This document presents a common fixed point theorem for two self-mappings S and T on a G-metric space X that satisfies a contractive condition of integral type. It begins with definitions related to G-metric spaces and contractive conditions. It then states Theorem 1.1, which proves that if S and T satisfy the given integral type contractive condition, along with other listed conditions, then S and T have a unique point of coincidence in X. If S and T are also weakly compatible, then they have a unique common fixed point. The proof of Theorem 1.1 is then provided.