SlideShare a Scribd company logo
Lucene for Solr
  Developers
    NFJS - Raleigh, August 2011
     Presented by Erik Hatcher
erik.hatcher@lucidimagination.com
         Lucid Imagination
 http://www.lucidimagination.com
About me...
• Co-author, "Lucene in Action" (and "Java
  Development with Ant" / "Ant in Action"
  once upon a time)
• "Apache guy" - Lucene/Solr committer;
  member of Lucene PMC, member of
  Apache Software Foundation
• Co-founder, evangelist, trainer, coder @
  Lucid Imagination
About Lucid Imagination...
•   Lucid Imagination provides commercial-grade
    support, training, high-level consulting and value-
    added software for Lucene and Solr.

•   We make Lucene ‘enterprise-ready’ by offering:

    •   Free, certified, distributions and downloads.

    •   Support, training, and consulting.

    •   LucidWorks Enterprise, a commercial search
        platform built on top of Solr.
What is Lucene?
•   An open source search library (not an application)

•   100% Java

•   Continuously improved and tuned over more than
    10 years

•   Compact, portable index representation

•   Programmable text analyzers, spell checking and
    highlighting

•   Not a crawler or a text extraction tool
Inverted Index
•   Lucene stores input data in what is known as an
    inverted index

•   In an inverted index each indexed term points to a
    list of documents that contain the term

•   Similar to the index provided at the end of a book

•   In this case "inverted" simply means the list of terms
    point to documents

•   It is much faster to find a term in an index, than to
    scan all the documents
Inverted Index Example
Segments and Merging
•   A Lucene index is a collection of one or more sub-indexes
    called segments

•   Each segment is a fully independent index

•   A multi-way merge algorithm is used to periodically merge
    segments

•   New segments are created when an IndexWriter flushes new
    documents and pending deletes to disk

•   Trying for a balance between large-scale performance vs. small-
    scale updates

•   Optimization merges all segments into one
Segments and Merging
Segments
• When a document is deleted it still exists
  in an index segment until that segment is
  merged
• At certain trigger points, these Documents
  are flushed to the Directory
• Can be forced by calling commit
• Segments are periodically merged
IndexSearcher
Adding new documents
Commit
Committed and
  Warmed
Lucene Scoring

•   Lucene uses a similarity scoring formula to rank results by measuring the
    similarity between a query and the documents that match the query. The
    factors that form the scoring formula are:

    •   Term Frequency: tf (t in d). How often the term occurs in the document.

    •   Inverse Document Frequency: idf (t). A measure of how rare the term is in
        the whole collection. One over the number of times the term appears in
        the collection.

    •   Terms that are rare throughout the entire collection score higher.
Coord and Norms
•   Coord: The coordination factor, coord (q, d).
    Boosts documents that match more of the
    search terms than other documents.
    •   If 4 of 4 terms match coord = 4/4
    •   If 3 of 4 terms match coord = 3/4
•   Length Normalization - Adjust the score based
    on length of fields in the document.
    •   shorter fields that match get a boost
Scoring Factors (cont)
• Boost: (t.field in d). A way to boost a field
  or a whole document above others.
• Query Norm: (q). Normalization value
  for a query, given the sum of the squared
  weights of each of the query terms.
• You will often hear the Lucene scoring
  simply referred to as
  TF·IDF.
Explanation

      • Lucene has a feature called Explanation
      • Solr uses the debugQuery parameter to
         retrieve scoring explanations

0.2987913 =   (MATCH) fieldWeight(text:lucen in 688), product of:
  1.4142135   = tf(termFreq(text:lucen)=2)
  9.014501    = idf(docFreq=3, maxDocs=12098)
  0.0234375   = fieldNorm(field=text, doc=688)
Lucene Core
• IndexWriter
• Directory
• IndexReader, IndexSearcher
• analysis: Analyzer, TokenStream,
  Tokenizer,TokenFilter
• Query
Solr Architecture
Customizing - Don't do it!

•   Unless you need to.
•   In other words... ensure you've given the built-in
    capabilities a try, asked on the e-mail list, and
    spelunked into at least Solr's code a bit to make
    some sense of the situation.
•   But we're here to roll up our sleeves, because we
    need to...
But first...
•   Look at Lucene and/or Solr source code as
    appropriate

•   Carefully read javadocs and wiki pages - lots of tips
    there

•   And, hey, search for what you're trying to do...

    •   Google, of course

    •   But try out LucidFind and other Lucene ecosystem
        specific search systems -
        http://www.lucidimagination.com/search/
Extension points
•   Tokenizer, TokenFilter,   •   QParser
    CharFilter
                              •   DataImportHandler
•   SearchComponent               hooks

•   RequestHandler                •   data sources

•   ResponseWriter                •   entity processors

•   FieldType                     •   transformers

•   Similarity                •   several others
Factories
• FooFactory (most) everywhere.
  Sometimes there's BarPlugin style

• for sake of discussion... let's just skip the
  "factory" part
• In Solr, Factories and Plugins are used by
  configuration loading to parameterize and
  construct
"Installing" plugins
• Compile .java to .class, JAR it up
• Put JAR files in either:
 • <solr-home>/lib
 • a shared lib when using multicore
 • anywhere, and register location in
    solrconfig.xml
• Hook in plugins as appropriate
Multicore sharedLib

<solr sharedLib="/usr/local/solr/customlib"
       persistent="true">
   <cores adminPath="/admin/cores">
      <core instanceDir="core1" name="core1"/>
      <core instanceDir="core2" name="core2"/>
   </cores>
</solr>
Plugins via
        solrconfig.xml


• <lib dir="/path/to/your/custom/jars" />
Analysis

• CharFilter
• Tokenizer
• TokenFilter
Primer

• Tokens, Terms
• Attributes: Type, Payloads, Offsets,
  Positions, Term Vectors
• part of the picture:
Version

• enum:
 • Version.LUCENE_31,
    Version.LUCENE_32, etc
• Version.onOrAfter(Version other)
CharFilter
• extend BaseCharFilter
• enables pre-tokenization filtering/morphing
  of incoming field value
• only affects tokenization, not stored value
• Built-in CharFilters: HTMLStripCharFilter,
  PatternReplaceCharFilter, and
  MappingCharFilter
Tokenizer
•   common to extend CharTokenizer

•   implement -

    •   protected abstract boolean isTokenChar(int c);

•   optionally override -

    •   protected int normalize(int c)

•   extend Tokenizer directly for finer control

•   Popular built-in Tokenizers include: WhitespaceTokenizer,
    StandardTokenizer, PatternTokenizer, KeywordTokenizer,
    ICUTokenizer
TokenFilter

• a TokenStream whose input is another
  TokenStream
• Popular TokenFilters include:
  LowerCaseFilter, CommonGramsFilter,
  SnowballFilter, StopFilter,
  WordDelimiterFilter
Lucene's analysis APIs
• tricky business, what with Attributes
  (Source/Factory's), State, characters, code
  points,Version, etc...
• Test!!!
 • BaseTokenStreamTestCase
 • Look at Lucene and Solr's test cases
Solr's Analysis Tools

• Admin analysis tool
• Field analysis request handler
• DEMO
Query Parsing


• String -> org.apache.lucene.search.Query
QParserPlugin
public abstract class QParserPlugin
    implements NamedListInitializedPlugin {

    public abstract QParser createParser(
      String qstr,
      SolrParams localParams,
      SolrParams params,
      SolrQueryRequest req);
}
QParser
public abstract class QParser {

    public abstract Query parse()
              throws ParseException;

}
Built-in QParsers
from QParserPlugin.java
  /** internal use - name to class mappings of builtin parsers */
  public static final Object[] standardPlugins = {
     LuceneQParserPlugin.NAME, LuceneQParserPlugin.class,
     OldLuceneQParserPlugin.NAME, OldLuceneQParserPlugin.class,
     FunctionQParserPlugin.NAME, FunctionQParserPlugin.class,
     PrefixQParserPlugin.NAME, PrefixQParserPlugin.class,
     BoostQParserPlugin.NAME, BoostQParserPlugin.class,
     DisMaxQParserPlugin.NAME, DisMaxQParserPlugin.class,
     ExtendedDismaxQParserPlugin.NAME, ExtendedDismaxQParserPlugin.class,
     FieldQParserPlugin.NAME, FieldQParserPlugin.class,
     RawQParserPlugin.NAME, RawQParserPlugin.class,
     TermQParserPlugin.NAME, TermQParserPlugin.class,
     NestedQParserPlugin.NAME, NestedQParserPlugin.class,
     FunctionRangeQParserPlugin.NAME, FunctionRangeQParserPlugin.class,
     SpatialFilterQParserPlugin.NAME, SpatialFilterQParserPlugin.class,
     SpatialBoxQParserPlugin.NAME, SpatialBoxQParserPlugin.class,
     JoinQParserPlugin.NAME, JoinQParserPlugin.class,
  };
Local Parameters

• {!qparser_name param=value}expression
 • or
• {!qparser_name param=value v=expression}
• Can substitute $references from request
  parameters
Param Substitution
solrconfig.xml
<requestHandler name="/document"
                class="solr.SearchHandler">
  <lst name="invariants">
    <str name="q">{!term f=id v=$id}</str>
  </lst>
</requestHandler>

Solr request
http://localhost:8983/solr/document?id=FOO37
Custom QParser

• Implement a QParserPlugin that creates your
  custom QParser
• Register in solrconfig.xml
 • <queryParser name="myparser"
    class="com.mycompany.MyQParserPlugin"/>
Update Processor

• Responsible for handling these commands:
 • add/update
 • delete
 • commit
 • merge indexes
Built-in Update
            Processors
•   RunUpdateProcessor
    •   Actually performs the operations, such as
        adding the documents to the index
•   LogUpdateProcessor
    •   Logs each operation
•   SignatureUpdateProcessor
    •   duplicate detection and optionally rejection
UIMA Update
           Processor
•   UIMA - Unstructured Information Management
    Architecture - http://uima.apache.org/

•   Enables UIMA components to augment
    documents

•   Entity extraction, automated categorization,
    language detection, etc

•   "contrib" plugin

•   http://wiki.apache.org/solr/SolrUIMA
Update Processor
         Chain
• UpdateProcessor's sequence into a chain
• Each processor can abort the entire update
  or hand processing to next processor in
  the chain
• Chains, of update processor factories, are
  specified in solrconfig.xml
• Update requests can specify an
  update.processor parameter
Default update
            processor chain
From SolrCore.java
// construct the default chain
UpdateRequestProcessorFactory[] factories =
  new UpdateRequestProcessorFactory[]{
     new RunUpdateProcessorFactory(),
     new LogUpdateProcessorFactory()
  };

    Note: these steps have been swapped on trunk recently
Example Update
           Processor
•   What are the best facets to show for a particular
    query? Wouldn't it be nice to see the distribution of
    document "attributes" represented across a result
    set?

•   Learned this trick from the Smithsonian, who were
    doing it manually - add an indexed field containing the
    field names of the interesting other fields on the
    document.

•   Facet on that field "of field names" initially, then
    request facets on the top values returned.
Config for custom
           update processor
<updateRequestProcessorChain name="fields_used" default="true">
 <processor class="solr.processor.FieldsUsedUpdateProcessorFactory">
  <str name="fieldsUsedFieldName">attribute_fields</str>
  <str name="fieldNameRegex">.*_attribute</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>
FieldsUsedUpdateProcessorFactory


public class FieldsUsedUpdateProcessorFactory extends UpdateRequestProcessorFactory {
 private String fieldsUsedFieldName;
 private Pattern fieldNamePattern;

    public UpdateRequestProcessor getInstance(SolrQueryRequest req, SolrQueryResponse rsp,
                                                                  UpdateRequestProcessor next) {
      return new FieldsUsedUpdateProcessor(req, rsp, this, next);
    }

    // ... next slide ...

}
FieldsUsedUpdateProcessorFactory
 @Override
 public void init(NamedList args) {
  if (args == null) return;

     SolrParams params = SolrParams.toSolrParams(args);

     fieldsUsedFieldName = params.get("fieldsUsedFieldName");
     if (fieldsUsedFieldName == null) {
       throw new SolrException
          (SolrException.ErrorCode.SERVER_ERROR,
             "fieldsUsedFieldName must be specified");
     }

     // TODO check that fieldsUsedFieldName is a valid field name and multiValued

     String fieldNameRegex = params.get("fieldNameRegex");
     if (fieldNameRegex == null) {
       throw new SolrException
          (SolrException.ErrorCode.SERVER_ERROR,
             "fieldNameRegex must be specified");
     }
     fieldNamePattern = Pattern.compile(fieldNameRegex);

     super.init(args);
 }
class FieldsUsedUpdateProcessor extends UpdateRequestProcessor {
  public FieldsUsedUpdateProcessor(SolrQueryRequest req,
                                   SolrQueryResponse rsp,
                                   FieldsUsedUpdateProcessorFactory factory,
                                   UpdateRequestProcessor next) {
    super(next);
  }

    @Override
    public void processAdd(AddUpdateCommand cmd) throws IOException {
      SolrInputDocument doc = cmd.getSolrInputDocument();

        Collection<String> incomingFieldNames = doc.getFieldNames();

        Iterator<String> iterator = incomingFieldNames.iterator();
        ArrayList<String> usedFields = new ArrayList<String>();
        while (iterator.hasNext()) {
          String f = iterator.next();
          if (fieldNamePattern.matcher(f).matches()) {
            usedFields.add(f);
          }
        }

        doc.addField(fieldsUsedFieldName, usedFields.toArray());
        super.processAdd(cmd);
    }
}
FieldsUsedUpdateProcessor
          in action
schema.xml
  <dynamicField name="*_attribute" type="string" indexed="true" stored="true" multiValued="true"/>

Add some documents
solr.add([{:id=>1, :name => "Big Blue Shoes", :size_attribute => 'L', :color_attribute => 'Blue'},
          {:id=>2, :name => "Cool Gizmo", :memory_attribute => "16GB", :color_attribute => 'White'}])
solr.commit

Facet on attribute_fields
 - http://localhost:8983/solr/select?q=*:*&facet=on&facet.field=attribute_fields&wt=json&indent=on
      "facet_fields":{
          "attribute_fields":[
             "color_attribute",2,
             "memory_attribute",1,
             "size_attribute",1]}
Search Components
• Built-in: Clustering, Debug, Facet, Highlight,
  MoreLikeThis, Query, QueryElevation,
  SpellCheck, Stats, TermVector, Terms
• Non-distributed API:
 • prepare(ResponseBuilder rb)
 • process(ResponseBuilder rb)
Example - auto facet
          select
•   It sure would be nice if you could have Solr automatically
    select field(s) for faceting based dynamically off the
    profile of the results. For example, you're indexing
    disparate types of products, all with varying attributes
    (color, size - like for apparel, memory_size - for
    electronics, subject - for books, etc), and a user searches
    for "ipod" where most products match products with
    color and memory_size attributes... let's automatically
    facet on those fields.

•   https://issues.apache.org/jira/browse/SOLR-2641
AutoFacetSelection
       Component
•   Too much code for a slide, let's take a look in
    an IDE...

•   Basically -

    •   process() gets autofacet.field and autofacet.n
        request params, facets on field, takes top N
        values, sets those as facet.field's

    •   Gotcha - need to call rb.setNeedDocSet
        (true) in prepare() as faceting needs it
SearchComponent
              config
<searchComponent name="autofacet"
     class="solr.AutoFacetSelectionComponent"/>
<requestHandler name="/searchplus"
                class="solr.SearchHandler">
  <arr name="components">
    <str>query</str>
    <str>autofacet</str>
    <str>facet</str>
    <str>debug</str>
  </arr>
</requestHandler>
autofacet success
http://localhost:8983/solr/searchplus
?q=*:*&facet=on&autofacet.field=attribute_fields&wt=json&indent=on
{
  "response":{"numFound":2,"start":0,"docs":[
       {
         "size_attribute":["L"],
         "color_attribute":["Blue"],
         "name":"Big Blue Shoes",
         "id":"1",
         "attribute_fields":["size_attribute",
           "color_attribute"]},
       {
         "color_attribute":["White"],
         "name":"Cool Gizmo",
         "memory_attribute":["16GB"],
         "id":"2",
         "attribute_fields":["color_attribute",
           "memory_attribute"]}]
  },
  "facet_counts":{
     "facet_queries":{},
     "facet_fields":{
       "color_attribute":[
         "Blue",1,
         "White",1],
       "memory_attribute":[
         "16GB",1]}}}
Distributed-aware
    SearchComponents
•   SearchComponent has a few distributed mode
    methods:

    •   distributedProcess(ResponseBuilder)

    •   modifyRequest(ResponseBuilder rb,
        SearchComponent who, ShardRequest sreq)

    •   handleResponses(ResponseBuilder rb,
        ShardRequest sreq)

    •   finishStage(ResponseBuilder rb)
Testing

• AbstractSolrTestCase
• SolrTestCaseJ4
• SolrMeter
 • http://code.google.com/p/solrmeter/
For more information...
•   http://www.lucidimagination.com

•   LucidFind

    •   search Lucene ecosystem: mailing lists, wikis, JIRA, etc

    •   http://search.lucidimagination.com

•   Getting started with LucidWorks Enterprise:

    •   http://www.lucidimagination.com/products/
        lucidworks-search-platform/enterprise

•   http://lucene.apache.org/solr - wiki, e-mail lists
Thank You!

More Related Content

PDF
it's just search
PDF
Rapid Prototyping with Solr
PDF
code4lib 2011 preconference: What's New in Solr (since 1.4.1)
PDF
Integrating the Solr search engine
PDF
Lucene's Latest (for Libraries)
PDF
Rapid Prototyping with Solr
PDF
Solr Black Belt Pre-conference
PDF
Solr Recipes Workshop
it's just search
Rapid Prototyping with Solr
code4lib 2011 preconference: What's New in Solr (since 1.4.1)
Integrating the Solr search engine
Lucene's Latest (for Libraries)
Rapid Prototyping with Solr
Solr Black Belt Pre-conference
Solr Recipes Workshop

What's hot (20)

PDF
Lucene for Solr Developers
PDF
Get the most out of Solr search with PHP
PDF
Apache Solr Workshop
PDF
Solr 4
PDF
Rapid Prototyping with Solr
PDF
Building your own search engine with Apache Solr
PDF
Beyond full-text searches with Lucene and Solr
PDF
Solr Indexing and Analysis Tricks
PPTX
Introduction to Apache Lucene/Solr
PPT
Building Intelligent Search Applications with Apache Solr and PHP5
PDF
Solr: 4 big features
PPTX
Tutorial on developing a Solr search component plugin
PDF
Solr Application Development Tutorial
PPT
Enterprise Search Solution: Apache SOLR. What's available and why it's so cool
PPTX
Apache Solr
PDF
Introduction to Solr
PPTX
Solr 6 Feature Preview
PDF
Lucene for Solr Developers
PPTX
Hacking Lucene for Custom Search Results
PPTX
Introduction to Apache Solr
Lucene for Solr Developers
Get the most out of Solr search with PHP
Apache Solr Workshop
Solr 4
Rapid Prototyping with Solr
Building your own search engine with Apache Solr
Beyond full-text searches with Lucene and Solr
Solr Indexing and Analysis Tricks
Introduction to Apache Lucene/Solr
Building Intelligent Search Applications with Apache Solr and PHP5
Solr: 4 big features
Tutorial on developing a Solr search component plugin
Solr Application Development Tutorial
Enterprise Search Solution: Apache SOLR. What's available and why it's so cool
Apache Solr
Introduction to Solr
Solr 6 Feature Preview
Lucene for Solr Developers
Hacking Lucene for Custom Search Results
Introduction to Apache Solr
Ad

Viewers also liked (20)

PDF
Solr Masterclass Bangkok, June 2014
PPTX
Сергей Моренец: "Gradle. Write once, build everywhere"
PDF
"Solr Update" at code4lib '13 - Chicago
PDF
What's New in Solr 3.x / 4.0
PPTX
Open source applied: Real-world uses
PDF
Meet Solr For The Tirst Again
PDF
Apache Solr Changes the Way You Build Sites
PDF
Call me maybe: Jepsen and flaky networks
PDF
Multi faceted responsive search, autocomplete, feeds engine & logging
PPTX
Gimme shelter: Tips on protecting proprietary and open source code
PDF
Solr Powered Libraries
PDF
Why I want to Kazan
PPTX
Hackathon
PPT
Faceted Search – the 120 Million Documents Story
ODP
Introduction to Apache Solr
PPTX
Solr introduction
PDF
Faceted Search And Result Reordering
PDF
Introduction to Solr
PDF
Дима Гадомский (Юскутум) “Можно ли позаимствовать дизайн и функционал так, чт...
PPTX
How to achieve security, reliability, and productivity in less time
Solr Masterclass Bangkok, June 2014
Сергей Моренец: "Gradle. Write once, build everywhere"
"Solr Update" at code4lib '13 - Chicago
What's New in Solr 3.x / 4.0
Open source applied: Real-world uses
Meet Solr For The Tirst Again
Apache Solr Changes the Way You Build Sites
Call me maybe: Jepsen and flaky networks
Multi faceted responsive search, autocomplete, feeds engine & logging
Gimme shelter: Tips on protecting proprietary and open source code
Solr Powered Libraries
Why I want to Kazan
Hackathon
Faceted Search – the 120 Million Documents Story
Introduction to Apache Solr
Solr introduction
Faceted Search And Result Reordering
Introduction to Solr
Дима Гадомский (Юскутум) “Можно ли позаимствовать дизайн и функционал так, чт...
How to achieve security, reliability, and productivity in less time
Ad

Similar to Lucene for Solr Developers (20)

PPTX
Introduction to Lucene & Solr and Usecases
PDF
Lucene for Solr Developers
PPTX
The Intent Algorithms of Search & Recommendation Engines
PPTX
Apache Solr Workshop
PDF
Search Engine-Building with Lucene and Solr
PDF
Search Engine-Building with Lucene and Solr, Part 2 (SoCal Code Camp LA 2013)
PPTX
Building Search & Recommendation Engines
PDF
Let's Build an Inverted Index: Introduction to Apache Lucene/Solr
PDF
Solr Powered Lucene
PDF
Apache Solr crash course
PDF
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
PPT
Lucene Bootcamp -1
PDF
Full Text Search with Lucene
KEY
Apache Solr - Enterprise search platform
PPT
Introduction to Search Engines
PPTX
PPTX
Search Me: Using Lucene.Net
PDF
Solr search engine with multiple table relation
PDF
A Practical Introduction to Apache Solr
PPTX
Introduction to Lucene and Solr - 1
Introduction to Lucene & Solr and Usecases
Lucene for Solr Developers
The Intent Algorithms of Search & Recommendation Engines
Apache Solr Workshop
Search Engine-Building with Lucene and Solr
Search Engine-Building with Lucene and Solr, Part 2 (SoCal Code Camp LA 2013)
Building Search & Recommendation Engines
Let's Build an Inverted Index: Introduction to Apache Lucene/Solr
Solr Powered Lucene
Apache Solr crash course
Search Engine-Building with Lucene and Solr, Part 1 (SoCal Code Camp LA 2013)
Lucene Bootcamp -1
Full Text Search with Lucene
Apache Solr - Enterprise search platform
Introduction to Search Engines
Search Me: Using Lucene.Net
Solr search engine with multiple table relation
A Practical Introduction to Apache Solr
Introduction to Lucene and Solr - 1

More from Erik Hatcher (10)

PDF
Ted Talk
PDF
Solr Payloads
PDF
Solr Query Parsing
PDF
Query Parsing - Tips and Tricks
PDF
Solr Recipes
PDF
Solr Flair
PDF
Introduction to Solr
PDF
Rapid Prototyping with Solr
PDF
Solr Flair: Search User Interfaces Powered by Apache Solr (ApacheCon US 2009,...
PDF
Solr Flair: Search User Interfaces Powered by Apache Solr
Ted Talk
Solr Payloads
Solr Query Parsing
Query Parsing - Tips and Tricks
Solr Recipes
Solr Flair
Introduction to Solr
Rapid Prototyping with Solr
Solr Flair: Search User Interfaces Powered by Apache Solr (ApacheCon US 2009,...
Solr Flair: Search User Interfaces Powered by Apache Solr

Recently uploaded (20)

PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPT
Teaching material agriculture food technology
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Electronic commerce courselecture one. Pdf
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Cloud computing and distributed systems.
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Spectral efficient network and resource selection model in 5G networks
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
The AUB Centre for AI in Media Proposal.docx
Diabetes mellitus diagnosis method based random forest with bat algorithm
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Teaching material agriculture food technology
Digital-Transformation-Roadmap-for-Companies.pptx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Electronic commerce courselecture one. Pdf
NewMind AI Monthly Chronicles - July 2025
Dropbox Q2 2025 Financial Results & Investor Presentation
20250228 LYD VKU AI Blended-Learning.pptx
Network Security Unit 5.pdf for BCA BBA.
The Rise and Fall of 3GPP – Time for a Sabbatical?
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Reach Out and Touch Someone: Haptics and Empathic Computing
NewMind AI Weekly Chronicles - August'25 Week I
Cloud computing and distributed systems.

Lucene for Solr Developers

  • 1. Lucene for Solr Developers NFJS - Raleigh, August 2011 Presented by Erik Hatcher erik.hatcher@lucidimagination.com Lucid Imagination http://www.lucidimagination.com
  • 2. About me... • Co-author, "Lucene in Action" (and "Java Development with Ant" / "Ant in Action" once upon a time) • "Apache guy" - Lucene/Solr committer; member of Lucene PMC, member of Apache Software Foundation • Co-founder, evangelist, trainer, coder @ Lucid Imagination
  • 3. About Lucid Imagination... • Lucid Imagination provides commercial-grade support, training, high-level consulting and value- added software for Lucene and Solr. • We make Lucene ‘enterprise-ready’ by offering: • Free, certified, distributions and downloads. • Support, training, and consulting. • LucidWorks Enterprise, a commercial search platform built on top of Solr.
  • 4. What is Lucene? • An open source search library (not an application) • 100% Java • Continuously improved and tuned over more than 10 years • Compact, portable index representation • Programmable text analyzers, spell checking and highlighting • Not a crawler or a text extraction tool
  • 5. Inverted Index • Lucene stores input data in what is known as an inverted index • In an inverted index each indexed term points to a list of documents that contain the term • Similar to the index provided at the end of a book • In this case "inverted" simply means the list of terms point to documents • It is much faster to find a term in an index, than to scan all the documents
  • 7. Segments and Merging • A Lucene index is a collection of one or more sub-indexes called segments • Each segment is a fully independent index • A multi-way merge algorithm is used to periodically merge segments • New segments are created when an IndexWriter flushes new documents and pending deletes to disk • Trying for a balance between large-scale performance vs. small- scale updates • Optimization merges all segments into one
  • 9. Segments • When a document is deleted it still exists in an index segment until that segment is merged • At certain trigger points, these Documents are flushed to the Directory • Can be forced by calling commit • Segments are periodically merged
  • 13. Committed and Warmed
  • 14. Lucene Scoring • Lucene uses a similarity scoring formula to rank results by measuring the similarity between a query and the documents that match the query. The factors that form the scoring formula are: • Term Frequency: tf (t in d). How often the term occurs in the document. • Inverse Document Frequency: idf (t). A measure of how rare the term is in the whole collection. One over the number of times the term appears in the collection. • Terms that are rare throughout the entire collection score higher.
  • 15. Coord and Norms • Coord: The coordination factor, coord (q, d). Boosts documents that match more of the search terms than other documents. • If 4 of 4 terms match coord = 4/4 • If 3 of 4 terms match coord = 3/4 • Length Normalization - Adjust the score based on length of fields in the document. • shorter fields that match get a boost
  • 16. Scoring Factors (cont) • Boost: (t.field in d). A way to boost a field or a whole document above others. • Query Norm: (q). Normalization value for a query, given the sum of the squared weights of each of the query terms. • You will often hear the Lucene scoring simply referred to as TF·IDF.
  • 17. Explanation • Lucene has a feature called Explanation • Solr uses the debugQuery parameter to retrieve scoring explanations 0.2987913 = (MATCH) fieldWeight(text:lucen in 688), product of: 1.4142135 = tf(termFreq(text:lucen)=2) 9.014501 = idf(docFreq=3, maxDocs=12098) 0.0234375 = fieldNorm(field=text, doc=688)
  • 18. Lucene Core • IndexWriter • Directory • IndexReader, IndexSearcher • analysis: Analyzer, TokenStream, Tokenizer,TokenFilter • Query
  • 20. Customizing - Don't do it! • Unless you need to. • In other words... ensure you've given the built-in capabilities a try, asked on the e-mail list, and spelunked into at least Solr's code a bit to make some sense of the situation. • But we're here to roll up our sleeves, because we need to...
  • 21. But first... • Look at Lucene and/or Solr source code as appropriate • Carefully read javadocs and wiki pages - lots of tips there • And, hey, search for what you're trying to do... • Google, of course • But try out LucidFind and other Lucene ecosystem specific search systems - http://www.lucidimagination.com/search/
  • 22. Extension points • Tokenizer, TokenFilter, • QParser CharFilter • DataImportHandler • SearchComponent hooks • RequestHandler • data sources • ResponseWriter • entity processors • FieldType • transformers • Similarity • several others
  • 23. Factories • FooFactory (most) everywhere. Sometimes there's BarPlugin style • for sake of discussion... let's just skip the "factory" part • In Solr, Factories and Plugins are used by configuration loading to parameterize and construct
  • 24. "Installing" plugins • Compile .java to .class, JAR it up • Put JAR files in either: • <solr-home>/lib • a shared lib when using multicore • anywhere, and register location in solrconfig.xml • Hook in plugins as appropriate
  • 25. Multicore sharedLib <solr sharedLib="/usr/local/solr/customlib" persistent="true"> <cores adminPath="/admin/cores"> <core instanceDir="core1" name="core1"/> <core instanceDir="core2" name="core2"/> </cores> </solr>
  • 26. Plugins via solrconfig.xml • <lib dir="/path/to/your/custom/jars" />
  • 28. Primer • Tokens, Terms • Attributes: Type, Payloads, Offsets, Positions, Term Vectors • part of the picture:
  • 29. Version • enum: • Version.LUCENE_31, Version.LUCENE_32, etc • Version.onOrAfter(Version other)
  • 30. CharFilter • extend BaseCharFilter • enables pre-tokenization filtering/morphing of incoming field value • only affects tokenization, not stored value • Built-in CharFilters: HTMLStripCharFilter, PatternReplaceCharFilter, and MappingCharFilter
  • 31. Tokenizer • common to extend CharTokenizer • implement - • protected abstract boolean isTokenChar(int c); • optionally override - • protected int normalize(int c) • extend Tokenizer directly for finer control • Popular built-in Tokenizers include: WhitespaceTokenizer, StandardTokenizer, PatternTokenizer, KeywordTokenizer, ICUTokenizer
  • 32. TokenFilter • a TokenStream whose input is another TokenStream • Popular TokenFilters include: LowerCaseFilter, CommonGramsFilter, SnowballFilter, StopFilter, WordDelimiterFilter
  • 33. Lucene's analysis APIs • tricky business, what with Attributes (Source/Factory's), State, characters, code points,Version, etc... • Test!!! • BaseTokenStreamTestCase • Look at Lucene and Solr's test cases
  • 34. Solr's Analysis Tools • Admin analysis tool • Field analysis request handler • DEMO
  • 35. Query Parsing • String -> org.apache.lucene.search.Query
  • 36. QParserPlugin public abstract class QParserPlugin implements NamedListInitializedPlugin { public abstract QParser createParser( String qstr, SolrParams localParams, SolrParams params, SolrQueryRequest req); }
  • 37. QParser public abstract class QParser { public abstract Query parse() throws ParseException; }
  • 38. Built-in QParsers from QParserPlugin.java /** internal use - name to class mappings of builtin parsers */ public static final Object[] standardPlugins = { LuceneQParserPlugin.NAME, LuceneQParserPlugin.class, OldLuceneQParserPlugin.NAME, OldLuceneQParserPlugin.class, FunctionQParserPlugin.NAME, FunctionQParserPlugin.class, PrefixQParserPlugin.NAME, PrefixQParserPlugin.class, BoostQParserPlugin.NAME, BoostQParserPlugin.class, DisMaxQParserPlugin.NAME, DisMaxQParserPlugin.class, ExtendedDismaxQParserPlugin.NAME, ExtendedDismaxQParserPlugin.class, FieldQParserPlugin.NAME, FieldQParserPlugin.class, RawQParserPlugin.NAME, RawQParserPlugin.class, TermQParserPlugin.NAME, TermQParserPlugin.class, NestedQParserPlugin.NAME, NestedQParserPlugin.class, FunctionRangeQParserPlugin.NAME, FunctionRangeQParserPlugin.class, SpatialFilterQParserPlugin.NAME, SpatialFilterQParserPlugin.class, SpatialBoxQParserPlugin.NAME, SpatialBoxQParserPlugin.class, JoinQParserPlugin.NAME, JoinQParserPlugin.class, };
  • 39. Local Parameters • {!qparser_name param=value}expression • or • {!qparser_name param=value v=expression} • Can substitute $references from request parameters
  • 40. Param Substitution solrconfig.xml <requestHandler name="/document" class="solr.SearchHandler"> <lst name="invariants"> <str name="q">{!term f=id v=$id}</str> </lst> </requestHandler> Solr request http://localhost:8983/solr/document?id=FOO37
  • 41. Custom QParser • Implement a QParserPlugin that creates your custom QParser • Register in solrconfig.xml • <queryParser name="myparser" class="com.mycompany.MyQParserPlugin"/>
  • 42. Update Processor • Responsible for handling these commands: • add/update • delete • commit • merge indexes
  • 43. Built-in Update Processors • RunUpdateProcessor • Actually performs the operations, such as adding the documents to the index • LogUpdateProcessor • Logs each operation • SignatureUpdateProcessor • duplicate detection and optionally rejection
  • 44. UIMA Update Processor • UIMA - Unstructured Information Management Architecture - http://uima.apache.org/ • Enables UIMA components to augment documents • Entity extraction, automated categorization, language detection, etc • "contrib" plugin • http://wiki.apache.org/solr/SolrUIMA
  • 45. Update Processor Chain • UpdateProcessor's sequence into a chain • Each processor can abort the entire update or hand processing to next processor in the chain • Chains, of update processor factories, are specified in solrconfig.xml • Update requests can specify an update.processor parameter
  • 46. Default update processor chain From SolrCore.java // construct the default chain UpdateRequestProcessorFactory[] factories = new UpdateRequestProcessorFactory[]{ new RunUpdateProcessorFactory(), new LogUpdateProcessorFactory() }; Note: these steps have been swapped on trunk recently
  • 47. Example Update Processor • What are the best facets to show for a particular query? Wouldn't it be nice to see the distribution of document "attributes" represented across a result set? • Learned this trick from the Smithsonian, who were doing it manually - add an indexed field containing the field names of the interesting other fields on the document. • Facet on that field "of field names" initially, then request facets on the top values returned.
  • 48. Config for custom update processor <updateRequestProcessorChain name="fields_used" default="true"> <processor class="solr.processor.FieldsUsedUpdateProcessorFactory"> <str name="fieldsUsedFieldName">attribute_fields</str> <str name="fieldNameRegex">.*_attribute</str> </processor> <processor class="solr.LogUpdateProcessorFactory" /> <processor class="solr.RunUpdateProcessorFactory" /> </updateRequestProcessorChain>
  • 49. FieldsUsedUpdateProcessorFactory public class FieldsUsedUpdateProcessorFactory extends UpdateRequestProcessorFactory { private String fieldsUsedFieldName; private Pattern fieldNamePattern; public UpdateRequestProcessor getInstance(SolrQueryRequest req, SolrQueryResponse rsp, UpdateRequestProcessor next) { return new FieldsUsedUpdateProcessor(req, rsp, this, next); } // ... next slide ... }
  • 50. FieldsUsedUpdateProcessorFactory @Override public void init(NamedList args) { if (args == null) return; SolrParams params = SolrParams.toSolrParams(args); fieldsUsedFieldName = params.get("fieldsUsedFieldName"); if (fieldsUsedFieldName == null) { throw new SolrException (SolrException.ErrorCode.SERVER_ERROR, "fieldsUsedFieldName must be specified"); } // TODO check that fieldsUsedFieldName is a valid field name and multiValued String fieldNameRegex = params.get("fieldNameRegex"); if (fieldNameRegex == null) { throw new SolrException (SolrException.ErrorCode.SERVER_ERROR, "fieldNameRegex must be specified"); } fieldNamePattern = Pattern.compile(fieldNameRegex); super.init(args); }
  • 51. class FieldsUsedUpdateProcessor extends UpdateRequestProcessor { public FieldsUsedUpdateProcessor(SolrQueryRequest req, SolrQueryResponse rsp, FieldsUsedUpdateProcessorFactory factory, UpdateRequestProcessor next) { super(next); } @Override public void processAdd(AddUpdateCommand cmd) throws IOException { SolrInputDocument doc = cmd.getSolrInputDocument(); Collection<String> incomingFieldNames = doc.getFieldNames(); Iterator<String> iterator = incomingFieldNames.iterator(); ArrayList<String> usedFields = new ArrayList<String>(); while (iterator.hasNext()) { String f = iterator.next(); if (fieldNamePattern.matcher(f).matches()) { usedFields.add(f); } } doc.addField(fieldsUsedFieldName, usedFields.toArray()); super.processAdd(cmd); } }
  • 52. FieldsUsedUpdateProcessor in action schema.xml <dynamicField name="*_attribute" type="string" indexed="true" stored="true" multiValued="true"/> Add some documents solr.add([{:id=>1, :name => "Big Blue Shoes", :size_attribute => 'L', :color_attribute => 'Blue'}, {:id=>2, :name => "Cool Gizmo", :memory_attribute => "16GB", :color_attribute => 'White'}]) solr.commit Facet on attribute_fields - http://localhost:8983/solr/select?q=*:*&facet=on&facet.field=attribute_fields&wt=json&indent=on "facet_fields":{ "attribute_fields":[ "color_attribute",2, "memory_attribute",1, "size_attribute",1]}
  • 53. Search Components • Built-in: Clustering, Debug, Facet, Highlight, MoreLikeThis, Query, QueryElevation, SpellCheck, Stats, TermVector, Terms • Non-distributed API: • prepare(ResponseBuilder rb) • process(ResponseBuilder rb)
  • 54. Example - auto facet select • It sure would be nice if you could have Solr automatically select field(s) for faceting based dynamically off the profile of the results. For example, you're indexing disparate types of products, all with varying attributes (color, size - like for apparel, memory_size - for electronics, subject - for books, etc), and a user searches for "ipod" where most products match products with color and memory_size attributes... let's automatically facet on those fields. • https://issues.apache.org/jira/browse/SOLR-2641
  • 55. AutoFacetSelection Component • Too much code for a slide, let's take a look in an IDE... • Basically - • process() gets autofacet.field and autofacet.n request params, facets on field, takes top N values, sets those as facet.field's • Gotcha - need to call rb.setNeedDocSet (true) in prepare() as faceting needs it
  • 56. SearchComponent config <searchComponent name="autofacet" class="solr.AutoFacetSelectionComponent"/> <requestHandler name="/searchplus" class="solr.SearchHandler"> <arr name="components"> <str>query</str> <str>autofacet</str> <str>facet</str> <str>debug</str> </arr> </requestHandler>
  • 57. autofacet success http://localhost:8983/solr/searchplus ?q=*:*&facet=on&autofacet.field=attribute_fields&wt=json&indent=on { "response":{"numFound":2,"start":0,"docs":[ { "size_attribute":["L"], "color_attribute":["Blue"], "name":"Big Blue Shoes", "id":"1", "attribute_fields":["size_attribute", "color_attribute"]}, { "color_attribute":["White"], "name":"Cool Gizmo", "memory_attribute":["16GB"], "id":"2", "attribute_fields":["color_attribute", "memory_attribute"]}] }, "facet_counts":{ "facet_queries":{}, "facet_fields":{ "color_attribute":[ "Blue",1, "White",1], "memory_attribute":[ "16GB",1]}}}
  • 58. Distributed-aware SearchComponents • SearchComponent has a few distributed mode methods: • distributedProcess(ResponseBuilder) • modifyRequest(ResponseBuilder rb, SearchComponent who, ShardRequest sreq) • handleResponses(ResponseBuilder rb, ShardRequest sreq) • finishStage(ResponseBuilder rb)
  • 59. Testing • AbstractSolrTestCase • SolrTestCaseJ4 • SolrMeter • http://code.google.com/p/solrmeter/
  • 60. For more information... • http://www.lucidimagination.com • LucidFind • search Lucene ecosystem: mailing lists, wikis, JIRA, etc • http://search.lucidimagination.com • Getting started with LucidWorks Enterprise: • http://www.lucidimagination.com/products/ lucidworks-search-platform/enterprise • http://lucene.apache.org/solr - wiki, e-mail lists