttype&facet.fie
ld=st_tags&facet.limit=1000&facet.mincount=1&facet.meth
od=enum
45
Stats query
• http://localhost:8983/solr/collection1/select?q=*:*&rows=0&
stats=true&stats.field=st_creationdate
46
Facet Range Query
http://localhost:8983/solr/collection1/select?q=*:*&rows=0&facet=true&facet.range=st_c
reationdate&facet.range.start=2011-03-22T01:33:06Z&facet.range.end=2014-03-
22T01:33:06Z&facet.range.gap=%2B1YEAR
47
Range, Boosting, Fuzzy, Proximity Query
• Range
• http://localhost:8983/solr/collection1/select?q=st_scor
e:[1 TO 3]&fl=id,st_score
• Boosting on a field
• http://localhost:8983/solr/select/?defType=dismax&q=dat
a&bq=st_posttype:QUESTION^5.0&qf=st_post
• Fuzzy Search
• http://localhost:8983/solr/collection1/select?defType=d
ismax&q=electromagnet~0.9&qf=st_post
• Proximity search
• http://localhost:8983/solr/collection1/stacksearch?q=“c
alculating coordinates”~2
48
Function Queries
• Function queries enable you to generate a relevancy score using the actual value of
one or more numeric fields.
• Examples:
1. http://localhost:8983/solr/collection1/select?q=*:*&fl=
sum(st_score,st_favoritecount),st_score,st_favoritecoun
t
2. http://localhost:8983/solr/collection1/select?q=*:*&fl=
max(st_score,st_favoritecount),st_score,st_favoritecoun
t
3. http://localhost:8983/solr/collection1/select?q=*:*&fl=
ms(NOW,st_creationdate),st_creationdate
4. http://localhost:8983/solr/collection1/select?q=st_titl
e:*&fl=norm(st_title),st_title
• https://cwiki.apache.org/confluence/display/solr/Function+Q
ueries
49
Group and Term Query
• Term
• http://localhost:8983/solr/collection1/terms?terms.fl=s
t_post&terms.prefix=data
• Group
• http://localhost:8983/solr/collection1/select?q=st_post
:*&group=true&group.field=st_site
50
More Like This
• The MoreLikeThis search component enables users to query for documents similar to
a document in their result list.
• It uses terms from the original document to find similar documents in the index.
• Ways to use MLT:
1. Request handler
2. Search component
3. MoreLikeThisHandler - request handler with externally supplied text
http://localhost:8983/solr/collection1/select?
q=id:windowsphone_197
&mlt.count=5
&mlt=true
&mlt.fl=st_post
&mlt.interestingTerms=data
51
Clustering
• Solr uses Carrot library for clustering search results and documents
• Clustering can be used to:
• summarize a whole bunch of results/documents
• group together semantically related results/documents
• To use clustering:
• Add ClusteringComponent in solrconfig.xml
• Reference the clustering component in request handler
• Supports 3 algorithm:
• Lingo
• STC
• BisectingKMeans
http://localhost:8983/solr/collection1/stacksearch?q=st_post:
data&clustering=true&clustering.results=true&carrot.title=st_
post&rows=20
52
AutoComplete / Suggester
• Autocomplete can be achieved in multiple ways in Solr:
1. Faceting using the prefix parameter
2. Using NGrams
3. TermsComponent
4. Suggester
• Based on SpellCheckComponent
53
Hands-On Activity 5
Objective:
1. Define a search handler named stacksearch and declare
1. defaults
2. appends
3. last-components
2. Try out different queries from the queries note and understand
the response format & content
3. Define a suggester component for ‘autocomple’ using ‘post’
field as source
54
SolrCloud
• SolrCloud is NOT Solr deployed on cloud
• SolrCloud provides the ability to setup cluster of Solr servers that combines fault
tolerance and high availability and provides distributed indexing and search
capabilities.
• Subset of optional features in Solr to enable and simplify horizontal scaling a search
index using sharding and replication.
• SolrCloud provides
1. performance
2. scalability
3. high-availability
4. simplicity
5. elasticity
55
SolrCloud - High Level Setup
56
SolrCloud - High Level Architecture
57
SolrCloud - Terminology
• ZooKeeper: Distributed coordination service that provides centralized configuration,
cluster state management, and leader election
• Node: JVM process bound to a specific port on a machine; hosts the Solr web
application
• Collection: Search index distributed across multiple nodes; each collection has a name,
shard count, and replication factor
• Replication Factor: Number of copies of a document in a collection
• Shard: Logical slice of a collection; each shard has a name, hash range, leader, and
replication factor. Documents are assigned to one and only one shard per collection
using a hash-based document routing strategy
• Replica: Solr index that hosts a copy of a shard in a collection; behind the scenes, each
replica is implemented as a Solr core
• Leader: Replica in a shard that assumes special duties needed to support distributed
indexing in Solr; each shard has one and only one leader at any time and leaders are
elected using ZooKeeper
58
SolrCloud - Collections
• A collection is a distributed index defined by:
1. named configuration stored in ZooKeeper
2. number of shards: documents are distributed across N partitions of the
index
3. document routing strategy: how documents get assigned to shards
4. replication factor: how many copies of each document in the collection
59
SolrCloud - Sharding
• Collection has a fixed number of shards
• existing shards can be split
• When to shard?
• Large number of docs
• Large document sizes
• Parallelization during indexing and queries
• Data partitioning (custom hashing)
60
SolrCloud - Replication
• Why replicate?
• High-availability
• Load balancing
• How does it work in SolrCloud?
• Near-real-time, NOT master-slave
• Leader forwards to replicas in parallel,
• waits for response
• Error handling during indexing is tricky
61
SolrCloud - Document Routing
• Each shard covers a hash-range
• Default: Hash ID into 32-bit integer, map to range
• leads to balanced (roughly) shards
• Custom-hashing
• Tri-level: app!user!doc
• Implicit: no hash-range set for shards
62
SolrCloud - Distributed Indexing
63
SolrCloud - Distributed Querying
64
SolrCloud - Shard Splitting
• Can split shards into two sub-shards
• Live splitting. No downtime needed.
• Requests start being forwarded to sub-shards
automatically
• Expensive operation: Use as required during low traffic
65
Collections API
• https://cwiki.apache.org/confluence/display/solr/Collections+API
• API’s to create and perform operations on collections:
1. CREATE: create a collection
2. RELOAD: reload a collection
3. SPLITSHARD: split a shard into two new shards
4. CREATESHARD: create a new shard
5. DELETESHARD: delete an inactive shard
6. CREATEALIAS: create or modify an alias for a collection
7. DELETEALIAS: delete an alias for a collection
8. DELETE: delete a collection
9. DELETEREPLICA: delete a replica of a shard
10. ADDREPLICA: add a replica of a shard
11. CLUSTERPROP: Add/edit/delete a cluster-wide property
12. MIGRATE: Migrate documents to another collection
13. ADDROLE: Add a specific role to a node in the cluster
14. REMOVEROLE: Remove an assigned role
15. OVERSEERSTATUS: Get status and statistics of the overseer
16. CLUSTERSTATUS: Get cluster status
17. REQUESTSTATUS: Get the status of a previous asynchronous request
66
Hands-On Activity 6
Objective:
1. Setup a 2 instance zookeeper quorum
2. Launch a 4 node Solr cluster
3. Upload a configSet to zookeeper
4. Create a 2 shard 2 replica collection using Collections API
5. Index document with SolrJ using CloudSolrServer
67
Solr Performance Factors
68
Solr
vs
ElasticSearch
69
Thanks!
• Solr references
• https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference
+Guide
• https://www.youtube.com/user/LuceneSolrRevolution/videos
• Mailing List
• User - solr-user-subscribe@lucene.apache.org
• Dev - dev-subscribe@lucene.apache.org
• Attributions
• Shalin Mangar - @shalinmangar
• Erik Hatcher - @ErikHatcher
• Timothy Potter - @thelabdude
• Yonik Seeley - @lucene_solr

More Related Content

KEY
Apache Solr - Enterprise search platform
PDF
Apache Solr! Enterprise Search Solutions at your Fingertips!
PDF
Lucene for Solr Developers
PDF
Rapid Prototyping with Solr
PDF
Solr Recipes Workshop
PDF
Solr Black Belt Pre-conference
PDF
Introduction to Apache Solr
PDF
New-Age Search through Apache Solr
Apache Solr - Enterprise search platform
Apache Solr! Enterprise Search Solutions at your Fingertips!
Lucene for Solr Developers
Rapid Prototyping with Solr
Solr Recipes Workshop
Solr Black Belt Pre-conference
Introduction to Apache Solr
New-Age Search through Apache Solr

What's hot (20)

PDF
Apache Solr crash course
PDF
Solr Application Development Tutorial
PDF
Apache Solr Workshop
PPTX
Scaling Solr with Solr Cloud
PDF
Introduction to Solr
PPTX
Apache Solr
PDF
Make your gui shine with ajax solr
ODP
Introduction to Apache solr
PPTX
20130310 solr tuorial
PPTX
Apache Solr + ajax solr
PDF
Solr Powered Lucene
PDF
Scaling search in Oak with Solr
PDF
Lucene's Latest (for Libraries)
PDF
Rapid Prototyping with Solr
PPTX
Rebuilding Solr 6 examples - layer by layer (LuceneSolrRevolution 2016)
PDF
Solr Troubleshooting - TreeMap approach
PDF
What's New in Solr 3.x / 4.0
PPT
Enterprise Search Solution: Apache SOLR. What's available and why it's so cool
PPTX
Solr 6 Feature Preview
PPTX
Apache Solr
Apache Solr crash course
Solr Application Development Tutorial
Apache Solr Workshop
Scaling Solr with Solr Cloud
Introduction to Solr
Apache Solr
Make your gui shine with ajax solr
Introduction to Apache solr
20130310 solr tuorial
Apache Solr + ajax solr
Solr Powered Lucene
Scaling search in Oak with Solr
Lucene's Latest (for Libraries)
Rapid Prototyping with Solr
Rebuilding Solr 6 examples - layer by layer (LuceneSolrRevolution 2016)
Solr Troubleshooting - TreeMap approach
What's New in Solr 3.x / 4.0
Enterprise Search Solution: Apache SOLR. What's available and why it's so cool
Solr 6 Feature Preview
Apache Solr
Ad

Similar to Apache Solr Workshop (20)

PDF
Basics of Solr and Solr Integration with AEM6
PPTX
Introduction to Lucene & Solr and Usecases
PPTX
Introduction to Apache Lucene/Solr
PDF
Solr Masterclass Bangkok, June 2014
PPTX
IT talk SPb "Full text search for lazy guys"
PDF
Get the most out of Solr search with PHP
PDF
Information Retrieval - Data Science Bootcamp
PDF
Solr search engine with multiple table relation
PPTX
Assamese search engine using SOLR by Moinuddin Ahmed ( moin )
PPTX
Solr/Elasticsearch for CF Developers (and others)
PPTX
Introduction to Lucene and Solr - 1
PDF
Lucene for Solr Developers
PDF
Lucene for Solr Developers
PDF
A Practical Introduction to Apache Solr
PPTX
Apache Solr for begginers
PDF
Search Engine-Building with Lucene and Solr
PDF
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
PDF
Apache solr liferay
PDF
Lucene for Solr Developers
PPTX
Apache solr
Basics of Solr and Solr Integration with AEM6
Introduction to Lucene & Solr and Usecases
Introduction to Apache Lucene/Solr
Solr Masterclass Bangkok, June 2014
IT talk SPb "Full text search for lazy guys"
Get the most out of Solr search with PHP
Information Retrieval - Data Science Bootcamp
Solr search engine with multiple table relation
Assamese search engine using SOLR by Moinuddin Ahmed ( moin )
Solr/Elasticsearch for CF Developers (and others)
Introduction to Lucene and Solr - 1
Lucene for Solr Developers
Lucene for Solr Developers
A Practical Introduction to Apache Solr
Apache Solr for begginers
Search Engine-Building with Lucene and Solr
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Apache solr liferay
Lucene for Solr Developers
Apache solr
Ad

Recently uploaded (20)

PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PPTX
L1 - Introduction to python Backend.pptx
PPTX
Why Generative AI is the Future of Content, Code & Creativity?
PDF
Upgrade and Innovation Strategies for SAP ERP Customers
PPTX
Odoo POS Development Services by CandidRoot Solutions
PPTX
Transform Your Business with a Software ERP System
PDF
Designing Intelligence for the Shop Floor.pdf
PPTX
Introduction to Artificial Intelligence
PDF
Understanding Forklifts - TECH EHS Solution
PDF
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
PPTX
Reimagine Home Health with the Power of Agentic AI​
PPTX
Computer Software and OS of computer science of grade 11.pptx
PDF
System and Network Administration Chapter 2
PPTX
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
PPTX
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PPTX
history of c programming in notes for students .pptx
PDF
wealthsignaloriginal-com-DS-text-... (1).pdf
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
Adobe Illustrator 28.6 Crack My Vision of Vector Design
L1 - Introduction to python Backend.pptx
Why Generative AI is the Future of Content, Code & Creativity?
Upgrade and Innovation Strategies for SAP ERP Customers
Odoo POS Development Services by CandidRoot Solutions
Transform Your Business with a Software ERP System
Designing Intelligence for the Shop Floor.pdf
Introduction to Artificial Intelligence
Understanding Forklifts - TECH EHS Solution
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
Reimagine Home Health with the Power of Agentic AI​
Computer Software and OS of computer science of grade 11.pptx
System and Network Administration Chapter 2
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
history of c programming in notes for students .pptx
wealthsignaloriginal-com-DS-text-... (1).pdf
Navsoft: AI-Powered Business Solutions & Custom Software Development

Apache Solr Workshop

  • 1. 1 Building distributed search applications using Apache Solr Saumitra Srivastav saumitra.srivastav@glassbeam.com @_saumitra_
  • 2. 2 Agenda 1. What is Solr? Architecture Overview 2. Solr schema, config, tokenizers and filters 3. Indexing data: a. From disk using SolrJ b. Importing from database(MySQL) with DataImport Handler 4. Querying Solr a. Filters, Faceting, highlighting, sorting, grouping, boosting, range, function and fuzzy queries) b. Using 'More Like This' component to show similar docs c. Adding 'Auto Suggest' component to auto complete user queries d. Using 'Clustering' component to cluster similar results. 5. SolrCloud a. Architecture b. Setting up a multinode cluster with Zookeeper c. Creating a distributed index d. Collections API 6. Solr Admin UI 7. Understanding Solr performance factors 8. Solr vs. ElasticSearch - Overview
  • 3. 3 Demo App Demo app which we will use for reference - http://saumitra.me/solrdemo/
  • 4. 4 Apache Lucene • Apache Lucene is a high-performance, full-featured text search engine library • Provides API to add search and indexing to your applications • Provides scalable, High-Performance Indexing • 150GB/hour on modern hardware • small RAM requirements -- only 1MB heap • Powerful, Accurate and Efficient Search Algorithms • scoring • phrase queries, wildcard queries, proximity queries, range queries • sorting • allows simultaneous update and searching • flexible faceting, highlighting, joins and result grouping • fast, memory-efficient and typo-tolerant suggesters • With Lucene you need to write code for doing all this.
  • 5. 5 Apache Solr • Search server build on top of Apache Lucene • Provides API to access Lucene over HTTP • Add more features on top of lucene • Most of the programming tasks in Lucene are configurations in Solr • Provides SolrCloud which adds • Distributed search and indexing • High Scalability • Replication • Load Balancing • Fault Tolerance • Solr is NOT a database • Can be used a NoSQL store, as long as it is not abused • Provides lot of other feature like Faceting, More Like This, Clustering, Data Import Handler, Multiple language support, Rich document support
  • 6. 6 Lucene Indexing and Querying Overview
  • 8. 8 Basic Concepts • tf (t in d) : term frequency in a document • measure of how often a term appears in the document • the number of times term t appears in the currently scored document d • idf (t) : inverse document frequency • measure of whether the term is common or rare across all documents, i.e. how often the term appears across the index • obtained by dividing the total number of documents by the number of documents containing the term, and then taking the logarithm of that quotient. • coord : coordinate-level matching • number of terms in the query that were found in the document, • e.g. term ‘x’ and ‘y’ found in doc1 but only term ‘x’ is found in doc2 so for a query of ‘x’ OR ‘y’ doc1 will receive a higher score. • boost (index) : boost of the field at index-time • boost (query) : boost of the field at query-time 8
  • 10. 10 Enough talk...lets get our hands dirty
  • 11. 11 Hands-On Activity 1 Objective: 1. Solr directories walkthrough 2. Start single node solr instance 3. Index some sample documents 4. Admin UI overview
  • 12. 12 Getting Started - Start a solr node • Go to Solr directory • cd /home/solruser/work/solr-4.8.1/ • Make a copy of example folder • cp -r example node0 • Go to node0 and start solr instance. • cd /home/solruser/work/solr-4.8.1/node0 • java -jar start.jar • This will launch jetty with the Solr war and the example configs. • By default solr starts on port 8983. To give a custom port: • java -Djetty.port=9000 -jar start.jar • Open your browser and point to http://localhost:8983/solr to see Solr Admin UI • You will see a default collection named collection1.
  • 13. 13 Solr Schema • Before indexing document, you need to define a schema. A schema serves multiple purpose. • Field related information • Fields in you document • Datatype of those fields • Whether you want to index the field or store it or both • Other configurations for each field like termVectors, termPositions, docValues, etc • Dynamic fields • Copy Fields • Datatypes • A datatype is a collection of tokenizers and filters which can be chained • It tells Solr what operations to perform on the content of a field • You can define different analyzers for indexing and querying • Solr also provides a schemaless mode where it can auto-detect the dataypes of fields.
  • 14. 14 Analyzers • Analyzers are components that pre-process input text at index time and/or at query time. • You can define separate analyzer for indexing and querying • Make sure that you define indexing and querying analyzers in a compatible manner. • Analyzer consists of: • Char Filter • Tokenizers • Token Filters
  • 15. 15 Analyzers Char Filter Tokenizers Token Filters Char Filter (solr.HTMLStripCharFilterFactory) Text Data This is a sample HTML document. Tokenizer (solr.WhitespaceTokenizerFactory) [This] [is] [a] [sample] [HTML] [document.] Token Filters (solr.StopFilterFactory & solr. LowerCaseFilterFactory) Tokens Tokens: [sample] [html] [document] <html> <body> <h1> This is a sample HTML document .</h1> </body></html> Analyzer Analyzer
  • 17. 17 Separate index and query analyzer
  • 18. 18 Char Filters • Char Filter is a component that pre-processes input characters (consuming and producing a character stream) that can add, change, or remove characters while preserving character position information. • CharFilters can be chained. • Example: <charFilter class="solr.PatternReplaceCharFilterFactory" pattern="([^a-z])" replacement="“ />
  • 19. 19 Tokenizers • A Tokenizer splits a stream of characters (from each individual field value) into a series of tokens. • There can be only one Tokenizer in each Analyzer. • Solr provides following tokenization factories • solr.KeywordTokenizerFactory • solr.LetterTokenizerFactory • solr.WhitespaceTokenizerFactory • solr.LowerCaseTokenizerFactory • solr.StandardTokenizerFactory • solr.ClassicTokenizerFactory • solr.UAX29URLEmailTokenizerFactory • solr.PatternTokenizerFactory • solr.PathHierarchyTokenizerFactory • solr.ICUTokenizerFactory
  • 20. 20 Token Filters • Tokens produced by the Tokenizer are passed through a series of Token Filters • TokenFilters can add, change, or remove tokens. • The field is then indexed by the resulting token stream. • Detailed information about analyzers can be obtained from https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers,+Tokenizer s,+and+Filters
  • 21. 21 Dynamic Fields • Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. • A dynamic field is just like a regular field except it has a name with a wildcard in it. • When you are indexing documents, a field that does not match any explicitly defined fields can be matched with a dynamic field.
  • 22. 22 Copy field • CopyField directive can be used to copy the data of one(or more field) into another field.
  • 23. 23 Fields Parameters 1. Indexed 2. Stored 3. Multivalued 4. DocValues 5. OmitNorms 6. TermVectors 7. TermPositions 8. TermOffsets
  • 24. 24 Hands-On Activity 2 Objective: 1. Create a new collection 2. Understand schema.xml contents 3. Create a custom datatype 4. Create schema for stackexchange data 5. Learn how to use Admin UI to analyze and tune fieldTypes
  • 26. 26 Indexing Data • You can modify a Solr index by POSTing commands to Solr to add (or update) documents, delete documents, and commit pending adds and deletes. • Add: • ID field is the uniqueKey (aka primary key). In some cases you don’t need it. But you should always define one. ID can be autogenerated. http://wiki.apache.org/solr/UniqueKey curl http://localhost:8983/solr/update?commit=true -H "Content-Type: text/xml“ --data-binary '<add><doc> <field name="id">id1</field> <field name=“content">My First Doc</field> </doc></add>'
  • 27. 27 Indexing Data (cont...) • Solr natively supports indexing structured documents in XML, CSV and JSON. • Provides multiple request handlers called index handlers to add, delete and update documents to the index. • There is a unified update request handler that supports XML, CSV, JSON, and javabin update requests: • You can define new requestHandlers and register them in solrconfig.xml. • https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handle rs <requestHandler name="/update" class="solr.UpdateRequestHandler" />
  • 28. 28 Atomic Updates • Sending an update request with an existing ID will overwrite that document. • Solr also supports simple atomic updates where you can modify only parts of a single document. • Solr supports several modifiers that atomically update values of a document. 1. set – set or replace a particular value, or remove the value if null is specified as the new value 2. add – adds an additional value to a list 3. inc – increments a numeric value by a specific amount curl http://localhost:8983/solr/update -H 'Content-type:application/json' -d '[{ "id" : “message1", “source" : {"set":“error_log"}, “count" : {"inc":4}, “tags" : {"add":“apache"} }]'
  • 29. 29 Solr Clients • There are lot of clients for indexing and querying Solr. http://wiki.apache.org/solr/IntegratingSolr • Clinet Languages • Ruby • PHP • Java • Scala • Python • .NET • Perl • JavaScript
  • 30. 30 Indexing with SolrJ • SolrJ is a java client to access solr. It offers a java interface to add, update, and query the solr index. SolrServer server = new HttpSolrServer("http://HOST:8983/solr/"); SolrInputDocument doc1 = new SolrInputDocument(); doc1.addField( "id", “doc1"); doc1.addField( “content", “This is first document” ); SolrInputDocument doc2 = new SolrInputDocument(); doc2.addField( "id", “doc2") .addField( “content", “This is second document” ); Collection<SolrInputDocument> docs = new ArrayList<SolrInputDocument>(); docs.add( doc1 ); docs.add( doc2 ); server.add(docs); server.commit();
  • 31. 31 Indexing with SolrJ (cont…) • SolrJ includes a client for SolrCloud, which is ZooKeeper aware • To interact with SolrCloud, you should use an instance of CloudSolrServer, and pass it your zooKeeper host(s). • More on SolrCloud later. CloudSolrServer server = new CloudSolrServer("localhost:2181"); server.setDefaultCollection(“mycollection"); SolrInputDocument doc = new SolrInputDocument(); .... .... server.commit();
  • 32. 32 Transaction Log and Commit • Transaction log(tlog): • File where the raw documents are written for recovery purposes • On update, the entire document gets written to the tlog • Commits: • Hard commit • Soft Commit • Soft commits are about visibility, hard commits are about durability. • More on this when we discuss SolrCloud
  • 33. 33 Hands-On Activity 3 Objective: 1. Creating a java project and add SolrJ dependency 2. Indexing single doc using SolrJ 3. Indexing in batch mode 4. Understand commit
  • 34. 34 Data Import Handler • DataImportHandler provides a configuration driven way to import data from external source into Solr • External sources can be: • Databases • ftp, scp, etc • XML, JSON, etc • Provides options for full or delta imports
  • 35. 35 Data Import Handler (cont...) • A SolrRequestHandler must be defined in solr-config.xml • The data source can be added inline, or it can be put directly into the data-config.xml • data-config.xml tells Solr: 1. How to fetch data (queries,url etc) 2. What to read ( resultset columns, xml fields etc) 3. How to process (modify/add/remove fields) https://cwiki.apache.org/confluence/display/solr/Uploading+Structured+Data+Store+Data +with+the+Data+Import+Handler <requestHandler name="/dataimport" class="org.apache.solr.handler.dataimport.DataImportHandler"> <lst name="defaults"> <str name="config">data-config.xml</str> </lst> </requestHandler>
  • 36. 36 Data Import Handler - Script Transformers • You can specify different types of transformation on data read from external source before indexing in Solr • Can be used to index dynamic fields using data import handlers <dataConfig> <script><![CDATA[ function WareAttributes(row){ row.put('attr_' + row.get('id'), row.get('raw_value') ); row.remove('id'); row.remove('raw_value'); return row; } ]]></script> ... <entity name="attrs" query="SELECT attribute_id as id, raw_value FROM ware_wareattribute WHERE ware_id = ${ware.id}" transformer="script:WareAttributes"/> </entity> </document> </dataConfig>
  • 37. 37 Objective: 1. Create MySQL tables for storing stackechange data • Posts • Users • Comments 2. Load stackexchange dumps in MySQL 3. Define a data import handler • Adding dependency and request handler in solrconfig.xml • Define a data-config.xml file for solr to mysql fields mapping 4. Index document in Solr using data import handler • Full import • Delta import 5. Defining transformer Hands-On Activity 4
  • 38. 38 Querying • Solr supports multiple query syntaxes through query parser plugins • A Query Parser is a component responsible for parsing the textual query and convert it into corresponding Lucene Query objects. • Solr provides a lot of in-built parsers • lucene - The default "lucene" parser • dismax - allows querying across multiple fields with different weights • edismax - builds on dismax but with more features • Func • Boost and many more (https://wiki.apache.org/solr/QueryParser) • There are multiple ways to select which query parser to use for a certain request 1. defType - The default type parameter selects which query parser to use by default for the main query. Example: &q=foo bar&defType=lucene 2. LocalParams - Inside the main q or fq parameter you can select query parser using the localParam syntax. Example: &q={!dismax}foo bar
  • 40. 40 Querying (cont...) • Simple text search • http://localhost:8983/solr/collection1/stacksearch?q=da ta • Change number of rows retrieved • http://localhost:8983/solr/collection1/stacksearch?q=da ta&rows=20 • Pagination • http://localhost:8983/solr/collection1/stacksearch?q=da ta&rows=20&start=50
  • 41. 41 Querying (cont...) • Searching on a field • http://localhost:8983/solr/collection1/stacksearch?q=st _post:data • http://localhost:8983/solr/collection1/stacksearch?q=st _posttype:data • Specifying list of fields to be retrieved • http://localhost:8983/solr/collection1/stacksearch?q=st _post:data&fl=id,st_post,st_tags • Delete all documents • http://localhost:8983/solr/collection1/update?stream.body=<delete><query>*:* </query></delete>&commit=true
  • 42. 42 Querying (cont...) • Searching multiple fields • http://localhost:8983/solr/collection1/stacksearch?q=st _post:data AND st_posttype:QUESTION • NOT query • http://localhost:8983/solr/collection1/stacksearch?q=NO T st_post:data • Boolean query • http://localhost:8983/solr/collection1/stacksearch?q=st_post:(data+sensor) • http://localhost:8983/solr/collection1/stacksearch?q=st_post:(data OR sensor) • Sort Query • http://localhost:8983/solr/collection1/stacksearch?q=st_post:data&fl=id,st_post,s t_score&sort=st_score desc
  • 44. 44 Querying - Faceting • Enable faceting on 2 fields • http://localhost:8983/solr/collection1/stacksearch?q=st _post:data&facet=true&facet.field=st_posttype&facet.fie ld=st_tags • Changing limit and mincount • http://localhost:8983/solr/collection1/stacksearch?q=st _post:data&facet=true&facet.field=st_posttype&facet.fie ld=st_tags&facet.limit=1000&facet.mincount=1 • Changing facet method • http://localhost:8983/solr/collection1/stacksearch?q=st _post:data&facet=true&facet.field=st_posttype&facet.fie ld=st_tags&facet.limit=1000&facet.mincount=1&facet.meth od=enum
  • 47. 47 Range, Boosting, Fuzzy, Proximity Query • Range • http://localhost:8983/solr/collection1/select?q=st_scor e:[1 TO 3]&fl=id,st_score • Boosting on a field • http://localhost:8983/solr/select/?defType=dismax&q=dat a&bq=st_posttype:QUESTION^5.0&qf=st_post • Fuzzy Search • http://localhost:8983/solr/collection1/select?defType=d ismax&q=electromagnet~0.9&qf=st_post • Proximity search • http://localhost:8983/solr/collection1/stacksearch?q=“c alculating coordinates”~2
  • 48. 48 Function Queries • Function queries enable you to generate a relevancy score using the actual value of one or more numeric fields. • Examples: 1. http://localhost:8983/solr/collection1/select?q=*:*&fl= sum(st_score,st_favoritecount),st_score,st_favoritecoun t 2. http://localhost:8983/solr/collection1/select?q=*:*&fl= max(st_score,st_favoritecount),st_score,st_favoritecoun t 3. http://localhost:8983/solr/collection1/select?q=*:*&fl= ms(NOW,st_creationdate),st_creationdate 4. http://localhost:8983/solr/collection1/select?q=st_titl e:*&fl=norm(st_title),st_title • https://cwiki.apache.org/confluence/display/solr/Function+Q ueries
  • 49. 49 Group and Term Query • Term • http://localhost:8983/solr/collection1/terms?terms.fl=s t_post&terms.prefix=data • Group • http://localhost:8983/solr/collection1/select?q=st_post :*&group=true&group.field=st_site
  • 50. 50 More Like This • The MoreLikeThis search component enables users to query for documents similar to a document in their result list. • It uses terms from the original document to find similar documents in the index. • Ways to use MLT: 1. Request handler 2. Search component 3. MoreLikeThisHandler - request handler with externally supplied text http://localhost:8983/solr/collection1/select? q=id:windowsphone_197 &mlt.count=5 &mlt=true &mlt.fl=st_post &mlt.interestingTerms=data
  • 51. 51 Clustering • Solr uses Carrot library for clustering search results and documents • Clustering can be used to: • summarize a whole bunch of results/documents • group together semantically related results/documents • To use clustering: • Add ClusteringComponent in solrconfig.xml • Reference the clustering component in request handler • Supports 3 algorithm: • Lingo • STC • BisectingKMeans http://localhost:8983/solr/collection1/stacksearch?q=st_post: data&clustering=true&clustering.results=true&carrot.title=st_ post&rows=20
  • 52. 52 AutoComplete / Suggester • Autocomplete can be achieved in multiple ways in Solr: 1. Faceting using the prefix parameter 2. Using NGrams 3. TermsComponent 4. Suggester • Based on SpellCheckComponent
  • 53. 53 Hands-On Activity 5 Objective: 1. Define a search handler named stacksearch and declare 1. defaults 2. appends 3. last-components 2. Try out different queries from the queries note and understand the response format & content 3. Define a suggester component for ‘autocomple’ using ‘post’ field as source
  • 54. 54 SolrCloud • SolrCloud is NOT Solr deployed on cloud • SolrCloud provides the ability to setup cluster of Solr servers that combines fault tolerance and high availability and provides distributed indexing and search capabilities. • Subset of optional features in Solr to enable and simplify horizontal scaling a search index using sharding and replication. • SolrCloud provides 1. performance 2. scalability 3. high-availability 4. simplicity 5. elasticity
  • 55. 55 SolrCloud - High Level Setup
  • 56. 56 SolrCloud - High Level Architecture
  • 57. 57 SolrCloud - Terminology • ZooKeeper: Distributed coordination service that provides centralized configuration, cluster state management, and leader election • Node: JVM process bound to a specific port on a machine; hosts the Solr web application • Collection: Search index distributed across multiple nodes; each collection has a name, shard count, and replication factor • Replication Factor: Number of copies of a document in a collection • Shard: Logical slice of a collection; each shard has a name, hash range, leader, and replication factor. Documents are assigned to one and only one shard per collection using a hash-based document routing strategy • Replica: Solr index that hosts a copy of a shard in a collection; behind the scenes, each replica is implemented as a Solr core • Leader: Replica in a shard that assumes special duties needed to support distributed indexing in Solr; each shard has one and only one leader at any time and leaders are elected using ZooKeeper
  • 58. 58 SolrCloud - Collections • A collection is a distributed index defined by: 1. named configuration stored in ZooKeeper 2. number of shards: documents are distributed across N partitions of the index 3. document routing strategy: how documents get assigned to shards 4. replication factor: how many copies of each document in the collection
  • 59. 59 SolrCloud - Sharding • Collection has a fixed number of shards • existing shards can be split • When to shard? • Large number of docs • Large document sizes • Parallelization during indexing and queries • Data partitioning (custom hashing)
  • 60. 60 SolrCloud - Replication • Why replicate? • High-availability • Load balancing • How does it work in SolrCloud? • Near-real-time, NOT master-slave • Leader forwards to replicas in parallel, • waits for response • Error handling during indexing is tricky
  • 61. 61 SolrCloud - Document Routing • Each shard covers a hash-range • Default: Hash ID into 32-bit integer, map to range • leads to balanced (roughly) shards • Custom-hashing • Tri-level: app!user!doc • Implicit: no hash-range set for shards
  • 64. 64 SolrCloud - Shard Splitting • Can split shards into two sub-shards • Live splitting. No downtime needed. • Requests start being forwarded to sub-shards automatically • Expensive operation: Use as required during low traffic
  • 65. 65 Collections API • https://cwiki.apache.org/confluence/display/solr/Collections+API • API’s to create and perform operations on collections: 1. CREATE: create a collection 2. RELOAD: reload a collection 3. SPLITSHARD: split a shard into two new shards 4. CREATESHARD: create a new shard 5. DELETESHARD: delete an inactive shard 6. CREATEALIAS: create or modify an alias for a collection 7. DELETEALIAS: delete an alias for a collection 8. DELETE: delete a collection 9. DELETEREPLICA: delete a replica of a shard 10. ADDREPLICA: add a replica of a shard 11. CLUSTERPROP: Add/edit/delete a cluster-wide property 12. MIGRATE: Migrate documents to another collection 13. ADDROLE: Add a specific role to a node in the cluster 14. REMOVEROLE: Remove an assigned role 15. OVERSEERSTATUS: Get status and statistics of the overseer 16. CLUSTERSTATUS: Get cluster status 17. REQUESTSTATUS: Get the status of a previous asynchronous request
  • 66. 66 Hands-On Activity 6 Objective: 1. Setup a 2 instance zookeeper quorum 2. Launch a 4 node Solr cluster 3. Upload a configSet to zookeeper 4. Create a 2 shard 2 replica collection using Collections API 5. Index document with SolrJ using CloudSolrServer
  • 69. 69 Thanks! • Solr references • https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference +Guide • https://www.youtube.com/user/LuceneSolrRevolution/videos • Mailing List • User - solr-user-subscribe@lucene.apache.org • Dev - dev-subscribe@lucene.apache.org • Attributions • Shalin Mangar - @shalinmangar • Erik Hatcher - @ErikHatcher • Timothy Potter - @thelabdude • Yonik Seeley - @lucene_solr