SlideShare a Scribd company logo
Part 1: Descriptive Statistics PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
Agenda Manipulating Data Selecting Cases Splitting the File Using Find and Replace Finding Data  Replacing Data Reporting Copying and Pasting into Word  Introduction Research Stages Opening PASW Creating a Data File Defining Variables Entering Data Running Descriptive  Statistics Frequency Analysis Crosstabs
What is PASW? Predictive  Analytics  Software
What is Statistics? Statistics is a set of  mathematical  techniques used to: Summarize  research data .   Determine whether the data supports the researcher’s hypothesis.
Research Stages Planning and Designing Data Collecting Data Analyzing Data Reporting
Format of Questions  Easy to enter Easy to construct Difficult to construct Difficult to enter  Invalid responses What is your gender? a. Female  b. Male What is your gender? ( _____________ ) Fixed Response Open-Ended Response e.g.  PROs CONs
Running Descriptive Statistics How to analyze data. Descriptive statistics  are used for summarizing frequency or measures of central tendency. Are the most commonly used statistics.
Frequency Analysis Frequency  shows the number of occurrences. Also calculates measures of central tendency, such as the mean, median, mode, and others.
Research Question #1 What kind of computer do people prefer to own?
Crosstabs Crosstabs  are used to examine the relationship between two variables. It shows the intersection between two variables and reveals how the two interact with each other.
Research Question #2 What color do people prefer for their computer?
Improving Your Survey What color do you like to have for your computer? 1. Beige 2. Black 3. Gray 4. White   5. Other _______
Selecting Cases Filter out and specify which variable to use for analysis with the  select cases  function.
Splitting the File The  split   file  function is used to compare the responses or performance differences by groups within one variable.
Research Question #3 Is computer color preference different  between genders?
Part 2: Test of Significance PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
Purpose of This Workshop  To show how PASW Statistics can help interpret results obtained from a  sample   and make inferences about the  population . SAMPLE POPULATION Is it statistically significant?
Agenda Using Null Hypothesis Running Tests of Significance Correlations  Paired-Samples T Test  Independent-Samples T Test Running Multiple Response Sets Frequency Crosstabs Merging Data Files
A  null   hypothesis   (H 0 )  is a statistical hypothesis that is tested for possible rejection under the assumption that it is true. The purpose of most statistical tests is to determine if the obtained results provide a reason to conclude whether or not the differences are the result of random chance. Rejection of H 0  leads to the alternative hypothesis H 1 . Null Hypothesis
Null Hypothesis The significance level ( α ) sets the standard for how extreme data must be before rejecting the H 0 . To reject H 0 , data must meet a significance level ( α ) of 0.05. α  = 0.05 means data would have occurred by chance at most 5% of the time.
If p-value (sig.) ≤  α , then  reject  H 0 . Statistically significant If p-value (sig.)   >  α , then  fail to reject  H 0 . Statistically non-significant Hypothesis Testing Take note that the result is always stated in relation to the  null   hypothesis , not the alternate.
Correlations No Relationship A  correlation  is a statistical device that measures the nature and strength of a supposed linear association between two variables. Y X Negative Relationship Y X Y X Positive Relationship
Correlation Coefficient r =  +  0.0 to 1.0 Direction Magnitude The strength of the linear relationship is determined by the distance of the correlation coefficient (r) from zero.
Research Question #1 Is there a relationship between academic performance and Internet access? H 0  = Internet access made no difference  H 1  = Internet access made a different
Research Question #1 Is there a relationship between academic performance and Internet access?
T   test A T test may be used to compare two group means using either one of the following: Within-participants design (a Paired-Samples T Test) Between-participants design (an Independent-Samples T Test)
Research Question #2 Is there an instructional effect taking place in the computer class? H 0 : Instruction made no difference  H 1 : Instruction made a difference
Research Question #3 Is there a difference in the average number of seedlings grown in the light and those grown in the dark?
Independent-Samples T Test The first set of hypotheses is testing the variance, while the proceeding set is testing for the mean. The variances have to be equal before we can determine if the means are equal.   H 0 : (µ (light) ≠ µ (dark)  H 1 : (µ (light) ≠ µ (dark) H 0 : Variance (light) = variance (dark) H 1 : Variance (light) ≠ variance (dark)
Research Question #3 Is there a difference in the average number of seedlings grown in the light and those grown in the dark?  H 0 : No difference whether grown in the light or dark H 1 : A difference when grown in the light versus dark
Running Multiple Response Sets Multiple   response   sets  are used when respondents are allowed to select more than one answer in a single question. By running a  frequency  analysis, the result provides an overall raw frequency for each answer. Crosstabs  can also be used to examine the relationship between the sets and other variables.
Merging Data Files
Merging Data Files Useful for users who store each of their topics in separate files, and eventually need or want to combine them together. This allows users to import data from one file into another. Both sets of data (from each file) must contain a common identifier for each of the cases that the user wishes to combine.  An identifier identifies the correlating cases from the additional data files.
Part 3: Regression Analysis PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
Purpose of This Workshop To show users how PASW Statistics can help in answering research questions or testing hypotheses by using  regression. To provide users with step-by-step instructions on how to perform  regression  analyses with PASW Statistics.
Agenda Using Simple Regression Scatter Plot Predicting Values of Dependent Variables Predicting This Year’s Sales Using Multiple Regression Predicting Values of Dependent Variables Predicting This Year’s Sales Transforming Data Computing Using Polynomial Regression Regression Analysis Editing Charts Adding a Line Manipulating X & Y Scales Adding a Title Adding Colors Background Color
What   Is   Linear   Regression? Linear:   Straight line. Regression:  Finds the model that minimizes the total variation in the data (i.e., the best fit). Linear Regression:  Can be divided into two categories: Simple regression Multiple regression
What Is Polynomial Regression? Polynomial:  A finite length expression constructed from variables and constants. Polynomial Regression:  A special type of multiple regression used to determine the relationship between data (e .g., growth rate, progression rate).
Dependent   and  Independent Variables Variables can be classified into two categories:  independent  and  dependent  variables.  An  independent  variable is a variable that influences the value of another variable.  A  dependent  variable is a variable whose values are influenced by another variable. This is influence,  not  cause and effect.
Scatter   Plot Before performing regression, users need to determine whether a linear relationship exists between the two variables.  A  scatter   plot  allows users to examine the linear nature of the relationship between two variables. If the relationship does not seem to be linear, then the result may be a weak regression model.
Scatter Plot Create a  scatter   plot  to determine if a linear relationship exists between variables.
Using Simple   Regression Estimates the linear relationship between one dependent ( Y ) and one independent ( X ) variable. Linear Equation:  Y  =  a X  +  b a : Slope of the line b : Constant (Y-intercept, where X=0) X : Independent variable Y  : Dependent variable Since we already know the values of  X  and  Y , what we are trying to do here is to estimate  a  (slope) and  b  (Y-intercept).
Using Multiple   Regression Estimates the coefficients of the linear equation, involving  more than one  independent variable. For example, users can predict a salesperson’s total annual sales (the dependent variable) based on independent variables, such as age, education, and years of experience.
Using Multiple   Regression Linear Equation:  Z  =  a X  +  b Y  +  c a   &  b :  Slope coefficients c : Constant (Y-intercept) X  &  Y : Independent variables Z : Dependent variable
Computing Most data transformations can be done with the  Compute  command.  Using this command, the data file can be manipulated to fit various statistical performances.
Using Polynomial   Regression Variable Meaning a Constant b j The coefficient for the independent variable to the j’th power e i Random error term
Editing Charts Adding a Best Fit Line at Total
Editing Charts – Manipulating Scales
Editing Charts – Title and Gridlines
Editing Charts – Adding Colors
Part 4: Chi-Square and ANOVA PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
Purpose of This Workshop To show how PASW Statistics can help answer research questions or test hypotheses by using the Chi-Square test and ANOVA. To provide step-by-step instructions on how to perform the Chi-Square test and ANOVA with PASW Statistics. To show how to import and export data using Microsoft Excel and PowerPoint. To show how to use scripting in PASW Statistics.
Agenda Using Chi-Square Test Testing for Goodness-of-Fit Using One-Way ANOVA Using Post Hoc Tests Using Two-Way ANOVA Importing/Exporting Excel Spreadsheets Using Scripting in PASW Statistics
It analyzes data in order to examine if a frequency distribution for a given variable is consistent with expectations. Chi-Square test for Goodness-of-Fit test : estimates how closely an observed distribution matches an expected distribution. Using Chi-Square Test with Fixed Expected Values
Weight Cases Before a Chi-Square test is run,  weight cases  should be used to identify and let  PASW Statistics  know what the observed values are.
Using Chi-Square Test with a Contiguous Subset
Using One-Way ANOVA ANOVA :  An alysis  O f  Va riance. One-Way ANOVA can be thought of as a generalization of the pooled t test. Produces an analysis for a quantitative dependent variable affected by a single factor (independent variable).  Instead of dealing with two populations, we have more than two populations or treatments.
Using One-Way ANOVA
Using Post Hoc Tests The null hypothesis in ANOVA is rejected when there are some differences in μ 1 , μ 2 ,  …, μ x .  But to know where specifically these differences are, the  post hoc test  is used.
Using Post Hoc Tests LSD  stands for List Squared Difference.
Using Two-Way ANOVA A Two-Way Analysis of Variance procedure produces an analysis for a quantitative dependent variable affected by more than one factor.  It also provides information about how variables  interact  or combine in the effect.  Advantages: More efficient Helps increase statistical power of the result
Importing/Exporting Data Data can be imported into PASW Statistics from an Excel spreadsheet. Data can be exported from PASW Statistics into an Excel spreadsheet, PowerPoint slides, etc.
Using Scripting in PASW Statistics  Used to capture commands that are used repeatedly. This function simplifies working with multiple analyses on a consistent basis. Can use different data files as long as the variables in the commands always have the same name.

More Related Content

PDF
Workshop on SPSS: Basic to Intermediate Level
PDF
Applied Statistical Methods - Question & Answer on SPSS
PPTX
data analysis techniques and statistical softwares
PDF
Statistical Procedures using SPSSi
PPT
Descriptive Statistics
PPTX
Using SPSS: A Tutorial
PPTX
Types of Data, Key Concept
PPTX
Multivariate
Workshop on SPSS: Basic to Intermediate Level
Applied Statistical Methods - Question & Answer on SPSS
data analysis techniques and statistical softwares
Statistical Procedures using SPSSi
Descriptive Statistics
Using SPSS: A Tutorial
Types of Data, Key Concept
Multivariate

What's hot (19)

PPTX
Statistical analysis and its applications
PPTX
Data Analysis and Statistics
PPTX
Das20502 chapter 1 descriptive statistics
PDF
Chapter 6 data analysis iec11
PPTX
Data analysis
PPT
060 techniques of_data_analysis
PPT
Quantitative Data analysis
PPTX
Descriptive Statistics
PPTX
Exploratory Data Analysis for Biotechnology and Pharmaceutical Sciences
PDF
Statistics is the science of collection
PPTX
Descriptive Statistics, Numerical Description
PPT
Descriptive Statistics and Data Visualization
PPT
Descriptive statistics
PPT
Descriptive statistics
PPT
Introduction to spss
PPT
Spss introductory session data entry and descriptive stats
PPT
Introduction To SPSS
PPT
Quantitative analysis using SPSS
PPT
Chap019
Statistical analysis and its applications
Data Analysis and Statistics
Das20502 chapter 1 descriptive statistics
Chapter 6 data analysis iec11
Data analysis
060 techniques of_data_analysis
Quantitative Data analysis
Descriptive Statistics
Exploratory Data Analysis for Biotechnology and Pharmaceutical Sciences
Statistics is the science of collection
Descriptive Statistics, Numerical Description
Descriptive Statistics and Data Visualization
Descriptive statistics
Descriptive statistics
Introduction to spss
Spss introductory session data entry and descriptive stats
Introduction To SPSS
Quantitative analysis using SPSS
Chap019
Ad

Viewers also liked (7)

PPTX
Descriptive Strategies Research: Survey Analysis
PPT
Descriptive Analysis in Statistics
PPT
Using Spss Compute (Another Method)
PPT
Research Methodology (MBA II SEM) - Introduction to SPSS
DOCX
descriptive and inferential statistics
PPT
Descriptive statistics
PPTX
Academia
Descriptive Strategies Research: Survey Analysis
Descriptive Analysis in Statistics
Using Spss Compute (Another Method)
Research Methodology (MBA II SEM) - Introduction to SPSS
descriptive and inferential statistics
Descriptive statistics
Academia
Ad

Similar to SPSS statistics - get help using SPSS (20)

PPT
An Introduction to SPSS
PPT
Spsshelp 100608163328-phpapp01
PPT
SOC2002 Lecture 11
PPTX
Elementary statistics for Food Indusrty
PPTX
Statistics pres 3.31.2014
PPT
Advanced statistics for librarians
PDF
IoT Lecture MaterialLecture Material.pdf
PDF
Week 12 Lecture Material DATA and Analytics
PDF
elementary statistic
PPTX
Basic of Statistical Inference Part-V: Types of Hypothesis Test (Parametric)
PPTX
MANS_PRESENTATION[1] hgfhdsgfkdfkjdfjd.pptx
PPTX
MANS_PRESENTATION[1] hgfhdsgfkdfkjdfjd.pptx
PDF
KIT-601 Lecture Notes-UNIT-2.pdf
PPT
ScWk-242-Session-6-Slides---Intro-to-Qualitative-Research-and-SPSS.ppt
PPT
ScWk-242-Session-6-Slides---Intro-to-Qualitative-Research-and-SPSS.ppt
PDF
Data science
PPTX
abdi research ppt.pptx
PPT
Spss software
PPTX
pembuastasn multiVARIASTE YASNG ASKASN DIPSAKASI UNTUK PENELITIAN COBA CEK
PDF
Data Science Interview Questions PDF By ScholarHat
An Introduction to SPSS
Spsshelp 100608163328-phpapp01
SOC2002 Lecture 11
Elementary statistics for Food Indusrty
Statistics pres 3.31.2014
Advanced statistics for librarians
IoT Lecture MaterialLecture Material.pdf
Week 12 Lecture Material DATA and Analytics
elementary statistic
Basic of Statistical Inference Part-V: Types of Hypothesis Test (Parametric)
MANS_PRESENTATION[1] hgfhdsgfkdfkjdfjd.pptx
MANS_PRESENTATION[1] hgfhdsgfkdfkjdfjd.pptx
KIT-601 Lecture Notes-UNIT-2.pdf
ScWk-242-Session-6-Slides---Intro-to-Qualitative-Research-and-SPSS.ppt
ScWk-242-Session-6-Slides---Intro-to-Qualitative-Research-and-SPSS.ppt
Data science
abdi research ppt.pptx
Spss software
pembuastasn multiVARIASTE YASNG ASKASN DIPSAKASI UNTUK PENELITIAN COBA CEK
Data Science Interview Questions PDF By ScholarHat

Recently uploaded (20)

PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
01-Introduction-to-Information-Management.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Insiders guide to clinical Medicine.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Classroom Observation Tools for Teachers
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
human mycosis Human fungal infections are called human mycosis..pptx
Complications of Minimal Access Surgery at WLH
Renaissance Architecture: A Journey from Faith to Humanism
Microbial diseases, their pathogenesis and prophylaxis
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Sports Quiz easy sports quiz sports quiz
Final Presentation General Medicine 03-08-2024.pptx
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Basic Mud Logging Guide for educational purpose
01-Introduction-to-Information-Management.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Insiders guide to clinical Medicine.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Classroom Observation Tools for Teachers
Anesthesia in Laparoscopic Surgery in India
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra

SPSS statistics - get help using SPSS

  • 1. Part 1: Descriptive Statistics PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
  • 2. Agenda Manipulating Data Selecting Cases Splitting the File Using Find and Replace Finding Data Replacing Data Reporting Copying and Pasting into Word Introduction Research Stages Opening PASW Creating a Data File Defining Variables Entering Data Running Descriptive Statistics Frequency Analysis Crosstabs
  • 3. What is PASW? Predictive Analytics Software
  • 4. What is Statistics? Statistics is a set of mathematical techniques used to: Summarize research data . Determine whether the data supports the researcher’s hypothesis.
  • 5. Research Stages Planning and Designing Data Collecting Data Analyzing Data Reporting
  • 6. Format of Questions Easy to enter Easy to construct Difficult to construct Difficult to enter Invalid responses What is your gender? a. Female b. Male What is your gender? ( _____________ ) Fixed Response Open-Ended Response e.g. PROs CONs
  • 7. Running Descriptive Statistics How to analyze data. Descriptive statistics are used for summarizing frequency or measures of central tendency. Are the most commonly used statistics.
  • 8. Frequency Analysis Frequency shows the number of occurrences. Also calculates measures of central tendency, such as the mean, median, mode, and others.
  • 9. Research Question #1 What kind of computer do people prefer to own?
  • 10. Crosstabs Crosstabs are used to examine the relationship between two variables. It shows the intersection between two variables and reveals how the two interact with each other.
  • 11. Research Question #2 What color do people prefer for their computer?
  • 12. Improving Your Survey What color do you like to have for your computer? 1. Beige 2. Black 3. Gray 4. White 5. Other _______
  • 13. Selecting Cases Filter out and specify which variable to use for analysis with the select cases function.
  • 14. Splitting the File The split file function is used to compare the responses or performance differences by groups within one variable.
  • 15. Research Question #3 Is computer color preference different between genders?
  • 16. Part 2: Test of Significance PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
  • 17. Purpose of This Workshop To show how PASW Statistics can help interpret results obtained from a sample and make inferences about the population . SAMPLE POPULATION Is it statistically significant?
  • 18. Agenda Using Null Hypothesis Running Tests of Significance Correlations Paired-Samples T Test Independent-Samples T Test Running Multiple Response Sets Frequency Crosstabs Merging Data Files
  • 19. A null hypothesis (H 0 ) is a statistical hypothesis that is tested for possible rejection under the assumption that it is true. The purpose of most statistical tests is to determine if the obtained results provide a reason to conclude whether or not the differences are the result of random chance. Rejection of H 0 leads to the alternative hypothesis H 1 . Null Hypothesis
  • 20. Null Hypothesis The significance level ( α ) sets the standard for how extreme data must be before rejecting the H 0 . To reject H 0 , data must meet a significance level ( α ) of 0.05. α = 0.05 means data would have occurred by chance at most 5% of the time.
  • 21. If p-value (sig.) ≤ α , then reject H 0 . Statistically significant If p-value (sig.) > α , then fail to reject H 0 . Statistically non-significant Hypothesis Testing Take note that the result is always stated in relation to the null hypothesis , not the alternate.
  • 22. Correlations No Relationship A correlation is a statistical device that measures the nature and strength of a supposed linear association between two variables. Y X Negative Relationship Y X Y X Positive Relationship
  • 23. Correlation Coefficient r = + 0.0 to 1.0 Direction Magnitude The strength of the linear relationship is determined by the distance of the correlation coefficient (r) from zero.
  • 24. Research Question #1 Is there a relationship between academic performance and Internet access? H 0 = Internet access made no difference H 1 = Internet access made a different
  • 25. Research Question #1 Is there a relationship between academic performance and Internet access?
  • 26. T test A T test may be used to compare two group means using either one of the following: Within-participants design (a Paired-Samples T Test) Between-participants design (an Independent-Samples T Test)
  • 27. Research Question #2 Is there an instructional effect taking place in the computer class? H 0 : Instruction made no difference H 1 : Instruction made a difference
  • 28. Research Question #3 Is there a difference in the average number of seedlings grown in the light and those grown in the dark?
  • 29. Independent-Samples T Test The first set of hypotheses is testing the variance, while the proceeding set is testing for the mean. The variances have to be equal before we can determine if the means are equal. H 0 : (µ (light) ≠ µ (dark) H 1 : (µ (light) ≠ µ (dark) H 0 : Variance (light) = variance (dark) H 1 : Variance (light) ≠ variance (dark)
  • 30. Research Question #3 Is there a difference in the average number of seedlings grown in the light and those grown in the dark? H 0 : No difference whether grown in the light or dark H 1 : A difference when grown in the light versus dark
  • 31. Running Multiple Response Sets Multiple response sets are used when respondents are allowed to select more than one answer in a single question. By running a frequency analysis, the result provides an overall raw frequency for each answer. Crosstabs can also be used to examine the relationship between the sets and other variables.
  • 33. Merging Data Files Useful for users who store each of their topics in separate files, and eventually need or want to combine them together. This allows users to import data from one file into another. Both sets of data (from each file) must contain a common identifier for each of the cases that the user wishes to combine. An identifier identifies the correlating cases from the additional data files.
  • 34. Part 3: Regression Analysis PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
  • 35. Purpose of This Workshop To show users how PASW Statistics can help in answering research questions or testing hypotheses by using regression. To provide users with step-by-step instructions on how to perform regression analyses with PASW Statistics.
  • 36. Agenda Using Simple Regression Scatter Plot Predicting Values of Dependent Variables Predicting This Year’s Sales Using Multiple Regression Predicting Values of Dependent Variables Predicting This Year’s Sales Transforming Data Computing Using Polynomial Regression Regression Analysis Editing Charts Adding a Line Manipulating X & Y Scales Adding a Title Adding Colors Background Color
  • 37. What Is Linear Regression? Linear: Straight line. Regression: Finds the model that minimizes the total variation in the data (i.e., the best fit). Linear Regression: Can be divided into two categories: Simple regression Multiple regression
  • 38. What Is Polynomial Regression? Polynomial: A finite length expression constructed from variables and constants. Polynomial Regression: A special type of multiple regression used to determine the relationship between data (e .g., growth rate, progression rate).
  • 39. Dependent and Independent Variables Variables can be classified into two categories: independent and dependent variables. An independent variable is a variable that influences the value of another variable. A dependent variable is a variable whose values are influenced by another variable. This is influence, not cause and effect.
  • 40. Scatter Plot Before performing regression, users need to determine whether a linear relationship exists between the two variables. A scatter plot allows users to examine the linear nature of the relationship between two variables. If the relationship does not seem to be linear, then the result may be a weak regression model.
  • 41. Scatter Plot Create a scatter plot to determine if a linear relationship exists between variables.
  • 42. Using Simple Regression Estimates the linear relationship between one dependent ( Y ) and one independent ( X ) variable. Linear Equation: Y = a X + b a : Slope of the line b : Constant (Y-intercept, where X=0) X : Independent variable Y : Dependent variable Since we already know the values of X and Y , what we are trying to do here is to estimate a (slope) and b (Y-intercept).
  • 43. Using Multiple Regression Estimates the coefficients of the linear equation, involving more than one independent variable. For example, users can predict a salesperson’s total annual sales (the dependent variable) based on independent variables, such as age, education, and years of experience.
  • 44. Using Multiple Regression Linear Equation: Z = a X + b Y + c a & b : Slope coefficients c : Constant (Y-intercept) X & Y : Independent variables Z : Dependent variable
  • 45. Computing Most data transformations can be done with the Compute command. Using this command, the data file can be manipulated to fit various statistical performances.
  • 46. Using Polynomial Regression Variable Meaning a Constant b j The coefficient for the independent variable to the j’th power e i Random error term
  • 47. Editing Charts Adding a Best Fit Line at Total
  • 48. Editing Charts – Manipulating Scales
  • 49. Editing Charts – Title and Gridlines
  • 50. Editing Charts – Adding Colors
  • 51. Part 4: Chi-Square and ANOVA PASW Statistics 17 (SPSS 17) ITS Training Program www.youtube.com/mycsula
  • 52. Purpose of This Workshop To show how PASW Statistics can help answer research questions or test hypotheses by using the Chi-Square test and ANOVA. To provide step-by-step instructions on how to perform the Chi-Square test and ANOVA with PASW Statistics. To show how to import and export data using Microsoft Excel and PowerPoint. To show how to use scripting in PASW Statistics.
  • 53. Agenda Using Chi-Square Test Testing for Goodness-of-Fit Using One-Way ANOVA Using Post Hoc Tests Using Two-Way ANOVA Importing/Exporting Excel Spreadsheets Using Scripting in PASW Statistics
  • 54. It analyzes data in order to examine if a frequency distribution for a given variable is consistent with expectations. Chi-Square test for Goodness-of-Fit test : estimates how closely an observed distribution matches an expected distribution. Using Chi-Square Test with Fixed Expected Values
  • 55. Weight Cases Before a Chi-Square test is run, weight cases should be used to identify and let PASW Statistics know what the observed values are.
  • 56. Using Chi-Square Test with a Contiguous Subset
  • 57. Using One-Way ANOVA ANOVA : An alysis O f Va riance. One-Way ANOVA can be thought of as a generalization of the pooled t test. Produces an analysis for a quantitative dependent variable affected by a single factor (independent variable). Instead of dealing with two populations, we have more than two populations or treatments.
  • 59. Using Post Hoc Tests The null hypothesis in ANOVA is rejected when there are some differences in μ 1 , μ 2 , …, μ x . But to know where specifically these differences are, the post hoc test is used.
  • 60. Using Post Hoc Tests LSD stands for List Squared Difference.
  • 61. Using Two-Way ANOVA A Two-Way Analysis of Variance procedure produces an analysis for a quantitative dependent variable affected by more than one factor. It also provides information about how variables interact or combine in the effect. Advantages: More efficient Helps increase statistical power of the result
  • 62. Importing/Exporting Data Data can be imported into PASW Statistics from an Excel spreadsheet. Data can be exported from PASW Statistics into an Excel spreadsheet, PowerPoint slides, etc.
  • 63. Using Scripting in PASW Statistics Used to capture commands that are used repeatedly. This function simplifies working with multiple analyses on a consistent basis. Can use different data files as long as the variables in the commands always have the same name.

Editor's Notes

  • #18: SPSS - Part 2
  • #25: H0 = Internet access made no difference on academic performance SPSS - Part 2
  • #26: H0 = Internet access made no difference on academic performance SPSS - Part 2