The document presents a theorem about fixed points for six self-maps in a non-complete non-Archimedean Menger PM-space. The theorem proves that the six maps have a unique common fixed point under certain conditions, including:
1) The maps satisfy inequality conditions involving probabilistic metric functions.
2) One of the subspaces induced by two of the maps is complete.
3) The pairs of maps are R-weakly compatible.
The proof constructs a Cauchy sequence and uses properties of probabilistic metric functions and the given conditions to show the sequence converges, establishing a common fixed point.