SlideShare a Scribd company logo
SQL Azure Database. Under the hood
    What, how and why Cloud is different

                  Kirill Bezpalyi, MSP, VNTU



                                12/25/2011
Что впереди?
       Осмотр сервиса
       Архитектура SQL Azure
       Отказоустойчивость
       Аппаратная организация
       Мониторинг
       Безопасность
       Итоги




    2                            12/25/2011
SQL Azure model
                  Each account has zero or more servers
    Account           Azure wide, provisioned in a common portal
                      Billing instrument

                  Each server has one or more databases
                      Zone for authentication: userId+password
                      Zone for administration and billing
     Server               Metadata about the databases and usage
                      Network access control based on client IP
                      Has unique DNS name and unit of geo-location
                  Each database has standard SQL objects
                      Unit of consistency and high availability
                       (autonomous replication)
    Database          Contains Users, Tables, Views, Indices, etc…
                      Most granular unit of usage reports
                      Three SKUs available (1GB, 10GB and 50GB)

3                                                  12/25/2011
SQL Azure Network Topology use standard SQL
                                 Applications
                                             Application               client libraries: ODBC,
                                                                       ADO.Net, PHP, …
                                                  Internet
                                                   Azure
                                                   Cloud

                                      TDS (tcp)
         Security Boundary                                         Load balancer forwards „sticky‟
                                                    LB             sessions to TDS protocol tier



    TDS (tcp)



                Gateway    Gateway     Gateway               Gateway       Gateway          Gateway

            Gateway: TDS protocol gateway, enforces AUTHN/AUTHZ policy; proxy to CloudDB
    TDS (tcp)


L                    SQL               SQL                      SQL                     SQL

            4                                                                  12/25/2011
            Scalability and Availability: Fabric, Failover, Replication, and Load balancing
Replication
   All reads are
    completed at
    the primary                            Ack
                                                      Read
                                                      Write
  Writes                                 Value
                                                                        Ack
   replicated to         Ack
   write quorum of
   replicas                        Ack            P           Ack
 Commit on
   secondaries                 S         Write        Write         S
   first then
   primary
                     S                    Write       Write                   S
 Each
   transaction has
   a commit
 5
   sequence                                           12/25/2011
   number (epoch,
Reconfiguration
       Types of reconfiguration
           Primary failover
           Removing a failed
            secondary                                   Failed
           Adding recovered replica
           Building a new secondary



                                       S
                       B                                          P


   Assumes                                                             S
                                      Failed
           Failure detector
           Leader election                  Safe in the presence
           Both services provided by         of cascading failures
            Fabric layer
    6                                                      12/25/2011
Partition Management
       Partition Manager (PM) is a highly available service
        running in the Master cluster
           Ensures all partitions are operational
           Places replicas across failure domains
            (rack/switch/server)
           Ensures all partitions have target replica count
           Balances the load across all the nodes
       Each node manages multiple partitions
       Global state maintained by the PM can be recreated
        from the local node state in event of disaster (GPM
        rebuild)

    7                                                  12/25/2011
System in Operation
                                             Primary master node
                                     SQL Server            Partition Manager
                                                       Partition
                                       Global                           Load Balancer
                                                      Managemen
                                      Partition            t
                                                           Partition Placement
                                        map
                                                                  Advisor
                                                            Leader
                                                                            Fabric
                                                            Elector




    Data Node            Data Node        Data Node        Data Node          Data Node          Data Node
       100                  101              102              103                104                105
       P                    S                 P                P                     S                P
       S                    S                 S                S                     S                S
       S                    P                 S                S                     S                S
       S                    S                 S                                                       S
                                              S
                Fabric
                                              Secondary        Primary        Secondary

8                                                                                        12/25/2011
SQL node Architecture
       Single physical DB for entire            Machine SQL
        node                                      Instance
       DB files and log shared                    master
        across every logical
        database/partition                         tempdb
           Allows better logging                    msdb
            throughput with sequential
            IO/group commits                      CloudNode
           No auto-growth on demand
            stalls                        DB1        DB2     master
           Uniform manageability and     DB5        DB1       DB7
            backup
       Each partition is a “silo” with   DB3        DB4      DB7
        its own independent schema
       Local SQL backup guards
        against software bugs
    9                                           12/25/2011
Recap
    Two kinds of nodes:
        Data nodes store application data
        Master nodes store cluster metadata
    Node failures are reliably detected
        On every node, SQL and Fabric processes monitor each
         other
        Fabric processes monitor each other across nodes
    Local failures cause nodes to fail-fast
    Failures cause reconfiguration and placement
     changes


    10                                         12/25/2011
Hardware Architecture
                       Each rack hosts 2 pods of
        L2 Switch       20 machines each
                       Each pod has a TOR mini-
                        switch
                           10GB uplink to L2 switch
                       Each SQL Azure machine
                        runs on commodity box
                       Example:
                           8 cores
                           32 GB RAM
                           1TB+ SATA drives
                           Programmable power
                           1Gb NIC
                       Machine spec changes as
                        hardware (pricing) evolves

11                                  12/25/2011
Hardware Challenges
SATA drives
 On-disk cache and lack of true "write through" results
  in Write Ahead Logging violations
        DB requires in-order writes to be honored
        Can force flush cache, but causes performance
         degradation
    Disk failures happen daily (at scale), fail-fast on
     those
        Bit-flips (enabled page checksums)
        Drives just disappear
        IOs are misdirected
    Faulty NIC
        Encountered message corruption
    12      Enabled message signing and checksums   12/25/2011
Software Deployment
    OS is automatically imaged via deployment
    All the services are setup using file copy
        Guarantees on which version is running
        Provides fast switch to new version
        Minimal global state allows running side by side
        Yes, that includes the SQL Server DB engine
    Rollout is monitored to ensure high availability
        Knowledge of replica state health ensure SLA is met
        Two phase rollouts for data or protocol changes
    Leverages internal Autopilot technologies with SQL
     Azure extensions

    13                                             12/25/2011
Software Challenges
    Lack of real-time OS features
        CPU priority
    High priority for Fabric lease traffic
        Page Faults/GC
    Locked pages for SQL and Fabric (in managed
     code)
    Fail fast or not?
        Yes, for corruption/AV
        No, for other issues unless centrally controlled
    What is really considered failed?
        Some failures are non-deterministic or hangs
        Multiple protocols / channels means partial failures too
    14                                              12/25/2011
Monitoring
    Health model w/repair actions
        Reboot -> Re-deploy -> Re-image (OS) -> RMA cycle
    Additional monitoring for SQL tier
        Connect / network probes
        Memory leaks / hung worker processes
        Database corruption detection
        Trace and performance stats capture
            Sourced from regular SQL trace and support mechanisms
            Stored locally and pushed to a global cluster wide store
            Global cluster used for service insight and problem tracking




    15                                                     12/25/2011
SQL Azure Login Process
                         7
                                                              1
                                      TDS Gateway
                                       Front-end Node
                      TDS Session           Protocol Parser
                                      6              2
                                            Gateway Logic


                                                                                  Global Partition Map

                                                                                         Master Node
                         8                                               3
                                                                                        Master Node
                                                                                        Components



                                                4                                   5

Backend Node 1                            Backend Node 2                          Backend Node 3
     SQL Instance                          SQL Instance                              SQL Instance
       SQL DB                                SQL DB                                    SQL DB




16          Scalability and and Availability: Fabric,Failover,Replication, and Load balancing
                 Scalability Availability: Fabric, Failover, Replication, and Load balancing
                                                                                    12/25/2011
Security/Attack Considerations
    Service
        Secure channel required (SSL)
        Denial Of Service trend tracking
        Packet Inspection
    Server
        IP allow list (Firewall)
        Idle connection culling
        Generated server names
    Database
        Disallow the most commonly attacked user id‟s (SA,
         Admin, root, guest, etc)
        Standard SQL Authn/Authz mode

    17                                           12/25/2011
Set up a server...




18                   12/25/2011
SQL Azure Compatibility

Currently Supported        Not Currently Supported

    Tables, indexes and      Data Types
     views                        Sparse Columns, Filestream
    Stored Procedures        Partitions
    Triggers                 Full-text indexes
    Constraints              SQL-CLR
    Table variables,
     session temp tables
     (#t)
    Spatial types,
     HierarchyId
    19                                      12/25/2011
Size Matters




20             12/25/2011
Pricing




21        12/25/2011
Summary
    Cloud is different
        Not a different place to host code
    SQL Azure IS SQL Server…a TDS endpoint
    Create DB‟s and manage using what we already
     know
    Considerations and futures paint exciting picture of
     what to expect looking forward
    Opportunities are great
        Customers want a utility approach to storage
        New businesses and abilities in scale, availability, etc
    But the price must be paid
        Which is a good thing, otherwise everyone would be
    22                                           12/25/2011
         doing it!
Materials
    SQL Azure
         http://www.microsoft.com/windowsazure/sqlazure/
        SQL Azure “under the hood”
         http://www.microsoftpdc.com/sessions/tags/sqlazure
    SQL Azure Fabric
         http://channel9.msdn.com/pdc2008/BB03/
    General Guidelines & Limitations
         http://msdn.microsoft.com/en-us/library/ee336245.aspx




    23                                            12/25/2011
Q&A

      Ask your questions…
24                12/25/2011
Your potential. Our passion.TM

More Related Content

PDF
Cassandra serving netflix @ scale
PDF
Building and running cloud native cassandra
PDF
Data Stores @ Netflix
PDF
How netflix manages petabyte scale apache cassandra in the cloud
PDF
Beginning Operations: 7 Deadly Sins for Apache Cassandra Ops
PDF
Live traffic capture and replay in cassandra 4.0
PDF
Looking towards an official cassandra sidecar netflix
PDF
Advanced Operations
Cassandra serving netflix @ scale
Building and running cloud native cassandra
Data Stores @ Netflix
How netflix manages petabyte scale apache cassandra in the cloud
Beginning Operations: 7 Deadly Sins for Apache Cassandra Ops
Live traffic capture and replay in cassandra 4.0
Looking towards an official cassandra sidecar netflix
Advanced Operations

What's hot (19)

PDF
Micro-batching: High-performance writes
PDF
Scylla Summit 2016: Analytics Show Time - Spark and Presto Powered by Scylla
PDF
AddThis: Scaling Cassandra up and down into containers with ZFS
PDF
Instaclustr Webinar 50,000 Transactions Per Second with Apache Spark on Apach...
PDF
Cassandra Summit 2014: Active-Active Cassandra Behind the Scenes
PDF
A glimpse of cassandra 4.0 features netflix
PDF
Instaclustr webinar 2017 feb 08 japan
PDF
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
PPTX
Cassandra Performance and Scalability on AWS
PDF
Cassandra CLuster Management by Japan Cassandra Community
PDF
Mesosphere and Contentteam: A New Way to Run Cassandra
PPTX
Cassandra EU 2012 - Netflix's Cassandra Architecture and Open Source Efforts
PPTX
Maintaining Consistency Across Data Centers (Randy Fradin, BlackRock) | Cassa...
PPTX
Performance tuning - A key to successful cassandra migration
PPTX
Arc305 how netflix leverages multiple regions to increase availability an i...
PDF
Suning OpenStack Cloud and Heat
PDF
Safer restarts, faster streaming, and better repair, just a glimpse of cassan...
PDF
Monitoring Cassandra at Scale (Jason Cacciatore, Netflix) | C* Summit 2016
PDF
Optimizing Your Cluster with Coordinator Nodes (Eric Lubow, SimpleReach) | Ca...
Micro-batching: High-performance writes
Scylla Summit 2016: Analytics Show Time - Spark and Presto Powered by Scylla
AddThis: Scaling Cassandra up and down into containers with ZFS
Instaclustr Webinar 50,000 Transactions Per Second with Apache Spark on Apach...
Cassandra Summit 2014: Active-Active Cassandra Behind the Scenes
A glimpse of cassandra 4.0 features netflix
Instaclustr webinar 2017 feb 08 japan
Micro-batching: High-performance Writes (Adam Zegelin, Instaclustr) | Cassand...
Cassandra Performance and Scalability on AWS
Cassandra CLuster Management by Japan Cassandra Community
Mesosphere and Contentteam: A New Way to Run Cassandra
Cassandra EU 2012 - Netflix's Cassandra Architecture and Open Source Efforts
Maintaining Consistency Across Data Centers (Randy Fradin, BlackRock) | Cassa...
Performance tuning - A key to successful cassandra migration
Arc305 how netflix leverages multiple regions to increase availability an i...
Suning OpenStack Cloud and Heat
Safer restarts, faster streaming, and better repair, just a glimpse of cassan...
Monitoring Cassandra at Scale (Jason Cacciatore, Netflix) | C* Summit 2016
Optimizing Your Cluster with Coordinator Nodes (Eric Lubow, SimpleReach) | Ca...
Ad

Viewers also liked (11)

PDF
Програми Microsoft для розробників та стартапів
PPTX
Освітні можливості Microsoft для ЗОШ та ВНЗ
PPTX
Безкоштовний хостинг від Microsoft
PPTX
What's new in c#7
PPTX
Чим займаються програмісти або як почати писати код
PPTX
Как начать путь в IT
PPTX
Windows 8
PPT
Тестування ПЗ
PPTX
Microsoft Azure для розробників та стартапів
PPTX
Освітні можливості при вивченні програмування у ЗОШ та ВНЗ
PPTX
Зачем SQL тестировщику и что ему нужно про него знать
Програми Microsoft для розробників та стартапів
Освітні можливості Microsoft для ЗОШ та ВНЗ
Безкоштовний хостинг від Microsoft
What's new in c#7
Чим займаються програмісти або як почати писати код
Как начать путь в IT
Windows 8
Тестування ПЗ
Microsoft Azure для розробників та стартапів
Освітні можливості при вивченні програмування у ЗОШ та ВНЗ
Зачем SQL тестировщику и что ему нужно про него знать
Ad

Similar to SQL Azure in deep (20)

PPTX
Sql azure introduction
PPTX
Inside Sql Azure - Cihan Biyikoglu - SQL Azure
PDF
Brief about Windows Azure Platform
PPTX
Windows Azure Üzerinden Alınabilecek Hizmetler
PPTX
Windows Azure Uzerinden Alinabilen Hizmetler
PDF
Windows Sql Azure Cloud Computing Platform
PDF
KoprowskiT_SQLSat152_Bulgaria_HighAvailabilityOfSQLintheContextOfSLA
PPTX
SQLBits X Scaling out with SQL Azure Federations
PDF
Choosing Your Windows Azure Platform Strategy
PPTX
Windows azure storage services
PPTX
Deep Dive and Best Practices for Windows Azure Storage Services
PPTX
Cистема распределенного, масштабируемого и высоконадежного хранения данных дл...
PDF
Adjust Carbon Topology to Match High Availability Scenario Requirements
PDF
Thinking outside the box, learning a little about a lot
PDF
Oracle rac 10g best practices
PPTX
Windows Azure Platform
PDF
Introduction to the SQL and Windows Azure Platform
PDF
DB2 Pure Scale Webcast
PPTX
Building applications using sql azure
PDF
1 Introduction at CloudStack Developer Day
Sql azure introduction
Inside Sql Azure - Cihan Biyikoglu - SQL Azure
Brief about Windows Azure Platform
Windows Azure Üzerinden Alınabilecek Hizmetler
Windows Azure Uzerinden Alinabilen Hizmetler
Windows Sql Azure Cloud Computing Platform
KoprowskiT_SQLSat152_Bulgaria_HighAvailabilityOfSQLintheContextOfSLA
SQLBits X Scaling out with SQL Azure Federations
Choosing Your Windows Azure Platform Strategy
Windows azure storage services
Deep Dive and Best Practices for Windows Azure Storage Services
Cистема распределенного, масштабируемого и высоконадежного хранения данных дл...
Adjust Carbon Topology to Match High Availability Scenario Requirements
Thinking outside the box, learning a little about a lot
Oracle rac 10g best practices
Windows Azure Platform
Introduction to the SQL and Windows Azure Platform
DB2 Pure Scale Webcast
Building applications using sql azure
1 Introduction at CloudStack Developer Day

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Machine learning based COVID-19 study performance prediction
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Advanced IT Governance
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
Big Data Technologies - Introduction.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Electronic commerce courselecture one. Pdf
PDF
GDG Cloud Iasi [PUBLIC] Florian Blaga - Unveiling the Evolution of Cybersecur...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Advanced methodologies resolving dimensionality complications for autism neur...
Network Security Unit 5.pdf for BCA BBA.
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Machine learning based COVID-19 study performance prediction
The AUB Centre for AI in Media Proposal.docx
Advanced IT Governance
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Big Data Technologies - Introduction.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
“AI and Expert System Decision Support & Business Intelligence Systems”
breach-and-attack-simulation-cybersecurity-india-chennai-defenderrabbit-2025....
NewMind AI Monthly Chronicles - July 2025
Spectral efficient network and resource selection model in 5G networks
Electronic commerce courselecture one. Pdf
GDG Cloud Iasi [PUBLIC] Florian Blaga - Unveiling the Evolution of Cybersecur...
Dropbox Q2 2025 Financial Results & Investor Presentation
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Mobile App Security Testing_ A Comprehensive Guide.pdf
Bridging biosciences and deep learning for revolutionary discoveries: a compr...

SQL Azure in deep

  • 1. SQL Azure Database. Under the hood What, how and why Cloud is different Kirill Bezpalyi, MSP, VNTU 12/25/2011
  • 2. Что впереди?  Осмотр сервиса  Архитектура SQL Azure  Отказоустойчивость  Аппаратная организация  Мониторинг  Безопасность  Итоги 2 12/25/2011
  • 3. SQL Azure model  Each account has zero or more servers Account  Azure wide, provisioned in a common portal  Billing instrument  Each server has one or more databases  Zone for authentication: userId+password  Zone for administration and billing Server  Metadata about the databases and usage  Network access control based on client IP  Has unique DNS name and unit of geo-location  Each database has standard SQL objects  Unit of consistency and high availability (autonomous replication) Database  Contains Users, Tables, Views, Indices, etc…  Most granular unit of usage reports  Three SKUs available (1GB, 10GB and 50GB) 3 12/25/2011
  • 4. SQL Azure Network Topology use standard SQL Applications Application client libraries: ODBC, ADO.Net, PHP, … Internet Azure Cloud TDS (tcp) Security Boundary Load balancer forwards „sticky‟ LB sessions to TDS protocol tier TDS (tcp) Gateway Gateway Gateway Gateway Gateway Gateway Gateway: TDS protocol gateway, enforces AUTHN/AUTHZ policy; proxy to CloudDB TDS (tcp) L SQL SQL SQL SQL 4 12/25/2011 Scalability and Availability: Fabric, Failover, Replication, and Load balancing
  • 5. Replication  All reads are completed at the primary Ack Read Write  Writes Value Ack replicated to Ack write quorum of replicas Ack P Ack  Commit on secondaries S Write Write S first then primary S Write Write S  Each transaction has a commit 5 sequence 12/25/2011 number (epoch,
  • 6. Reconfiguration  Types of reconfiguration  Primary failover  Removing a failed secondary Failed  Adding recovered replica  Building a new secondary S B P  Assumes S Failed  Failure detector  Leader election  Safe in the presence  Both services provided by of cascading failures Fabric layer 6 12/25/2011
  • 7. Partition Management  Partition Manager (PM) is a highly available service running in the Master cluster  Ensures all partitions are operational  Places replicas across failure domains (rack/switch/server)  Ensures all partitions have target replica count  Balances the load across all the nodes  Each node manages multiple partitions  Global state maintained by the PM can be recreated from the local node state in event of disaster (GPM rebuild) 7 12/25/2011
  • 8. System in Operation Primary master node SQL Server Partition Manager Partition Global Load Balancer Managemen Partition t Partition Placement map Advisor Leader Fabric Elector Data Node Data Node Data Node Data Node Data Node Data Node 100 101 102 103 104 105 P S P P S P S S S S S S S P S S S S S S S S S Fabric Secondary Primary Secondary 8 12/25/2011
  • 9. SQL node Architecture  Single physical DB for entire Machine SQL node Instance  DB files and log shared master across every logical database/partition tempdb  Allows better logging msdb throughput with sequential IO/group commits CloudNode  No auto-growth on demand stalls DB1 DB2 master  Uniform manageability and DB5 DB1 DB7 backup  Each partition is a “silo” with DB3 DB4 DB7 its own independent schema  Local SQL backup guards against software bugs 9 12/25/2011
  • 10. Recap  Two kinds of nodes:  Data nodes store application data  Master nodes store cluster metadata  Node failures are reliably detected  On every node, SQL and Fabric processes monitor each other  Fabric processes monitor each other across nodes  Local failures cause nodes to fail-fast  Failures cause reconfiguration and placement changes 10 12/25/2011
  • 11. Hardware Architecture  Each rack hosts 2 pods of L2 Switch 20 machines each  Each pod has a TOR mini- switch  10GB uplink to L2 switch  Each SQL Azure machine runs on commodity box  Example:  8 cores  32 GB RAM  1TB+ SATA drives  Programmable power  1Gb NIC  Machine spec changes as hardware (pricing) evolves 11 12/25/2011
  • 12. Hardware Challenges SATA drives  On-disk cache and lack of true "write through" results in Write Ahead Logging violations  DB requires in-order writes to be honored  Can force flush cache, but causes performance degradation  Disk failures happen daily (at scale), fail-fast on those  Bit-flips (enabled page checksums)  Drives just disappear  IOs are misdirected  Faulty NIC  Encountered message corruption 12  Enabled message signing and checksums 12/25/2011
  • 13. Software Deployment  OS is automatically imaged via deployment  All the services are setup using file copy  Guarantees on which version is running  Provides fast switch to new version  Minimal global state allows running side by side  Yes, that includes the SQL Server DB engine  Rollout is monitored to ensure high availability  Knowledge of replica state health ensure SLA is met  Two phase rollouts for data or protocol changes  Leverages internal Autopilot technologies with SQL Azure extensions 13 12/25/2011
  • 14. Software Challenges  Lack of real-time OS features  CPU priority  High priority for Fabric lease traffic  Page Faults/GC  Locked pages for SQL and Fabric (in managed code)  Fail fast or not?  Yes, for corruption/AV  No, for other issues unless centrally controlled  What is really considered failed?  Some failures are non-deterministic or hangs  Multiple protocols / channels means partial failures too 14 12/25/2011
  • 15. Monitoring  Health model w/repair actions  Reboot -> Re-deploy -> Re-image (OS) -> RMA cycle  Additional monitoring for SQL tier  Connect / network probes  Memory leaks / hung worker processes  Database corruption detection  Trace and performance stats capture  Sourced from regular SQL trace and support mechanisms  Stored locally and pushed to a global cluster wide store  Global cluster used for service insight and problem tracking 15 12/25/2011
  • 16. SQL Azure Login Process 7 1 TDS Gateway Front-end Node TDS Session Protocol Parser 6 2 Gateway Logic Global Partition Map Master Node 8 3 Master Node Components 4 5 Backend Node 1 Backend Node 2 Backend Node 3 SQL Instance SQL Instance SQL Instance SQL DB SQL DB SQL DB 16 Scalability and and Availability: Fabric,Failover,Replication, and Load balancing Scalability Availability: Fabric, Failover, Replication, and Load balancing 12/25/2011
  • 17. Security/Attack Considerations  Service  Secure channel required (SSL)  Denial Of Service trend tracking  Packet Inspection  Server  IP allow list (Firewall)  Idle connection culling  Generated server names  Database  Disallow the most commonly attacked user id‟s (SA, Admin, root, guest, etc)  Standard SQL Authn/Authz mode 17 12/25/2011
  • 18. Set up a server... 18 12/25/2011
  • 19. SQL Azure Compatibility Currently Supported Not Currently Supported  Tables, indexes and  Data Types views  Sparse Columns, Filestream  Stored Procedures  Partitions  Triggers  Full-text indexes  Constraints  SQL-CLR  Table variables, session temp tables (#t)  Spatial types, HierarchyId 19 12/25/2011
  • 20. Size Matters 20 12/25/2011
  • 21. Pricing 21 12/25/2011
  • 22. Summary  Cloud is different  Not a different place to host code  SQL Azure IS SQL Server…a TDS endpoint  Create DB‟s and manage using what we already know  Considerations and futures paint exciting picture of what to expect looking forward  Opportunities are great  Customers want a utility approach to storage  New businesses and abilities in scale, availability, etc  But the price must be paid  Which is a good thing, otherwise everyone would be 22 12/25/2011 doing it!
  • 23. Materials  SQL Azure  http://www.microsoft.com/windowsazure/sqlazure/  SQL Azure “under the hood”  http://www.microsoftpdc.com/sessions/tags/sqlazure  SQL Azure Fabric  http://channel9.msdn.com/pdc2008/BB03/  General Guidelines & Limitations  http://msdn.microsoft.com/en-us/library/ee336245.aspx 23 12/25/2011
  • 24. Q&A Ask your questions… 24 12/25/2011
  • 25. Your potential. Our passion.TM