SlideShare a Scribd company logo
Sparse Isotropic Hashing
Ikuro Sato, Mitsuru Ambai, Koichiro Suzuki
Denso IT Laboratory, Inc.
{isato, manbai, ksuzuki}@d-itlab.co.jp
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 1/28
Presented at MIRU 2013, Japan.
Peer reviewed paper available at http://www.am.sanken.osaka-u.ac.jp/CVA/
• Introduction
• Proposed method
• Experiment
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 2/36
Practical issues of large-scale image retrieval
• ex) descriptor-matching approach
millions of sums-of-product / query
?
slow
query
image
query image
DB: ~108 images
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 3/28
Potential solution: descriptor binarization
computational time of similarity
real 512
bit
256
bit
128
bit
64
bit
32
bit
binary codes1
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 4/28
Binarization by hash functions
1. supervised
– uses known point-to-point correspondences
• ex) Ambai et al, 2012.
2. unsupervised
– intends to preserve similarities among the original real
vectors
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 5/28
Popular hash function
ex)
Random Proj. (Goemans et al, 1995)
Very Sparse Rand. Proj. (Li et al, 2006)
Sequential Proj. (Wang et al, 2010)
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved.
Iterative Quantization (Gong et al, 2011)
Isotropic Hashing (Kong et al, 2012)
this work
state-of-the-art
6/28
Most related work: Isotropic Hashing (Kong et al, 2012)
1. orthonormality
2. isotropic variance
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 7/28
Most related work: Isotropic Hashing (Kong et al, 2012)
1. orthonormality
2. isotropic variance
Robust to noise from spherically
symmetric distribution.
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 8/28
Learning of Isotropic Hashing
• Lift and Projection (LP) algorithm
isotropic orthogonal
Gradient Flow
algorithm omitted.
intersection
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 9/28
1) PCA:
Under-constrained problem
It’s more natural to impose additional conditions
to make the problem over-constrained.
our motivation
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 10/28
Our contribution
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 11/28
• Introduction
• Proposed method
• Experiment
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 12/36
Problem setup
1. rotational matrix
2. isotropic variance
3. sparsity
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 13/28
Condition-1: Special orthogonal group
-1
1
0
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 14/28
Condition-2: Cost function for isotropic variance
Exact solutions exist according to the Schur-Horn Theorem (AJM1954).
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 15/28
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 16/28
Our optimization problem
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 17/28
Algorithm
Sparse Isotropic Hashing (SIH)
• Repeat until convergence.
endfor
notations
simplified
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 18/28
Illustration of the optimization process
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 19/28
• Introduction
• Proposed method
• Experiment
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 20/36
Dataset
etc.
* M. Ambai and I. Sato, “Fast binary coding of local descriptors based on supervised learning” (MIRU2012).
descriptor
query set
(u=1)
training set
(u=2, 3, 4)
test set
(u=5, 6)
CARD (Ambai et al, 2011)
without binarization
12896 50053 25238
# local descriptors
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 21/28
Evaluation criterion
• Mean Average Precision (mAP)
– expected value of area under Precision-Recall curve
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved.
precision
recall
1.0
Average
Precision
22/28
Methods compared
All methods use
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 23/28
state-of-the-art
mAP for CARD
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 24/28
mAP for CARD
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 25/28
mAP for CARD
almost
on top
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 26/28
mAP for CARD
10% drop in mAP,
20x faster coding
env.: VS2010, C program
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 27/28
Conclusion
Isotropic Hashing (Kong et al, 2012):
highly under-constrained
8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 28/28

More Related Content

PDF
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
PDF
PyData NYC by Akira Shibata
PDF
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
PDF
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
PDF
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
PDF
Gatsby kaken-2017-pfn okanohara
PDF
Transformer 動向調査 in 画像認識(修正版)
PDF
Tackling Open Images Challenge (2019)
小數據如何實現電腦視覺,微軟AI研究首席剖析關鍵
PyData NYC by Akira Shibata
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
使用人工智慧檢測三維錫球瑕疵_台大傅楸善
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
Gatsby kaken-2017-pfn okanohara
Transformer 動向調査 in 画像認識(修正版)
Tackling Open Images Challenge (2019)

What's hot (17)

PPTX
200612_BioPackathon_ss
PPTX
【DL輪読会】ViT + Self Supervised Learningまとめ
PPTX
モデルアーキテクチャ観点からの高速化2019
PDF
Deep Learning in real world @Deep Learning Tokyo
PDF
WWW 2021report public
PDF
PLNOG 18 - Dr Marek Michalewicz - InfiniCortex: Superkomputer wielki jak świat
PDF
從 Project Theta 到台灣人工智慧學校
PDF
深度學習在AOI的應用
PDF
データサイエンティストの仕事とデータ分析コンテスト
PDF
Dataset creation for Deep Learning-based Geometric Computer Vision problems
PDF
ICC2017 UUUI sessions 6205-1
PDF
NIPS - Deep learning @ Edge using Intel's NCS
PDF
Deep learning for FinTech
PDF
Image verification assistant. By Polychronis Charitidis of CERTH-ITI
PDF
Capstone Design(2) 중간 발표
PPTX
モデル高速化百選
PPT
Ieee gold 2010 resta
200612_BioPackathon_ss
【DL輪読会】ViT + Self Supervised Learningまとめ
モデルアーキテクチャ観点からの高速化2019
Deep Learning in real world @Deep Learning Tokyo
WWW 2021report public
PLNOG 18 - Dr Marek Michalewicz - InfiniCortex: Superkomputer wielki jak świat
從 Project Theta 到台灣人工智慧學校
深度學習在AOI的應用
データサイエンティストの仕事とデータ分析コンテスト
Dataset creation for Deep Learning-based Geometric Computer Vision problems
ICC2017 UUUI sessions 6205-1
NIPS - Deep learning @ Edge using Intel's NCS
Deep learning for FinTech
Image verification assistant. By Polychronis Charitidis of CERTH-ITI
Capstone Design(2) 중간 발표
モデル高速化百選
Ieee gold 2010 resta
Ad

Viewers also liked (20)

PPTX
CNNチュートリアル
PPTX
ディープラーニングの車載応用に向けて
PPTX
Go-ICP: グローバル最適(Globally optimal) なICPの解説
PPTX
FLAT CAM: Replacing Lenses with Masks and Computationの解説
PDF
Deep Learning Chapter12
PPTX
Vanishing Component Analysisの試作(補足)
PPT
Information extraction 1
PPT
Notes on the low rank matrix approximation of kernel
PDF
Gitのすすめ
PDF
DSIRNLP06 Nested Pitman-Yor Language Model
PPTX
Vanishing Component Analysisの試作と簡単な実験
PPTX
Pylm public
PDF
Dsirnlp#7
PDF
Stochastic Process Overview (hypothesis)
PDF
マーク付き点過程
PDF
Extreme Learning Machine
PDF
Holonomic Gradient Descent
PDF
Halide, Darkroom - 並列化のためのソフトウェア・研究
PPTX
PDF
論文紹介:Practical bayesian optimization of machine learning algorithms(nips2012)
CNNチュートリアル
ディープラーニングの車載応用に向けて
Go-ICP: グローバル最適(Globally optimal) なICPの解説
FLAT CAM: Replacing Lenses with Masks and Computationの解説
Deep Learning Chapter12
Vanishing Component Analysisの試作(補足)
Information extraction 1
Notes on the low rank matrix approximation of kernel
Gitのすすめ
DSIRNLP06 Nested Pitman-Yor Language Model
Vanishing Component Analysisの試作と簡単な実験
Pylm public
Dsirnlp#7
Stochastic Process Overview (hypothesis)
マーク付き点過程
Extreme Learning Machine
Holonomic Gradient Descent
Halide, Darkroom - 並列化のためのソフトウェア・研究
論文紹介:Practical bayesian optimization of machine learning algorithms(nips2012)
Ad

Similar to Sparse Isotropic Hashing (20)

PDF
5 efficient-matching.ppt
PPTX
DimensionalityReduction.pptx
PDF
Ijebea14 283
PDF
5 DimensionalityReduction.pdf
PDF
Multiview Alignment Hashing for Efficient Image Search
PDF
SHORT LISTING LIKELY IMAGES USING PROPOSED MODIFIED-SIFT TOGETHER WITH CONVEN...
PDF
SHORT LISTING LIKELY IMAGES USING PROPOSED MODIFIED-SIFT TOGETHER WITH CONVEN...
PDF
Image Denoising Based On Sparse Representation In A Probabilistic Framework
PDF
Modern features-part-2-descriptors
PDF
20150326.journal club
PDF
Chromatic Sparse Learning
PDF
Highly Adaptive Image Restoration In Compressive Sensing Applications Using S...
PDF
pca.pdf polymer nanoparticles and sensors
PDF
A comparison of SIFT, PCA-SIFT and SURF
PPTX
feature matching and model fitting .pptx
PDF
Bag of Pursuits and Neural Gas for Improved Sparse Codin
PDF
Lecture 02 internet video search
PPT
ECCV2010: feature learning for image classification, part 2
PDF
Image compression based on
PDF
IEEE PROJECT TOPICS &ABSTRACTS on image processing
5 efficient-matching.ppt
DimensionalityReduction.pptx
Ijebea14 283
5 DimensionalityReduction.pdf
Multiview Alignment Hashing for Efficient Image Search
SHORT LISTING LIKELY IMAGES USING PROPOSED MODIFIED-SIFT TOGETHER WITH CONVEN...
SHORT LISTING LIKELY IMAGES USING PROPOSED MODIFIED-SIFT TOGETHER WITH CONVEN...
Image Denoising Based On Sparse Representation In A Probabilistic Framework
Modern features-part-2-descriptors
20150326.journal club
Chromatic Sparse Learning
Highly Adaptive Image Restoration In Compressive Sensing Applications Using S...
pca.pdf polymer nanoparticles and sensors
A comparison of SIFT, PCA-SIFT and SURF
feature matching and model fitting .pptx
Bag of Pursuits and Neural Gas for Improved Sparse Codin
Lecture 02 internet video search
ECCV2010: feature learning for image classification, part 2
Image compression based on
IEEE PROJECT TOPICS &ABSTRACTS on image processing

Recently uploaded (20)

PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
cloud_computing_Infrastucture_as_cloud_p
PDF
project resource management chapter-09.pdf
PDF
Hybrid model detection and classification of lung cancer
PDF
Approach and Philosophy of On baking technology
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
Tartificialntelligence_presentation.pptx
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
A Presentation on Touch Screen Technology
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
cloud_computing_Infrastucture_as_cloud_p
project resource management chapter-09.pdf
Hybrid model detection and classification of lung cancer
Approach and Philosophy of On baking technology
OMC Textile Division Presentation 2021.pptx
Tartificialntelligence_presentation.pptx
Heart disease approach using modified random forest and particle swarm optimi...
Unlocking AI with Model Context Protocol (MCP)
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
gpt5_lecture_notes_comprehensive_20250812015547.pdf
A Presentation on Touch Screen Technology
SOPHOS-XG Firewall Administrator PPT.pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
A comparative study of natural language inference in Swahili using monolingua...
Accuracy of neural networks in brain wave diagnosis of schizophrenia
TLE Review Electricity (Electricity).pptx
Hindi spoken digit analysis for native and non-native speakers
NewMind AI Weekly Chronicles - August'25-Week II
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf

Sparse Isotropic Hashing

  • 1. Sparse Isotropic Hashing Ikuro Sato, Mitsuru Ambai, Koichiro Suzuki Denso IT Laboratory, Inc. {isato, manbai, ksuzuki}@d-itlab.co.jp 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 1/28 Presented at MIRU 2013, Japan. Peer reviewed paper available at http://www.am.sanken.osaka-u.ac.jp/CVA/
  • 2. • Introduction • Proposed method • Experiment 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 2/36
  • 3. Practical issues of large-scale image retrieval • ex) descriptor-matching approach millions of sums-of-product / query ? slow query image query image DB: ~108 images 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 3/28
  • 4. Potential solution: descriptor binarization computational time of similarity real 512 bit 256 bit 128 bit 64 bit 32 bit binary codes1 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 4/28
  • 5. Binarization by hash functions 1. supervised – uses known point-to-point correspondences • ex) Ambai et al, 2012. 2. unsupervised – intends to preserve similarities among the original real vectors 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 5/28
  • 6. Popular hash function ex) Random Proj. (Goemans et al, 1995) Very Sparse Rand. Proj. (Li et al, 2006) Sequential Proj. (Wang et al, 2010) 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. Iterative Quantization (Gong et al, 2011) Isotropic Hashing (Kong et al, 2012) this work state-of-the-art 6/28
  • 7. Most related work: Isotropic Hashing (Kong et al, 2012) 1. orthonormality 2. isotropic variance 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 7/28
  • 8. Most related work: Isotropic Hashing (Kong et al, 2012) 1. orthonormality 2. isotropic variance Robust to noise from spherically symmetric distribution. 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 8/28
  • 9. Learning of Isotropic Hashing • Lift and Projection (LP) algorithm isotropic orthogonal Gradient Flow algorithm omitted. intersection 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 9/28 1) PCA:
  • 10. Under-constrained problem It’s more natural to impose additional conditions to make the problem over-constrained. our motivation 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 10/28
  • 11. Our contribution 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 11/28
  • 12. • Introduction • Proposed method • Experiment 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 12/36
  • 13. Problem setup 1. rotational matrix 2. isotropic variance 3. sparsity 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 13/28
  • 14. Condition-1: Special orthogonal group -1 1 0 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 14/28
  • 15. Condition-2: Cost function for isotropic variance Exact solutions exist according to the Schur-Horn Theorem (AJM1954). 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 15/28
  • 16. 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 16/28
  • 17. Our optimization problem 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 17/28
  • 18. Algorithm Sparse Isotropic Hashing (SIH) • Repeat until convergence. endfor notations simplified 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 18/28
  • 19. Illustration of the optimization process 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 19/28
  • 20. • Introduction • Proposed method • Experiment 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 20/36
  • 21. Dataset etc. * M. Ambai and I. Sato, “Fast binary coding of local descriptors based on supervised learning” (MIRU2012). descriptor query set (u=1) training set (u=2, 3, 4) test set (u=5, 6) CARD (Ambai et al, 2011) without binarization 12896 50053 25238 # local descriptors 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 21/28
  • 22. Evaluation criterion • Mean Average Precision (mAP) – expected value of area under Precision-Recall curve 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. precision recall 1.0 Average Precision 22/28
  • 23. Methods compared All methods use 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 23/28 state-of-the-art
  • 24. mAP for CARD 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 24/28
  • 25. mAP for CARD 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 25/28
  • 26. mAP for CARD almost on top 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 26/28
  • 27. mAP for CARD 10% drop in mAP, 20x faster coding env.: VS2010, C program 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 27/28
  • 28. Conclusion Isotropic Hashing (Kong et al, 2012): highly under-constrained 8/1/2013 Copyright (C) 2013 DENSO IT LABORATORY, INC. All Rights Reserved. 28/28