1) The document discusses Spiking Neural Networks (SNNs), which are a type of neural network that more closely mimic biological neural behavior.
2) It describes the Leaky Integrate-and-Fire (LIF) neuron model, which is commonly used in SNNs. The LIF model integrates inputs over time and generates spikes when the voltage exceeds a threshold.
3) Different encoding approaches are discussed for representing input data as spike trains, including rate coding, temporal coding, population coding, and the Hough Spiker Algorithm. These approaches transform real-valued inputs into spike timings.
Related topics: