SlideShare a Scribd company logo
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 21 | P a g e
Some common Fixed Point Theorems for compatible -
contractions in G-metric Spaces
1
B. Ramu Naidu, 2.
K.P.R. Sastry , 3
G. Appala Naidu , 4.
Ch. Srinivasa Rao,
1,2,3,4
Faculty in Mathematics, AU campus, Vizianagaram -535003 INDIA.
ABSTRACT
We prove some common fixed point theorems for compatible self mappings satisfying some kind of contractive
type conditions on complete G-metric spaces and obtain results of Kumara Swamy and Phaneendra[6] and
Sushanta Kumar Mohanta[16] as corollaries.
2010 Mathematics Subject Classification.47H10, 54H25
Keywords:- G-metric space, Compatible self-maps, G-Cauchy sequence, Common fixed point,
-contractions.
I. INTRODUCTION
The study of metric fixed point theory
plays an important role because the study finds
applications in many important areas as diverse as
differential equations, operation research,
mathematical economics and the like. Different
generalizations of the usual notion of a metric
space were proposed by several mathematicians
such as Gahler [3,4] (called 2-metric spaces) and
Dhage [1,2] (called D-metric spaces). K.S.Ha et al.
[5] have pointed out that the results cited by Gahler
are independent, rather than generalizations, of the
corresponding results in metric spaces. Moreover, it
was shown that Dhage’s notion of D-metric space
is flawed by errors and most of the results
established by him and others are invalid. These
facts determined Mustafa and Sims [11] to
introduce a new concept in the area, called G-
metric space. Recently, Mustafa et al. studied many
fixed point theorems for mappings satisfying
various contractive conditions on complete G-
metric spaces; see [8-13]. Subsequently, some
authors like Renu Chugh et al.[14], W.Shatanawi
[15] have generalized some results of Mustafa et al.
[7-8] and studied some fixed point results for self-
mappings in a complete G-metric space under some
contractive conditions related to a non-decreasing
       : 0, 0, w ith lim 0 for all 0, .
n
n
t t 
 
        
Kumara Swamy and Phaneendra[6] and Sushanta Kumar Mohanta[16] proved some fixed point theorems for
self-mappings on complete G-metric spaces.
In this paper we introduce  -contractions in G-metric spaces, prove fixed point results for such maps and
obtain results of Kumara Swamy and Phaneendra [6].
II. PRELIMINARIES
We begin by briefly recalling some basic definitions and results for G-metric spaces that will be needed in the
sequel.
Definition 2.1 :-(Mustafa and Sims [7]) Let X be a non–empty set, and let :G X X X R

   be a
function satisfying the following axioms:
   
   
     
        
       
1 , , 0 if ,
2 0 < , , , fo r all , , w ith ,
3 , , , , , fo r all , , , w ith ,
4 , , , , w h ere is a p erm u tatio n in , , ,
5 , , , , , , , fo r all , , , , r
G G x y z x y z
G G x x y x y X x y
G G x x y G x y z x y z X z y
G G x y z G x z y x y z
G G x y z G x a a G a y z x y z a X
 
  
 
  

    ectan g le in eq u ality .
RESEARCH ARTICLE OPEN ACCESS
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 22 | P a g e
Then the function G is called a generalized metric, or, more specifically a G- metric on X , and the pair
 ,X G is called a G-metric space.
Example 2.2:- (Mustafa and Sims [7]) Let R be the set of all real numbers define.
:G R R R R

   by
 , , , for all , , .G x y z x y y z z x x y z X      
Then it is clear that  ,R G is a G-metric space.
We use the following proposition in the Sequel without explicit mention.
Proposition 2.3:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then for any
, , , an d ,x y z a X it follows that
   
       
       
       
          
         
1 if , , 0 th en ,
2 , , , , , , ,
3 , , 2 , , , 2 .3 .1
4 , , , , , , ,
2
5 , , , , , , , , ,
3
6 , , , , , , , , .
G x y z x y z
G x y z G x x y G x x z
G x y y G y x x
G x y z G x a z G a y z
G x y z G x y a G x a z G a y z
G x y z G x a a G y a a G z a a
  
 
  
 
  
  
Definition 2.4: (Mustafa and Sims [7]) Let  ,X G be a G-metric space, let  n
x be a sequence of points
of X , we say that  n
x is G-convergent to x
   
 
0
,
0
if lim , , 0; th at is, fo r an y 0, th ere ex ists su ch th at , , ,
fo r all , , . W e refer to as th e lim it o f th e seq u en ce an d w rite .
n m n m
n m
n n
G x x x n N G x x x
n m n x x x x
 
     
  
The following proposition is used in the section 3.
Proposition 2.5:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the following are
equivalent:
   
   
   
   
1 is G -co n verg en t to .
2 , , 0, as .
3 , , 0, as .
4 , , 0, as , .
n
n n
n
m n
x x
G x x x n
G x x x n
G x x x m n
  
  
  
Definition 2.6:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space, sequence n
x is called G-
Cauchy if given 0
0, th ere is n N   such that   0
, , , for all , ,n m l
G x x x n m l n 
that is if  , , 0 as , , .n m l
G x x x n m l  
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 23 | P a g e
Proposition 2.7:- (Mustafa and Sims [7]) In a G-metric space  ,X G , the following are equivalent:
(1) The sequence  n
x is G-Cauchy.
(2) For every  0 0
0, there exists such that , , for all , .n m m
n N G x x x n m n    
Definition 2.8:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces and let
   : , ,f X G X G  be a function, then f is said to be G-continuous at a point
if given 0, there exists > 0a X   
        such that , ; , , im plies , , < .x y X G a x y G f a f x f y    A function f is
G-continuous on X if and only if it is G-continuous at all .a X
Proposition 2.9:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces, then a function
:f X X  is G-continuous at a point x X if and only if it is G-sequentially continuous at x ; that is,
whenever n
x is G-convergent to   , n
x f x is G-convergent to  f x .
Proposition 2.10:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the function
 , ,G x y z is continuous in all variables.
Definition 2.11:- (Mustafa and Sims [7]) A G-metric space  ,X G is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence in  ,X G is G-convergent in  ,X G .
Definition 2.12:- Two self-maps f and g on a G-metric space  ,X G are said to be compatible if
 lim , , 0n n n
G fgx gfx gfx
n

 
whenever  n
x is a sequence in X such that
lim lim fo r so m e .n n
fx g x p p X
n n
  
   
3. Main Result:-
Notation:-
     
1
: 0, 0, / is increasing, continuous and for 0 .
n
n
t t  


 
        
 

We observe that  0 0  and   .t t  (see Sastry,KPR et al.[15]) We also observe that, if we define
  for 0, w here 0 1 then .t k t t k      
Lemma 3.1:- Suppose 1,  and
       : 0, 0, is in creasin g an d 3 .1 .1
t
t 

      . Suppose  n

is a sequence of non-negative real numbers such that    1 1
a b 3.1.2n n n
    
   
Where a,b are positive real numbers such that a+b=  .
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 24 | P a g e
Then
1
n
n


 

 and 0 as , .k
m
m n
k n
   


Proof:- First we observe that   fo r 1, 2, 3, ....
n
n
t
t n n

 
Now
       1 1 1 1
1 1 1 1
a + b a + b a + b a+ b
.H en ce ,
n n n n n n n
n n n n n
      
     
   
   
   
      
a contradiction.
 
    
 
   
      
 
1
1
1
1 0
1 1 0 1
0
.
T h u s is a d ecreasin g seq u en ce
a+ ba b
sin ce is in creasin g
........ .
sin ce 1
1 1
H en ce 0 as , .
n n
n
nn n
n
n n
n
n n n n
n n
k
n
n n
m n
 

 
   
 
    

       


 






  
  

  
 
     
 
    
 
  
 
1
m
k 

Notation:- Let 1. 
Write      : 0, 0, / is in creasin g , co n tin u o u u s an d .
t
t   
  

 
      
 
We observe that
 
         1 0
sin ce
T h u s fo r > 1
H ere , 1, 2, ... w ith
n
n
n n
t
t
t t n t t
 

 


    

    
  
  
 
We prove the following common fixed point theorem.
Theorem 3.2:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that
     
 
 
          
     
a
b
c o r is co n tin u o u s,
d , , m ax , , , , , , ,
, , , , , , ,
f X g X
f g
G fx fy fz G g x fx fx G g y fy fy G g z fz fz
G g x fy fy G g y fx fx G g z fy fy
G



 
  
 
     
 
 
, , , , , ,
fo r all , , ............................ 3 .2 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
g x fz fz G g y fz fz G g z fx fx
x y z X
f g
f g
 

B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 25 | P a g e
Proof:- Let 0
x X . In view of (a), we can choose points
 
   
        
1 2 1
1
1 1 1 1 1 1 1
, , ..., ... su ch th at fo r 1, 2, ..... 3 .2 .2 .
W ritin g an d in 3 .2 .1 an d th en u sin g 3 .2 .2 , w e h ave
, , m ax , , , , , , ,
n n n
n n
n n n n n n n n n n n n
x x x fx g x n
x x y z x
G fx fx fx G fx fx fx G fx fx fx G fx fx fx


      
 
  
  
     1 1 1 1 1
, , , , , , ,n n n n n n n n n
G fx fx fx G fx fx fx G fx fx fx    
 
     
    
1 1 1 1 1
1 1 1
, , , , , ,
m ax , , 2 , , ,
n n n n n n n n n
n n n n n n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx
    
  
 
 
     1 1 1 1 1
, , , , 3 .2 .3n n n n n n
G fx fx fx G fx fx fx    
 
 
     
         
5
1 1 1 1 1 1
1 1 1 1 1 1 1 1
F ro m G , w e h ave
, , , , + , ,
F ro m 2 .3 .1 w e g et , , + , , , , + , ,
n n n n n n n n n
n n n n n n n n n n n n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx G fx fx fx G fx fx fx
     
       


 
 
1 1
1 1
+ , ,
= , , + 2 , ,
n n n
n n n n n n
G fx fx fx
G fx fx fx G fx fx fx
 
    1
3 .2 .4

   
      
   
1 1 1 1 1
1 1 1
F ro m 3 .2 .3 an d 3 .2 .4 w e h ave
, , m ax , , 2 , , ,
, , 2 , ,
=
n n n n n n n n n
n n n n n n
n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx
G fx


    
  

 

      
   
   
1 1 1
1
1 1
, , 2 , , 3 .2 .5
W rite , , . T h en fro m 3 .2 .5 , w e h ave
2 3 .2 .6
n n n n n
n n n n
n n n
fx fx G fx fx fx
G fx fx fx
n

   
 

 
 

   
By taking 3, a 1 and b 2    in lemma 2.1 it follows that
1
n
n


 

 and hence
0 as , .k
m
m n
k n
   


 
     
     
     
5
1
1 1 1
1 1 1 2 2 2
N o w , b y ,
, , , , , ,
P u t
, , , , , ,
, , , , , ,
n m m n m m
n
n m m n n n n m m
n n n n n n n m m
G
G fx fx fx G fx w w G w fx fx
w fx
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx G fx fx fx

  
     
 

  
  
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 26 | P a g e
   
 
 
1 1
1
1
B y in d u ctio n ,
1
, , , ,
0
1
0 as , b y lem m a 3 .1
0
, , 0 as ,
an d h en ce ,
n m m n i n i n i
n i
n m m
n
m n
G fx fx fx G fx fx fx
i
m n
m n
i
G fx fx fx m n
G g x g

    
 


 


 
   

   


 1 1
, 0 as ,m m
x g x m n 
  
 
 1
1
T h u s is C au ch y an d is C au ch y.
S in ce is G -co m p lete, w e can fin d a p o in t su ch th at
lim lim . 3 .2 .7
S u p p o se th at is co n tin u o u s.
T h en lim lim
n n
n n
n n
g x fx
X p X
fx g x p
n n
g
g fx g g x g p
n n



 
   
 
   
 
 
 
. 3 .2 .8
S in ce an d are co m p atib le,
lim , , 0 w h ich im p lies th at,
lim lim . 3 .2 .9
n n n
n n
f g
G fg x g fx g fx
n
g fx fg x g p
n n

 
 
   
 
         
 
1
B u t , fro m 3 .2 .1 , w e see th at
, , , , m ax , , , , , , ,
, ,
n n n n n n n n n n n n n n n
n n n n
G fg x fx fx G ffx fx fx G g fx ffx ffx G g x fx fx G g x fx fx
G g fx fx fx G g x

   
    
     
, , , ,
, , , , , ,
n n n n n
n n n n n n n n n
ffx ffx G g x fx fx
G g fx fx fx G g fx fx fx G g x ffx ffx

 
On taking the limit as n   , in view of (3.2.7),(3.2.8) and (3.2.9), it follow that
       
     
     
, , m ax , , , , , , ,
, , , , , , ,
, , , , , ,
G g p p p G g p g p g p G p p p G p p p
G g p p p G p g p g p G p p p
G g p p p G p p p G p g p g p
  
 
 
    
      
  
 
  2
, , , ,
, , 2 , , fro m 2 .3 .1
3 , ,
, , 0
fro m G
is a fix ed p o in t o f g .
G g p p p G p g p g p
G g p p p G g p p p
G g p p p
G g p p p
g p p
p



 
 

 
 

B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 27 | P a g e
       
     
     
N o w , , , m ax , , , , , , ,
, , , , , , ,
, , , , , ,
P
n n n n
n n n
n n n
G fx fp fp G g x fx fx G g p fp fp G g p fp fp
G g x fp fp G g p fx fx G g p fp fp
G g x fp fp G g p fp fp G g p fx fx
  
 
 

       
     
   
ro ceed in g to th e lim it as , w e g et
, , m ax , , , , , , ,
, , , , , , ,
, , , ,
n
G p fp fp G p p p G g p fp fp G g p fp fp
G p fp fp G g p p p G g p fp fp
G p fp fp G g p fp fp G g

 
  
 
   
     
  
   
 
 2
, ,
m ax 0, 2 , , , 2 , , , 2 , ,
2 , ,
2 2
3 . , , , ,
3 3
, , = 0 .
B y G ,
p p p
G p fp fp G p fp fp G p fp fp
G p fp fp
G p fp fp G p fp fp
G p fp fp
fp p





 
  
 

 
is a co m m o n fix ed p o in t o f a n d .p f g
Suppose p and q are common fixed points of f and g .
so that and .fp qp p fq gq q   
Now from (3.2.1), we have
         
     
, , , , m ax , , , , , , ,
, , , , , , ,
,
G p q q G fp fq fq G g p fp fp G g q fq fq G g q fq fq
G g p fq fq G g q fp fp G g q fq fq
G g p fq
   
 
     
     
     
, , , , ,
m ax , , , , , , ,
, , , , , , ,
fq G g q fq fq G g q fp fp
G p p p G q q q G q q q
G p q q G q p p G q q q

 
  
 
     
   
   
, , , , , ,
m ax 0 0 0, , , , , 0,
, , 0 , ,
G p q q G q q q G q p p
G p q q G q p p
G p q q G q p p

 
    
 
    
       
   
, , , ,
, , 2 , , fro m 2 .3 .1
3 , ,
G p q q G q p p
G p q q G q q p
G p q q



 
 

     
 
, , 3 , ,
, , 0 .
.
T h u s an d h a ve u n iq u e co m m o n
G p q q G p q q
G p q q
p q
f g
 
 
 
fix ed p o in t.
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 28 | P a g e
From theorem (3.2), we obtain the following result of K.Kumara Swamy and T.Phaneendra [6] as corollary.
Theorem 3.3:- (K.Kumara swamy and T.Phaneendra [6]) Suppose that f and g are self-maps on a complete G-
metric space  ,X G such that
     
 
 
        
     
a
1
b o r is co n tin u o u s, an d 0 .
3
c an d are co m p atib le.
S u p p o se , , m ax , , , , , , ,
, , , , , , ,
f X g X
f g k
f g
G fx fy fz k G g x fx fx G g y fy fy G g z fz fz
G g x fy fy G g y fx fx G g z fy fy

 
  
 
     
 
, , , , , ,
fo r all , , ............................ 3 .3 .1
G g x fz fz G g y fz fz G g z fx fx
x y z X
 

Proof:- Take  
1
w h ere 0 .
3
t kt k   
The following result of Sushanta Kumar Mohanta([16], Theorem 3.9)follows as a corollary of theorem 3.2, by
taking   .t kt 
Theorem 3.4:- (Sushanta Kumar Mohanta([16], Theorem 3.9)) Let  ,X G be a complete G-metric space,
and let :T X X be a mapping which satisfies the following condition
                     
              
              
, , m ax , , , , , , ,
, , , , , , ,
, , , , , ,
G T x T y T z k G x T y T y G y T x T x G z T z T z
G y T z T z G z T y T y G x T x T x
G z T x T x G x T z T z G y T y T y
  
 
 
 
1
, , , an d 0 .
3
T h en h as a u n iq u e fix ed p o in t in .
P ro o f:- T ak e an d in th eo rem 3 .2 .
x y z X k
T X
f g T t kt
   
  
Theorem 3.5:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that
     
 
 
          
 
a
b
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , , ..
f X g X
f g
G fx fy fz G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z X



 

  
 
.......................... 3 .5 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fi x ed p o in t.
f g
f g
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 29 | P a g e
Proof:- Let 0
x X . In view of (a), we can choose points
 
 
        
1 2 1
1
1 1 1 1 1 1 1
, , ..., ... su ch th at , 0,1, 2, ...
W rite an d in 3 .5 .1 w e g et
, , m ax , , , , , , , , ,
n n n
n n
n n n n n n n n n n n n
n
x x x f x g x n
x x y z x
G fx fx fx G g x g x g x G g x fx fx G g x fx fx
G g x



      

 
  

 1 1 1
, ,n n
fx fx 
      
 
    
     
   
1 1 1 1
1 1
1 1 1
1 1 1
1
m ax , , , , , , , , ,
, ,
m ax , , , , ,
m ax , , w h ere , ,
m ax , 3
n n n n n n n n n
n n n
n n n n n n
n n n n n n
n n n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx
G fx fx fx G fx fx fx
G fx fx fx


   
   
   
 
  
  



 
     
 
      
   
1
1 1
.5 .2
N o w a co n trad ictio n .
. T h u s is a d ecreasin g seq u en ce an d fro m 3 .5 .2
S u p p o se . T h u s
n n n n
n n n n n
n n
r r
    
     
   

 
  
  
 
   
 
 
 
 
 
1
1
0
0
1
1
0
0 .
S in ce , b y in d u ctio n w e h ave
H en ce
S o th at fo r ,
0 as , 3 .5 .3
S u p p o se . P u t , in 3 .5 .1
n n
n n
n
n
n
n
m n
n i
i
n m
n r r r
n m
n m
n m x x y z x
   
  
  
  



 
 

      


  

    
   
 

We get, by(G5)
     
     
     
1
1 1 1
1 1 1 2 2 2
, , , , , ,
P u t
, , , , , ,
, , , , , ,
n m m n m m
n
n m m n n n n m m
n n n n n n n m m
G fx fx fx G fx w w G w fx fx
w fx
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx G fx fx fx

  
     
 

  
  
   
  
 
1 1
1
1
B y in d u ctio n ,
1
, , , ,
0
1
0 as , fro m 3 .5 .3
0
, , 0 as ,
an d h en ce ,
n m m n i n i n i
n i
n m m
n m
m n
G fx fx fx G fx fx fx
i
m n
m n
i
G fx fx fx m n
G g x g x

    
 
 

 


 
   

   


 1 1
, 0 as ,m
g x m n
  
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 30 | P a g e
 
   
     
 
1
B u t , fro m 3 .5 .1 , w e see th at
, , , ,
m ax , , , , , , , , ,
, ,
m ax
n n n n n n
n n n n n n n n n
n n n
G fg x fx fx G ffx fx fx
G g fx g x g x G g fx fx fx G g x fx fx
G g x fx fx
G g





      
 
1 1 1
1
, , , , , , , , ,
, , .
n n n n n n n n n
n n n
fx fx fx G g fx fx fx G fx fx fx
G fx fx fx
  

           
    
 
O n lettin g ,
, , m ax , , , , , , , , , , , .
, , , ,
, , 0 .
is a fix ed p o in t o f .
n
G g p p p G g p p p G g p g p g p G p p p G g p g p g p
G g p p p G g p p p
G g p p p
g p p
p g


 

 
 
 

           
           
         
 
N o w ,
, , m ax , , , , , , , , , , , .
O n lettin g , w e g et
, , m ax , , , , , , , , , , ,
m ax , , , , , , , , , , ,
, ,
n n n n n n
G fx fp fp G g x fp fp G g x fx fx G g p fp fp G fx g p g p
n
G p fp fp G p fp fp G p p p G g p fp fp G p g p g p
G p fp fp G p p p G p fp fp G p p p
G p fp fp




 


   
 
, ,
, , 0
is a co m m o n fix ed p o in t o f an d .
G p fp fp
G p fp fp
fp p
p f g

 
 

 
           
S u p p o se an d are co m m o n fix ed p o in t o f an d
so th at an d
N o w fro m 3 .5 .1 , w e h ave
, , , , , , m ax , , , , , , , , ,
p q f g
fp g p p fq g q q
G p p p p G p fq fq G fp fq fq G g p g q g q G g p fp fp G g q fq fq
   
  
 
         
, ,
m ax , , , , , , , , , , ,
G g q fq fq
G p q q G p p p G q q q G q q q
   
  
 
m ax , ,
, ,
, , 0
.
T h u s an d h ave u n i
G p q q
G p q q
G p q q
p q
f g




 
 
q u e co m m o n fix ed p o in t.
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 31 | P a g e
Corollary 3.6:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that
     
 
 
         
 
a
b 0 1
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , ,
f X g X
k
f g
G fx fy fz k G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z X

 

  
 
............................ 3 .5 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
f g
f g
Proof:- Take   in T heorem 3.5t kt 
Theorem 3.7:- Suppose that f and g are self-maps on a complete G-metric space  ,X G
such that
     
 
 
         
 
a
b
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , , ..
f X g X
f g
G fx fy fz G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z X



 

  
 
.......................... 3 .7 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
f g
f g
Proof:- The proof of the theorem is similar to that of 3.5
Corollary 3.8:- Suppose that f and g are self-maps on a complete G-metric space  ,X G
such that
     
 
 
         
 
a
b 0 1 .
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , ,
f X g X
k
f g
G fx fy fz k G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z

 

  
 
............................ 3 .8 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
X
f g
f g
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 32 | P a g e
Proof:- Take   in T heorem 3.7t kt 
ACKNOWLEDGEMENT
Fourth Author B.Ramu Naidu is grateful to Special
officer, AU.P.G.Centre, Vizianagaram for
providing necessary permissions and facilities to
carry on this research.
REFERENCES
[1]. Dhage, B.C., Generalized Metric Space and
Mapping with Fixed Point, Bull. Cal. Math.
Soc. 84, (1992), 329-336.
[2]. Dhage, B.C., Generalized Metric Space and
Topological Structure I , An. Stiint. Univ.
Al. I . Cuza Iasi. Mat (N.S), 46, (2000), 3-
24.
[3]. Gahler,s., 2-metriche raume und ihre
topologische, Math. Nachr. 26, 1963, 115-
148.
[4]. Gahler,s., Zur geometric raume, Reevue
Roumaine de Math. Pures et Appl., XI,
1966, 664-669.
[5]. HA. Et al,KI.S,CHO,Y.J and White. A
Strictly convex and 2-convex 2-normed
spaces,Math. Japonica, 33(3), (1988), 375-
384.
[6]. Kumara
Swamy.K and Phaneendra.T., FIXED
POINT THEOREM FOR TWO SELF-
MAPS IN A G-METRIC SPACE. Bulletin
of Mathematics and Statistics Research,
vol.4.S1.2016.ISSN:2348-0580.Pages 23-25.
[7]. Mustafa Z., and Sims, B., A new approach to
generalized metric spaces, J. Nonlinear
Convex Anal., 7(2006), 289-297.
[8]. Mustafa Z., and Sims, B., Fixed point
theorems for contractive mappings in
complete G-metric spaces, Fixed Point
Theory and Applications, Vol. 2009, Article
ID917175, 10 pages.
[9]. Mustafa Z., Obiedat H., Awawdeh F., Some
fixed point theorems for mappings on
complete G-metric spaces, Fixed Point
Theory and Applications, Vol. 2008, Article
ID18970, 12 pages.
[10]. Mustafa Z., Shatanawi W., Bataineh M.,
Existence of fixed point results in G-metric
spaces, International Journal of Mathematics
and Mathematical Sciences, Vol. 2009,
Article ID283028 10 pages.
[11]. Mustafa Z.and Sims, B., Some Remarks
Concerning D-Metric Spaces, Proceedings
of the Internatinal Conference on Fixed
Point Theory and Applications, Yokohama
Publishers, Valencia, Spain, July 13-19,
2004, 189-198.
[12]. Mustafa Z., Obiedat H., A fixed point
theorem of Reich in G-metric space, Cubo a
Mathematics Journal, 12(01)(2010), 83-93.
[13]. Mustafa Z., Awawdeh F., Shatanawi W.,
Fixed point theorem for expansive mapping
in G-metric space, Int.J.Contemp Math.
Sciences, 5(50)(2010), 2463-2472.
[14]. Renu.Chugh, T.Kadian, A.Rani, and
B.E.Rhoades, Property P in G-metric spaces,
Fixed Point Theory and Applications,
vol.2010, Article ID 401684, 12pages, 2010.
[15]. Sastry,K.P.R.,G.A.Naidu.,Ch.Srinivasa
Rao.,B.Ramu naidu Fixed point theorem for
contractions  on a G-metric
space and consequences, Volume 8, Issue 2,
February 2017 Edition.
[16]. Shatanawi W., Fixed point theory for
contractive mapping satisfying Ø- maps in
G-metric spaces, Fixed Point Theory and
Applications, Vol. 2010, Article ID181650,
9 pages.
[17]. Sushanta Kumar Mohanta., SOME FIXED
POINT THEOREMS IN G-METRIC
SPACE, An.st.UNIV. Ovidius Constanta
vol.20(1).2012.285-306
[18]. VATS, R.K., S.Kumar and V.Sihag., FIXED
POINT THEOREMS IN COMPLETE G-
METRIC SPACE.,FASCICULI
MATHEMATICI, Nr.17(2011),127-139.

More Related Content

PDF
Some Fixed Point Theorems in b G -cone Metric Space
DOCX
2. Prasad_Komal JNU2015 (1)
PDF
Stability criterion of periodic oscillations in a (14)
PDF
Compatible Mapping and Common Fixed Point Theorem
PDF
sarminIJMA1-4-2015 forth paper after been publishing
PDF
WASJ JOURNAL
PDF
Neutrosophic Soft Topological Spaces on New Operations
PDF
Paper id 71201961
Some Fixed Point Theorems in b G -cone Metric Space
2. Prasad_Komal JNU2015 (1)
Stability criterion of periodic oscillations in a (14)
Compatible Mapping and Common Fixed Point Theorem
sarminIJMA1-4-2015 forth paper after been publishing
WASJ JOURNAL
Neutrosophic Soft Topological Spaces on New Operations
Paper id 71201961

What's hot (19)

PDF
Codes from the cyclic group of order three
PDF
SUPER MAGIC CORONATIONS OF GRAPHS
PDF
The discrete quartic spline interpolation over non uniform mesh
PDF
Bounds on double domination in squares of graphs
PDF
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
PDF
A fixed point result in banach spaces
PDF
A Note on Latent LSTM Allocation
PDF
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
PDF
A Note on TopicRNN
PDF
10.11648.j.pamj.20170601.11
PDF
Algebra 2 Unit 5 Lesson 5
PDF
IRJET- Direct Product of Soft Hyper Lattices
PDF
A new generalized lindley distribution
PDF
Specific Finite Groups(General)
PDF
Structure of unital 3-fields, by S.Duplij, W.Werner
PDF
Entropy 19-00079
PDF
Restrained lict domination in graphs
PDF
Relationship between some machine learning concepts
PDF
AIP conference proceedings
Codes from the cyclic group of order three
SUPER MAGIC CORONATIONS OF GRAPHS
The discrete quartic spline interpolation over non uniform mesh
Bounds on double domination in squares of graphs
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
A fixed point result in banach spaces
A Note on Latent LSTM Allocation
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
A Note on TopicRNN
10.11648.j.pamj.20170601.11
Algebra 2 Unit 5 Lesson 5
IRJET- Direct Product of Soft Hyper Lattices
A new generalized lindley distribution
Specific Finite Groups(General)
Structure of unital 3-fields, by S.Duplij, W.Werner
Entropy 19-00079
Restrained lict domination in graphs
Relationship between some machine learning concepts
AIP conference proceedings
Ad

Viewers also liked (20)

PDF
Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
PDF
Defects, Root Causes in Casting Process and Their Remedies: Review
PDF
Brainstorming: Thinking - Problem Solving Strategy
PDF
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
PDF
Design of Low Power Vedic Multiplier Based on Reversible Logic
PDF
A Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
PDF
POWER CONSUMING SYSTEM USING WSN IN HEMS
PDF
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
PDF
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
PDF
Topology Management for Mobile Ad Hoc Networks Scenario
PDF
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
PDF
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
PDF
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
PDF
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
PDF
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
PDF
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
PDF
Empirical Study of a Key Authentication Scheme in Public Key Cryptography
PDF
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
PDF
Properties of Concrete Containing Scrap-Tire Rubber
PDF
Mild balanced Intuitionistic Fuzzy Graphs
Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
Defects, Root Causes in Casting Process and Their Remedies: Review
Brainstorming: Thinking - Problem Solving Strategy
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
Design of Low Power Vedic Multiplier Based on Reversible Logic
A Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
POWER CONSUMING SYSTEM USING WSN IN HEMS
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
Topology Management for Mobile Ad Hoc Networks Scenario
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
Empirical Study of a Key Authentication Scheme in Public Key Cryptography
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
Properties of Concrete Containing Scrap-Tire Rubber
Mild balanced Intuitionistic Fuzzy Graphs
Ad

Similar to Some common Fixed Point Theorems for compatible  - contractions in G-metric Spaces (20)

PDF
Common fixed point theorems with continuously subcompatible mappings in fuzz...
PDF
D242228
PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
PDF
A common fixed point of integral type contraction in generalized metric spacess
PDF
Fixed Point Theorem in Fuzzy Metric Space
PDF
Fixed point and common fixed point theorems in complete metric spaces
PDF
A common random fixed point theorem for rational inequality in hilbert space
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
PDF
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
PDF
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
PDF
Some New Fixed Point Theorems on S Metric Spaces
PDF
An Application of Gd-Metric Spaces and Metric Dimension of Graphs
PDF
Best Approximation in Real Linear 2-Normed Spaces
PDF
Em34852854
PDF
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
PDF
A common unique random fixed point theorem in hilbert space using integral ty...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
D242228
International Refereed Journal of Engineering and Science (IRJES)
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
A common fixed point of integral type contraction in generalized metric spacess
Fixed Point Theorem in Fuzzy Metric Space
Fixed point and common fixed point theorems in complete metric spaces
A common random fixed point theorem for rational inequality in hilbert space
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
International Journal of Soft Computing, Mathematics and Control (IJSCMC)
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
Some New Fixed Point Theorems on S Metric Spaces
An Application of Gd-Metric Spaces and Metric Dimension of Graphs
Best Approximation in Real Linear 2-Normed Spaces
Em34852854
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
A common unique random fixed point theorem in hilbert space using integral ty...

Recently uploaded (20)

DOCX
573137875-Attendance-Management-System-original
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
additive manufacturing of ss316l using mig welding
PPTX
web development for engineering and engineering
PPTX
Sustainable Sites - Green Building Construction
PPTX
Geodesy 1.pptx...............................................
PPTX
Current and future trends in Computer Vision.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPT
introduction to datamining and warehousing
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
PPT on Performance Review to get promotions
PPTX
UNIT 4 Total Quality Management .pptx
PDF
composite construction of structures.pdf
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
573137875-Attendance-Management-System-original
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Automation-in-Manufacturing-Chapter-Introduction.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
additive manufacturing of ss316l using mig welding
web development for engineering and engineering
Sustainable Sites - Green Building Construction
Geodesy 1.pptx...............................................
Current and future trends in Computer Vision.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
introduction to datamining and warehousing
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPT on Performance Review to get promotions
UNIT 4 Total Quality Management .pptx
composite construction of structures.pdf
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...

Some common Fixed Point Theorems for compatible  - contractions in G-metric Spaces

  • 1. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 21 | P a g e Some common Fixed Point Theorems for compatible - contractions in G-metric Spaces 1 B. Ramu Naidu, 2. K.P.R. Sastry , 3 G. Appala Naidu , 4. Ch. Srinivasa Rao, 1,2,3,4 Faculty in Mathematics, AU campus, Vizianagaram -535003 INDIA. ABSTRACT We prove some common fixed point theorems for compatible self mappings satisfying some kind of contractive type conditions on complete G-metric spaces and obtain results of Kumara Swamy and Phaneendra[6] and Sushanta Kumar Mohanta[16] as corollaries. 2010 Mathematics Subject Classification.47H10, 54H25 Keywords:- G-metric space, Compatible self-maps, G-Cauchy sequence, Common fixed point, -contractions. I. INTRODUCTION The study of metric fixed point theory plays an important role because the study finds applications in many important areas as diverse as differential equations, operation research, mathematical economics and the like. Different generalizations of the usual notion of a metric space were proposed by several mathematicians such as Gahler [3,4] (called 2-metric spaces) and Dhage [1,2] (called D-metric spaces). K.S.Ha et al. [5] have pointed out that the results cited by Gahler are independent, rather than generalizations, of the corresponding results in metric spaces. Moreover, it was shown that Dhage’s notion of D-metric space is flawed by errors and most of the results established by him and others are invalid. These facts determined Mustafa and Sims [11] to introduce a new concept in the area, called G- metric space. Recently, Mustafa et al. studied many fixed point theorems for mappings satisfying various contractive conditions on complete G- metric spaces; see [8-13]. Subsequently, some authors like Renu Chugh et al.[14], W.Shatanawi [15] have generalized some results of Mustafa et al. [7-8] and studied some fixed point results for self- mappings in a complete G-metric space under some contractive conditions related to a non-decreasing        : 0, 0, w ith lim 0 for all 0, . n n t t             Kumara Swamy and Phaneendra[6] and Sushanta Kumar Mohanta[16] proved some fixed point theorems for self-mappings on complete G-metric spaces. In this paper we introduce  -contractions in G-metric spaces, prove fixed point results for such maps and obtain results of Kumara Swamy and Phaneendra [6]. II. PRELIMINARIES We begin by briefly recalling some basic definitions and results for G-metric spaces that will be needed in the sequel. Definition 2.1 :-(Mustafa and Sims [7]) Let X be a non–empty set, and let :G X X X R     be a function satisfying the following axioms:                                1 , , 0 if , 2 0 < , , , fo r all , , w ith , 3 , , , , , fo r all , , , w ith , 4 , , , , w h ere is a p erm u tatio n in , , , 5 , , , , , , , fo r all , , , , r G G x y z x y z G G x x y x y X x y G G x x y G x y z x y z X z y G G x y z G x z y x y z G G x y z G x a a G a y z x y z a X                ectan g le in eq u ality . RESEARCH ARTICLE OPEN ACCESS
  • 2. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 22 | P a g e Then the function G is called a generalized metric, or, more specifically a G- metric on X , and the pair  ,X G is called a G-metric space. Example 2.2:- (Mustafa and Sims [7]) Let R be the set of all real numbers define. :G R R R R     by  , , , for all , , .G x y z x y y z z x x y z X       Then it is clear that  ,R G is a G-metric space. We use the following proposition in the Sequel without explicit mention. Proposition 2.3:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then for any , , , an d ,x y z a X it follows that                                                  1 if , , 0 th en , 2 , , , , , , , 3 , , 2 , , , 2 .3 .1 4 , , , , , , , 2 5 , , , , , , , , , 3 6 , , , , , , , , . G x y z x y z G x y z G x x y G x x z G x y y G y x x G x y z G x a z G a y z G x y z G x y a G x a z G a y z G x y z G x a a G y a a G z a a                 Definition 2.4: (Mustafa and Sims [7]) Let  ,X G be a G-metric space, let  n x be a sequence of points of X , we say that  n x is G-convergent to x       0 , 0 if lim , , 0; th at is, fo r an y 0, th ere ex ists su ch th at , , , fo r all , , . W e refer to as th e lim it o f th e seq u en ce an d w rite . n m n m n m n n G x x x n N G x x x n m n x x x x            The following proposition is used in the section 3. Proposition 2.5:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the following are equivalent:                 1 is G -co n verg en t to . 2 , , 0, as . 3 , , 0, as . 4 , , 0, as , . n n n n m n x x G x x x n G x x x n G x x x m n          Definition 2.6:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space, sequence n x is called G- Cauchy if given 0 0, th ere is n N   such that   0 , , , for all , ,n m l G x x x n m l n  that is if  , , 0 as , , .n m l G x x x n m l  
  • 3. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 23 | P a g e Proposition 2.7:- (Mustafa and Sims [7]) In a G-metric space  ,X G , the following are equivalent: (1) The sequence  n x is G-Cauchy. (2) For every  0 0 0, there exists such that , , for all , .n m m n N G x x x n m n     Definition 2.8:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces and let    : , ,f X G X G  be a function, then f is said to be G-continuous at a point if given 0, there exists > 0a X            such that , ; , , im plies , , < .x y X G a x y G f a f x f y    A function f is G-continuous on X if and only if it is G-continuous at all .a X Proposition 2.9:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces, then a function :f X X  is G-continuous at a point x X if and only if it is G-sequentially continuous at x ; that is, whenever n x is G-convergent to   , n x f x is G-convergent to  f x . Proposition 2.10:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the function  , ,G x y z is continuous in all variables. Definition 2.11:- (Mustafa and Sims [7]) A G-metric space  ,X G is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in  ,X G is G-convergent in  ,X G . Definition 2.12:- Two self-maps f and g on a G-metric space  ,X G are said to be compatible if  lim , , 0n n n G fgx gfx gfx n    whenever  n x is a sequence in X such that lim lim fo r so m e .n n fx g x p p X n n        3. Main Result:- Notation:-       1 : 0, 0, / is increasing, continuous and for 0 . n n t t                   We observe that  0 0  and   .t t  (see Sastry,KPR et al.[15]) We also observe that, if we define   for 0, w here 0 1 then .t k t t k       Lemma 3.1:- Suppose 1,  and        : 0, 0, is in creasin g an d 3 .1 .1 t t         . Suppose  n  is a sequence of non-negative real numbers such that    1 1 a b 3.1.2n n n          Where a,b are positive real numbers such that a+b=  .
  • 4. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 24 | P a g e Then 1 n n       and 0 as , .k m m n k n       Proof:- First we observe that   fo r 1, 2, 3, .... n n t t n n    Now        1 1 1 1 1 1 1 1 a + b a + b a + b a+ b .H en ce , n n n n n n n n n n n n                                 a contradiction.                       1 1 1 1 0 1 1 0 1 0 . T h u s is a d ecreasin g seq u en ce a+ ba b sin ce is in creasin g ........ . sin ce 1 1 1 H en ce 0 as , . n n n nn n n n n n n n n n n n k n n n m n                                                                    1 m k   Notation:- Let 1.  Write      : 0, 0, / is in creasin g , co n tin u o u u s an d . t t                   We observe that            1 0 sin ce T h u s fo r > 1 H ere , 1, 2, ... w ith n n n n t t t t n t t                           We prove the following common fixed point theorem. Theorem 3.2:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                            a b c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , , , , f X g X f g G fx fy fz G g x fx fx G g y fy fy G g z fz fz G g x fy fy G g y fx fx G g z fy fy G                     , , , , , , fo r all , , ............................ 3 .2 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. g x fz fz G g y fz fz G g z fx fx x y z X f g f g   
  • 5. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 25 | P a g e Proof:- Let 0 x X . In view of (a), we can choose points                1 2 1 1 1 1 1 1 1 1 1 , , ..., ... su ch th at fo r 1, 2, ..... 3 .2 .2 . W ritin g an d in 3 .2 .1 an d th en u sin g 3 .2 .2 , w e h ave , , m ax , , , , , , , n n n n n n n n n n n n n n n n n x x x fx g x n x x y z x G fx fx fx G fx fx fx G fx fx fx G fx fx fx                       1 1 1 1 1 , , , , , , ,n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx                  1 1 1 1 1 1 1 1 , , , , , , m ax , , 2 , , , n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                  1 1 1 1 1 , , , , 3 .2 .3n n n n n n G fx fx fx G fx fx fx                         5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F ro m G , w e h ave , , , , + , , F ro m 2 .3 .1 w e g et , , + , , , , + , , n n n n n n n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                     1 1 1 1 + , , = , , + 2 , , n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx       1 3 .2 .4                 1 1 1 1 1 1 1 1 F ro m 3 .2 .3 an d 3 .2 .4 w e h ave , , m ax , , 2 , , , , , 2 , , = n n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx                              1 1 1 1 1 1 , , 2 , , 3 .2 .5 W rite , , . T h en fro m 3 .2 .5 , w e h ave 2 3 .2 .6 n n n n n n n n n n n n fx fx G fx fx fx G fx fx fx n                  By taking 3, a 1 and b 2    in lemma 2.1 it follows that 1 n n       and hence 0 as , .k m m n k n                           5 1 1 1 1 1 1 1 2 2 2 N o w , b y , , , , , , , P u t , , , , , , , , , , , , n m m n m m n n m m n n n n m m n n n n n n n m m G G fx fx fx G fx w w G w fx fx w fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                   
  • 6. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 26 | P a g e         1 1 1 1 B y in d u ctio n , 1 , , , , 0 1 0 as , b y lem m a 3 .1 0 , , 0 as , an d h en ce , n m m n i n i n i n i n m m n m n G fx fx fx G fx fx fx i m n m n i G fx fx fx m n G g x g                             1 1 , 0 as ,m m x g x m n        1 1 T h u s is C au ch y an d is C au ch y. S in ce is G -co m p lete, w e can fin d a p o in t su ch th at lim lim . 3 .2 .7 S u p p o se th at is co n tin u o u s. T h en lim lim n n n n n n g x fx X p X fx g x p n n g g fx g g x g p n n                      . 3 .2 .8 S in ce an d are co m p atib le, lim , , 0 w h ich im p lies th at, lim lim . 3 .2 .9 n n n n n f g G fg x g fx g fx n g fx fg x g p n n                        1 B u t , fro m 3 .2 .1 , w e see th at , , , , m ax , , , , , , , , , n n n n n n n n n n n n n n n n n n n G fg x fx fx G ffx fx fx G g fx ffx ffx G g x fx fx G g x fx fx G g fx fx fx G g x                 , , , , , , , , , , n n n n n n n n n n n n n n ffx ffx G g x fx fx G g fx fx fx G g fx fx fx G g x ffx ffx    On taking the limit as n   , in view of (3.2.7),(3.2.8) and (3.2.9), it follow that                     , , m ax , , , , , , , , , , , , , , , , , , , , G g p p p G g p g p g p G p p p G p p p G g p p p G p g p g p G p p p G g p p p G p p p G p g p g p                           2 , , , , , , 2 , , fro m 2 .3 .1 3 , , , , 0 fro m G is a fix ed p o in t o f g . G g p p p G p g p g p G g p p p G g p p p G g p p p G g p p p g p p p             
  • 7. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 27 | P a g e                     N o w , , , m ax , , , , , , , , , , , , , , , , , , , , P n n n n n n n n n n G fx fp fp G g x fx fx G g p fp fp G g p fp fp G g x fp fp G g p fx fx G g p fp fp G g x fp fp G g p fp fp G g p fx fx                           ro ceed in g to th e lim it as , w e g et , , m ax , , , , , , , , , , , , , , , , , , n G p fp fp G p p p G g p fp fp G g p fp fp G p fp fp G g p p p G g p fp fp G p fp fp G g p fp fp G g                             2 , , m ax 0, 2 , , , 2 , , , 2 , , 2 , , 2 2 3 . , , , , 3 3 , , = 0 . B y G , p p p G p fp fp G p fp fp G p fp fp G p fp fp G p fp fp G p fp fp G p fp fp fp p                is a co m m o n fix ed p o in t o f a n d .p f g Suppose p and q are common fixed points of f and g . so that and .fp qp p fq gq q    Now from (3.2.1), we have                 , , , , m ax , , , , , , , , , , , , , , , G p q q G fp fq fq G g p fp fp G g q fq fq G g q fq fq G g p fq fq G g q fp fp G g q fq fq G g p fq                         , , , , , m ax , , , , , , , , , , , , , , fq G g q fq fq G g q fp fp G p p p G q q q G q q q G p q q G q p p G q q q                       , , , , , , m ax 0 0 0, , , , , 0, , , 0 , , G p q q G q q q G q p p G p q q G q p p G p q q G q p p                            , , , , , , 2 , , fro m 2 .3 .1 3 , , G p q q G q p p G p q q G q q p G p q q                 , , 3 , , , , 0 . . T h u s an d h a ve u n iq u e co m m o n G p q q G p q q G p q q p q f g       fix ed p o in t.
  • 8. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 28 | P a g e From theorem (3.2), we obtain the following result of K.Kumara Swamy and T.Phaneendra [6] as corollary. Theorem 3.3:- (K.Kumara swamy and T.Phaneendra [6]) Suppose that f and g are self-maps on a complete G- metric space  ,X G such that                          a 1 b o r is co n tin u o u s, an d 0 . 3 c an d are co m p atib le. S u p p o se , , m ax , , , , , , , , , , , , , , f X g X f g k f g G fx fy fz k G g x fx fx G g y fy fy G g z fz fz G g x fy fy G g y fx fx G g z fy fy                 , , , , , , fo r all , , ............................ 3 .3 .1 G g x fz fz G g y fz fz G g z fx fx x y z X    Proof:- Take   1 w h ere 0 . 3 t kt k    The following result of Sushanta Kumar Mohanta([16], Theorem 3.9)follows as a corollary of theorem 3.2, by taking   .t kt  Theorem 3.4:- (Sushanta Kumar Mohanta([16], Theorem 3.9)) Let  ,X G be a complete G-metric space, and let :T X X be a mapping which satisfies the following condition                                                     , , m ax , , , , , , , , , , , , , , , , , , , , G T x T y T z k G x T y T y G y T x T x G z T z T z G y T z T z G z T y T y G x T x T x G z T x T x G x T z T z G y T y T y          1 , , , an d 0 . 3 T h en h as a u n iq u e fix ed p o in t in . P ro o f:- T ak e an d in th eo rem 3 .2 . x y z X k T X f g T t kt        Theorem 3.5:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                        a b c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , .. f X g X f g G fx fy fz G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z X            .......................... 3 .5 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fi x ed p o in t. f g f g
  • 9. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 29 | P a g e Proof:- Let 0 x X . In view of (a), we can choose points              1 2 1 1 1 1 1 1 1 1 1 , , ..., ... su ch th at , 0,1, 2, ... W rite an d in 3 .5 .1 w e g et , , m ax , , , , , , , , , n n n n n n n n n n n n n n n n n n x x x f x g x n x x y z x G fx fx fx G g x g x g x G g x fx fx G g x fx fx G g x                   1 1 1 , ,n n fx fx                          1 1 1 1 1 1 1 1 1 1 1 1 1 m ax , , , , , , , , , , , m ax , , , , , m ax , , w h ere , , m ax , 3 n n n n n n n n n n n n n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                                               1 1 1 .5 .2 N o w a co n trad ictio n . . T h u s is a d ecreasin g seq u en ce an d fro m 3 .5 .2 S u p p o se . T h u s n n n n n n n n n n n r r                                         1 1 0 0 1 1 0 0 . S in ce , b y in d u ctio n w e h ave H en ce S o th at fo r , 0 as , 3 .5 .3 S u p p o se . P u t , in 3 .5 .1 n n n n n n n n m n n i i n m n r r r n m n m n m x x y z x                                               We get, by(G5)                   1 1 1 1 1 1 1 2 2 2 , , , , , , P u t , , , , , , , , , , , , n m m n m m n n m m n n n n m m n n n n n n n m m G fx fx fx G fx w w G w fx fx w fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                             1 1 1 1 B y in d u ctio n , 1 , , , , 0 1 0 as , fro m 3 .5 .3 0 , , 0 as , an d h en ce , n m m n i n i n i n i n m m n m m n G fx fx fx G fx fx fx i m n m n i G fx fx fx m n G g x g x                              1 1 , 0 as ,m g x m n   
  • 10. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 30 | P a g e               1 B u t , fro m 3 .5 .1 , w e see th at , , , , m ax , , , , , , , , , , , m ax n n n n n n n n n n n n n n n n n n G fg x fx fx G ffx fx fx G g fx g x g x G g fx fx fx G g x fx fx G g x fx fx G g               1 1 1 1 , , , , , , , , , , , . n n n n n n n n n n n n fx fx fx G g fx fx fx G fx fx fx G fx fx fx                        O n lettin g , , , m ax , , , , , , , , , , , . , , , , , , 0 . is a fix ed p o in t o f . n G g p p p G g p p p G g p g p g p G p p p G g p g p g p G g p p p G g p p p G g p p p g p p p g                                                 N o w , , , m ax , , , , , , , , , , , . O n lettin g , w e g et , , m ax , , , , , , , , , , , m ax , , , , , , , , , , , , , n n n n n n G fx fp fp G g x fp fp G g x fx fx G g p fp fp G fx g p g p n G p fp fp G p fp fp G p p p G g p fp fp G p g p g p G p fp fp G p p p G p fp fp G p p p G p fp fp               , , , , 0 is a co m m o n fix ed p o in t o f an d . G p fp fp G p fp fp fp p p f g                     S u p p o se an d are co m m o n fix ed p o in t o f an d so th at an d N o w fro m 3 .5 .1 , w e h ave , , , , , , m ax , , , , , , , , , p q f g fp g p p fq g q q G p p p p G p fq fq G fp fq fq G g p g q g q G g p fp fp G g q fq fq                    , , m ax , , , , , , , , , , , G g q fq fq G p q q G p p p G q q q G q q q          m ax , , , , , , 0 . T h u s an d h ave u n i G p q q G p q q G p q q p q f g         q u e co m m o n fix ed p o in t.
  • 11. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 31 | P a g e Corollary 3.6:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                       a b 0 1 c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , f X g X k f g G fx fy fz k G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z X          ............................ 3 .5 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. f g f g Proof:- Take   in T heorem 3.5t kt  Theorem 3.7:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                       a b c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , .. f X g X f g G fx fy fz G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z X            .......................... 3 .7 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. f g f g Proof:- The proof of the theorem is similar to that of 3.5 Corollary 3.8:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                       a b 0 1 . c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , f X g X k f g G fx fy fz k G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z          ............................ 3 .8 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. X f g f g
  • 12. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 32 | P a g e Proof:- Take   in T heorem 3.7t kt  ACKNOWLEDGEMENT Fourth Author B.Ramu Naidu is grateful to Special officer, AU.P.G.Centre, Vizianagaram for providing necessary permissions and facilities to carry on this research. REFERENCES [1]. Dhage, B.C., Generalized Metric Space and Mapping with Fixed Point, Bull. Cal. Math. Soc. 84, (1992), 329-336. [2]. Dhage, B.C., Generalized Metric Space and Topological Structure I , An. Stiint. Univ. Al. I . Cuza Iasi. Mat (N.S), 46, (2000), 3- 24. [3]. Gahler,s., 2-metriche raume und ihre topologische, Math. Nachr. 26, 1963, 115- 148. [4]. Gahler,s., Zur geometric raume, Reevue Roumaine de Math. Pures et Appl., XI, 1966, 664-669. [5]. HA. Et al,KI.S,CHO,Y.J and White. A Strictly convex and 2-convex 2-normed spaces,Math. Japonica, 33(3), (1988), 375- 384. [6]. Kumara Swamy.K and Phaneendra.T., FIXED POINT THEOREM FOR TWO SELF- MAPS IN A G-METRIC SPACE. Bulletin of Mathematics and Statistics Research, vol.4.S1.2016.ISSN:2348-0580.Pages 23-25. [7]. Mustafa Z., and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297. [8]. Mustafa Z., and Sims, B., Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Applications, Vol. 2009, Article ID917175, 10 pages. [9]. Mustafa Z., Obiedat H., Awawdeh F., Some fixed point theorems for mappings on complete G-metric spaces, Fixed Point Theory and Applications, Vol. 2008, Article ID18970, 12 pages. [10]. Mustafa Z., Shatanawi W., Bataineh M., Existence of fixed point results in G-metric spaces, International Journal of Mathematics and Mathematical Sciences, Vol. 2009, Article ID283028 10 pages. [11]. Mustafa Z.and Sims, B., Some Remarks Concerning D-Metric Spaces, Proceedings of the Internatinal Conference on Fixed Point Theory and Applications, Yokohama Publishers, Valencia, Spain, July 13-19, 2004, 189-198. [12]. Mustafa Z., Obiedat H., A fixed point theorem of Reich in G-metric space, Cubo a Mathematics Journal, 12(01)(2010), 83-93. [13]. Mustafa Z., Awawdeh F., Shatanawi W., Fixed point theorem for expansive mapping in G-metric space, Int.J.Contemp Math. Sciences, 5(50)(2010), 2463-2472. [14]. Renu.Chugh, T.Kadian, A.Rani, and B.E.Rhoades, Property P in G-metric spaces, Fixed Point Theory and Applications, vol.2010, Article ID 401684, 12pages, 2010. [15]. Sastry,K.P.R.,G.A.Naidu.,Ch.Srinivasa Rao.,B.Ramu naidu Fixed point theorem for contractions  on a G-metric space and consequences, Volume 8, Issue 2, February 2017 Edition. [16]. Shatanawi W., Fixed point theory for contractive mapping satisfying Ø- maps in G-metric spaces, Fixed Point Theory and Applications, Vol. 2010, Article ID181650, 9 pages. [17]. Sushanta Kumar Mohanta., SOME FIXED POINT THEOREMS IN G-METRIC SPACE, An.st.UNIV. Ovidius Constanta vol.20(1).2012.285-306 [18]. VATS, R.K., S.Kumar and V.Sihag., FIXED POINT THEOREMS IN COMPLETE G- METRIC SPACE.,FASCICULI MATHEMATICI, Nr.17(2011),127-139.