SlideShare a Scribd company logo
#sqlsat871
SQL Server 2019 CTP 2.5
Gianluca Hotz
#sqlsat871
Sponsors
#sqlsat871
www.ugiss.org www.pass.orgwww.unica.it
Organizational Sponsors
#sqlsat871
Who am I?
Gianluca Hotz | @glhotz | ghotz@ugiss.org
Independent Consultant, Founder and Mentor SolidQ
20+ years on SQL Server (from 4.21 in 1996)
Database modeling and development, sizing and administration, upgrade and migration,
performance tuning
Interests
Relational model, DBMS architecture, Security, High Availability and Disaster Recovery
Community
20 years Microsoft MVP SQL Server (from 1998)
Founder and President UGISS
User Group Italiano SQL Server (PASS Chapter)
Configuration
#sqlsat871
Installation
Most new things in 2016/2017
Separate downloads
IFI and tempdb configuration
Linux
R and Python integration
Integration Services Scale-out
Polybase
#sqlsat871
PolyBase Java Connector for HDFS
#sqlsat871
SQL Server on Linux
Replication support
Snapshot, Transactional and Merge
Support for Microsoft Distributed Transaction Coordinator (MSDTC)
Always On Availability Group on Docker containers with Kubernetes
Kubernetes operator deploys StatefulSet including container with mssql-server
container and health monitor
OpenLDAP support for third-party AD providers
Machine Learning Services (In-Database) on Linux
New container registry
#sqlsat871
HA solution in Azure Kubernetes Service
#sqlsat871
Polybase
Data Virtualization
External Data Source
External Tables
SQL Server 2016+
Azure Blob Storage, Hadoop
SQL Server 2019
SQL Server (all flavors), Oracle, Teradata, MongoDB, CosmosDB
(Mongo API)
ODBC Generic Type (e.g. DB2, SAP Hana, Excel, …)
#sqlsat871
External Tables vs Linked Servers
External Tables
Database Scoped
ODBC Drivers
Read-only*
Scale out queries with push-down
Failover with AG
Basic authentication
Distributed Transactions not supported
Linked Servers
Instance Scoped
OLEDB Providers
Read/write
Single threaded queries with push-down
Requires separate config from AG
Basic and integrated authentication
Distributed Transactions supported
#sqlsat871
Polybase Scale-Out Groups
#sqlsat871
SQL Server 2019
Big Data Clusters (Preview)
Compute pool
SQL Compute
Node
SQL Compute
Node
SQL Compute
Node
…
Compute pool
SQL Compute
Node
IoT data
Directly
read from
HDFS
Persistent storage
…
Storage pool
SQL
Serve
r
Spark
HDFS Data Node
SQL
Serve
r
Spark
HDFS Data Node
SQL
Serve
r
Spark
HDFS Data Node
Kubernetes
pod
Analytics
Custom
apps BI
SQL Server
master instance
Node Node Node Node Node Node Node
SQL
Data mart
SQL Data
Node
SQL Data
Node
Compute pool
SQL Compute
Node
Storage Storage
#sqlsat871
Polybase in Big Data Cluster vs Stand-alone
Feature
Big data
cluster
Stand
alone
Create external data source for SQL Server, Oracle,
Teradata, and Mongo DB
X X
Create external data source using a compatible third-
party ODBC Driver
X
Create external data source for HADOOP data source X X
Create external data source for Azure Blob Storage X X
Create external table on a SQL Server data pool X
Create external table on a SQL Server storage pool X
Scale-out query execution X X
#sqlsat871
Other Services
Master Data Services
Silverlight controls replaced with HTML
SQL Server Machine Learning Services
Windows Server Failover Cluster support
Partition-Based modeling
Administration
#sqlsat871
Tools
SQL Server Management Studio V18
Azure Data Studio (was Operations Studio)
#sqlsat871
Resumable online index operations
Resume after failure (e.g. out of disk space)
Pause and resume later (e.g. free temporarily resources)
Manage large indexes using less log an shorter transactions
Fit rebuild operations into limited maintenance windows
REBUILD
WITH (ONLINE = ON, RESUMABLE = ON, MAX_DURATION = 30 MINUTES);
SQL Server 2017+ Resumable Index Rebuild
SQL Server 2019+ Resumable Index Create
#sqlsat871
Transparent Data Encryption
ALTER DATABASE … SET ENCRYPTION SUSPEND
ALTER DATABASE … SET ENCRYPTION RESUME
#sqlsat871
Columnstore Indexes
Online build/rebuild Clustered Columnstore
E.g. conversion from row-store to Columnstore
#sqlsat871
DBCC CLONEDATABASE
Instantaneous schema-only copy of a database for
troubleshooting
No data, full-schema, statistics and Query Store
Non-blocking
Read-only by default (can be changed)
Optionally NO_STATISTICS, NO_QUERYSTORE
SQL Server 2012 SP4, 2014 SP2 CU3, 2016 SP1, 2017
New in SQL Server 2019
Columnstore Statistics
#sqlsat871
Accelerated Database Recovery
Benefits
Fast and consistent database recovery
Number/size of active transactions don’t impact recovery time
Instantaneous transaction rollback
Active time and number of updates don’t impact rollback time
Aggressive Log Truncation
Even with long running transactions, prevents growing out of control
High level
Versioning all physical database modifications
Only logical operations undone (are limited and can be undone instantly)
Active transactions at crash time are marked as aborted
Any versions generated aborted transactions can be ignored user queries
Currently available in Preview in Azure SQL Database and CTP2.3+!
#sqlsat871
ADR Components
Persisted Version Store (PVS)
New version store, stored in the database instead of tempdb
Enable also resource isolation
Logical Revert
Asynchronous process performing row level version based undo
Keeps track of all aborted transactions
Performs rollback using PVS
Releases all locks immediately after transaction abort
sLog
Secondary log stream storing log records for non versioned operations
Low volume and in-memory
Serialized on disk during CHECKPOINT
Enables aggressive transaction log truncation
Cleaner
Asynchronous process that cleans page versions
#sqlsat871
Current database recovery process
#sqlsat871
Accelerated database recovery process
#sqlsat871
Improved diagnostic data for stats blocking
Query Waiting for synchronous update operations
Now sys.dm_exec_requests shows SELECT (STATMAN)
New WAIT_ON_SYNC_STATISTICS_REFRESH wait stat
#sqlsat871
Availability Groups Enhancements
More synchronous replicas
SQL Server 2012 4 replicas, 2 synchronous
SQL Server 2014 8 replicas, 2 synchronous
SQL Server 2017 8 replicas, 3 synchronous
SQL Server 2019 8 replicas, 5 synchronous
Secondary-to-primary read/write redirection
READ_WRITE_ROUTING_URL and ApplicationIntent=ReadWrite (default)
Killer feature to replace Listener
Cluster technology not offering listener-like features
Multi-subnet scenarios too complex to setup/maintain (e.g. Pacemaker)
Read scale-out or DR with cluster type NONE
#sqlsat871
Storage Class Memory / PMEM
Allows low latency I/O
memory-mapped memcpy-like operations in user mode
SQL Server 2016 SP1
NVDIMM-N for tail of the log caching
SQL Server 2019
PMEM devices Linux
support for data, log In-Memory OLTP checkpoint files placement
Hybrid Buffer Pool
Clean pages direct referenced on PMEM devices without copy
Dirty pages still kept in DRAM
#sqlsat871
Estimating Data Compression savings
sp_estimate_data_compression_savings
Returns specified object’s current size and estimates
SQL Server < 2019
ROW and PAGE compression
SQL Server 2019+
Adds COLUMNSTORE and COLUMNSTORE_ARCHIVE
compression
Object type determines Columnstore type
E.g. Heap -> Clustered, Clustered index -> Clustered
#sqlsat871
Query Profiling Infrastructure
Run-time information on query execution plans
E.g. live query statistics
Lightweight profiling
introduced in SQL Server 2014 SP2, 2016 SP1+
2% expected CPU overhead vs. 75%
SQL Server 2019+
Enabled by default
XEvents query_post_execution_plan_profile (vs query_post_execution_showplan)
DMF sys.dm_exec_query_plan_stats() last known *actual* execution plan
#sqlsat871
Internal database pages information
Undocumented DBCC PAGE
New in SQL Server 2019
sys.dm_db_page_info(DatabaseId, FileId, PageId, Mode)
page_resource column in sys.dm_exec_requests and sys.sysprocesses
sys.fn_PageResCracker(page_resource) to get db_id, file_id, page_id
#sqlsat871
Demo
Compression Savings
Internal Pages Information
Development
#sqlsat871
Truncation error messages
Error message 8152 too generic
String or binary data would be truncated
SQL Server 2019 introduces message 2628
String or binary data would be truncated in table '%.*ls',
column '%.*ls'. Truncated value: '%.*ls’
Enabled with Trace Flag 460
Opt-in required to avoid breaking parsing applications
#sqlsat871
Extensibility Framework
Secure external script execution
Scale/optimization opportunities
SQL Server integration (e.g. store procedures, PREDICT)
Language Support
SQL Server 2016+ Support for R
SQL Server 2017+ Support for Python
SQL Server 2019+ Support for Java
#sqlsat871
Extensibility Framework Components
Launchpad Service
One per SQL Server instance (with Machine Learning Services)
Provides security isolation
BxlServer
Manage communications between SQL Server and external processes
Binary Exchange Language data format
SQLSatellite
Extensibility API used by BxlServer
I/O data/arguments , error handling
#sqlsat871
Java Language extension
Leverages Extensibility Framework
Through sp_execute_external_script
Current support
On Windows version 1.10 (JRE 10, JDK 10)
On Linux version 1.8 (JRE 8, JDK 8)
#sqlsat871
UTF-8 Support
Full support for import/export, collations, replication, …
Still not for Linked Servers, In-Memory OLTP, External Table
(Polybase)
CHAR and VARCHAR support (Windows collations only)
UTF8 in collation names
E.g. LATIN1_GENERAL_100_CI_AS_SC_UTF8
Can provide storage savings
E.g. up to 50% from NCHAR(10) to CHAR(10) with UTF8 vs UTF16
#sqlsat871
SQL Graph enhancements
Derived tables and view support in MATCH queries
Set of nodes/edges using UNION ALL
Useful for heterogeneous entities or connections between them
MATCH support in MERGE
Edge Constraints
CONNECTION constraint
#sqlsat871
Demo
Java integration
Security
#sqlsat871
Certificate Management
Extended in SQL Server Configuration manager
View and validate certificates installed
View certificates close to expiration
Deploy Certificates across machine in Availability Groups
Deploy Certificates across machine in Failover Cluster Instances
#sqlsat871
SQL Data Discovery and Classification
SQL Server management Studio Tool (V17.5)
Discovery & Recommendations, Labeling, Reporting
Metadata con be persisted and queried
Based on Extended Properties
sys_information_type_name, sys_sensitivity_label_name
Support for SQL Server 2008+ and Azure SQL Database
#sqlsat871
SQL Server Sensitivity Classification
SQL Server 2019+
(already available in Azure SQL Database)
T-SQL command ADD|DROP SENSITIVITY CLASSIFICATION
applies to tables, columns
LABEL, LAtBEL_ID, INFORMATION_TYPE, INFORMATION_TYPE_ID
Metadata stored in sys.sensitivity_classifications
SQL Server Audit add column data_sensitivity_information
#sqlsat871
Data Discovery and Classification Demo
#sqlsat871
Always Encrypted with Secure Enclaves
Basic architecture as SQL Server 2016+ implementation
Now allows server-side computation on encrypted columns
In-Place Encryption (ALTER TABLE for initial encryption)
Rich computations (e.g. range comparisons, LIKE predicates, …)
Inside secure enclaves
Virtualization-based Security (VBS) secure memory enclaves
also known as Virtual Secure Mode(VSM) enclaves
Operation on plaintexts cannot be disclosed outside enclave
Column Master Keys sent over secure channel by client driver
Still some limitations (no indexing)
Performance optimizations pending…
#sqlsat871
Data Masking
Dynamic Data Masking
On the original database
Original data intact
On-the-fly at query time
Based on user permissions
Static Data Masking
On a copy of the database
Original data not retrievable
At storage level
Masked for everyone
#sqlsat871
Static Data Masking
Component of SQL Server Management Studio V18 Preview5+
Define per-column masking configuration
NULL, Single-Value, Shuffle, Group Shuffle, String Composite
Can save and load it
It’s basically a backup/restore and modify data according to config
No automation yet 
#sqlsat871
Static Data Masking Limitations
No temporal and memory-optimzed tables
No computed and identity columns
No geometry and geography types
Azure SQL Database Hyperscale service tier not supported
Statistics not updated
No cleanup in case of error
can leave sensitive data copies (backupset)
Data and log files may contain sensitive data
retrievable with hex editor
#sqlsat871
Demo
Data Classification
Performance
#sqlsat871
Intelligent Query Processing
Intelligent QP
Adaptive QP
Adaptive
Joins
Batch Mode
Interleaved
Execution
Memory
Grant
Feedback
Row Mode Batch Mode
Approximate
QP
Approximate
Count
Distinct
Table
Variable
Deferred
Compilation
Batch Mode
on Row Store
Scalar UD
Inlining
#sqlsat871
Execution Modes
Row Mode
Execution tree iterators consume 1 row at a time
Traditional execution mode for Rowstore
Batch Mode
Execution tree iterators consume a batch of rows at a time
Optimal with large scan operations (e.g. large table aggregates or joins)
SQL Server 2012 introduced to leverage Columnstore Indexes
SQL Server 2016/2017 extended usage scenarios for CI
SQL Server 2019 extended usage scenarios to Rowstore
#sqlsat871
Batch Mode on RowStore
Help reducing CPU Consumption
Columnstore still a better choice
for OLAP workload that is I/O bound
can’t always create it (e.g. impact on OLTP, features not supported)
Limitations
In-Memory tables not supported (only heaps & disk-based b-trees)
Not used when fetching/filtering LOB columns
(including sparse columns sets & XML)
#sqlsat871
Batch Mode on Rowstore Control
SQL Server < 2019
Some scenarios covered with tricks… (article part1, part2, part3)
SQL Server 2019+
Scenarios supported directly by Query Processor
On by default with database compatibility level 150+
ALTER DATABASE SCOPED CONFIGURATION
SET BATCH_MODE_ON_ROWSTORE = ON|OFF
OPTION (USE HINT ('ALLOW_BATCH_MODE’));
OPTION (USE HINT (‘DISALLOW_BATCH_MODE'));
#sqlsat871
Memory Grant
Excessive Grant
Too much memory allocated vs. memory used
Impact: blocking, out-of-memory, reduced concurrency
Poor Grant
Not enough memory allocated resulting in data spill to tempdb
Impact: slow query, excessive disk usage (tempdb)
Grant increase
dynamic grants increase allocation too much
impact: server instability, unpredictable performance
#sqlsat871
Memory Grant Feedback
Post-execution evaluation
Updates grant value for cached plan
E.g. more memory if spilled, less if excessive grant
Version support
SQL Server 2017+ Batch Mode
SQL Server 2019+ Row Mode
Plan caching
Not persistent (i.e. not save in Query Store)
OPTION(RECOMPILE) prevents caching and memory grant feedback
#sqlsat871
Memory Grant Feedback Control
Batch Mode
On by default with database compatibility level 140+
ALTER DATABASE SCOPED CONFIGURATION
SET BATCH_MODE_MEMORY_GRANT_FEEDBACK = ON|OFF
OPTION (USE HINT('DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK'));
Row Mode
On by default with database compatibility level 150+
ALTER DATABASE SCOPED CONFIGURATION
SET ROW_MODE_MEMORY_GRANT_FEEDBACK = ON|OFF
OPTION (USE HINT ('DISABLE_ROW_MODE_MEMORY_GRANT_FEEDBACK'));
#sqlsat871
Troubleshooting Memory Grant Feedback
Parameter sensitive scenarios
Some queries requires different plans with different grants
Memory grant feedback will disable itself when unstable
Extended Events to monitor changes
SQL Server 2017+ memory_grant_feedback_loop_disabled
SQL Server 2019+ memory_grant_updated_by_feedback
SQL Server 2019+ execution plan attributes
IsMemoryGrantFeedbackAdjusted
No: First Execution, Accurate Grant, Feedback disabled
Yes: Adjusting, Stable
LastRequestedMemory
#sqlsat871
Batch mode adaptive joins
Scenario
Nested loop algorithm better for small build join inputs
Hash algorithm better for bigger inputs
Adaptive joins defer choice after first input scanned
#sqlsat871
Interleaved Execution
Problem with multi-statement table valued functions
(MSTVFs)
SQL Server <= 2012 optimize with cardinality = 1
SQL Server 2014 & 2016 optimize with cardinality = 100
SQL Server >= 2017
Start optimization
Pause and executes MSTVFs if candidate
Resume optimization with correct cardinality
#sqlsat871
Table Variable vs Temporary Tables
Area Temporary Tables Table Variables
Manual statistics creation and update Yes No
Indexes Yes Only inline index definitions allowed
Constraints Yes Only PRIMARY KEY, UNIQUE and CHECK
Automatic statistics creation Yes No
Creating and using a temporary object in
a single batch
Compilation of a statement that
references a temporary table that doesn’t
exist is deferred until the first execution of
the statement
A statement that references a table
variable is compiled along with all other
statements before any statement that
populates the Table Variable is executed,
so compilation sees it as 1
#sqlsat871
Table Variable Deferred Compilation
Before SQL Server 2019
Statement referencing TV compiled before population
Number of row estimate fixed at 1
Starting with SQL Server 2019
Behaves like Temporary Tables
Statement referencing non existing TV is deferred until first execution
Number of row estimate much better
Control
On by default with database compatibility level 150+
ALTER DATABASE SCOPED CONFIGURATION
SET DEFERRED_COMPILATION_TV = ON|OFF
OPTION (USE HINT ('DISABLE_DEFERRED_COMPILATION_TV'));
#sqlsat871
Scalar UDF inlining
T-SQL user defined functions that returns a single data value
Performance problems
Iterative invocation
once per row, context switching especially with query execution
Lack of costing
before, only relational operators were costed, assumption to be cheap…
Interpreted execution
each statement executes in isolation, no cross-statement optimizations
Serial execution
Intra-query parallelism not allowed
#sqlsat871
Scalar UDF Automatic inlining
In SQL Server 2019 Scalar UDF automatically transformed into
Scalar Expressions
Scalar Subqueries
Optimize the whole plan (UDFs no longer visible)
Control
On by default with database compatibility level 150+
ALTER DATABASE SCOPED CONFIGURATION
SET TSQL_SCALAR_UDF_INLINING = ON|OFF
OPTION (USE HINT ('DISABLE_TSQL_SCALAR_UDF_INLINING'));
CREATE FUNCTION … WITH INLINE = ON | OFF
#sqlsat871
Scalar UDF inlining example
Query without UDF Query with UDF (no inlining) Query with UDF (inlining)
Execution time 1.6 seconds 29 minutes 11 seconds 1.6 seconds
CREATE FUNCTION dbo.discount_price(@price DECIMAL(12,2), @discount DECIMAL(12,2))
RETURNS DECIMAL (12,2) AS BEGIN RETURN @price * (1 - @discount); END
SELECT L_SHIPDATE, O_SHIPPRIORITY
, SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT))
FROM LINEITEM, ORDERS
WHERE O_ORDERKEY = L_ORDERKEY
GROUP BY L_SHIPDATE, O_SHIPPRIORITY
ORDER BY L_SHIPDATE
10GB CCI compressed TPC-H Schema, 2 x CPUs (12 cores), 96GB RAM, SSD storage
#sqlsat871
Scalar UDF inlining requirements
Written using the following constructs
DECLARE, SET (var declaration/assignments)
SELECT (single/multiple var assignments)
IF/ELSE (arbitrary nesting levels)
RETURN (single or multiple)
UDF nested/recursive function calls
Relational operations like EXISTS, ISNULL
No invocation of functions that are
time-dependent (GETDATE())
has side effects (NEWSEQUENTIALID())
Uses EXECUTE AS CALLER (default)
No table variables references
No table-valued parameters references
No user-defined types references
Not natively compiled
interop supported
Not a partition function
Not referenced in
GROUP BY clauses
computed columns
check constraints
No signatures added to it
#sqlsat871
Scalar UDF inlining troubleshoting
Column is_inlineable in sys.sql_modules
Doesn’t imply it will always be inlined! (e.g. 1000s lines of code)
Execution Plan
If inlined successfully, xml node <UserDefinedFunction> will be missing
Extended Events
tsql_scalar_udf_not_inlineable
#sqlsat871
APPROX_COUNT_DISTINCT
Returns approximate number of unique non-null values in groups
HyperLogLog algorithm guarantees
up to 2% error rate within 97% probability
Fast data exploration with low memory footprint
E.g. dashboards, trend analysis, feature selection, etc.
Think 10 billion rows,
1 user using 1,5GB memory vs 100 users using 12MBs
Tradeoff: precision, only scenarios where exact values are not necessary!
#sqlsat871
Demo
Scalar UDF inlining
APPROX_COUNT_DISTINCT
#sqlsat871
Ask your Questions
#sqlsat871
Thank you very much for attending
SQL Saturday Sardegna 2019!
#sqlsat871

More Related Content

PPTX
Le novità di sql server 2019
PDF
SQL Server Modernization
PDF
SQL Server 2019 ctp2.2
PPTX
Novedades SQL Server 2014
PDF
SQL Server 2019 CTP2.4
PDF
Introduction to SQL Server Analysis services 2008
PDF
Tech Ed North America 2014 - Java on Azure
PDF
Virtual Study Beta Exam 71-663 Exchange 2010 Designing And Deploying Messagin...
Le novità di sql server 2019
SQL Server Modernization
SQL Server 2019 ctp2.2
Novedades SQL Server 2014
SQL Server 2019 CTP2.4
Introduction to SQL Server Analysis services 2008
Tech Ed North America 2014 - Java on Azure
Virtual Study Beta Exam 71-663 Exchange 2010 Designing And Deploying Messagin...

What's hot (19)

PDF
Big App Workloads on Microsoft Azure - TechEd Europe 2014
PDF
Mongo db world 2014 nyc mongodb on azure - tips tricks and examples
PPTX
Sql Server 2014 In Memory
PDF
Always on in sql server 2017
PPTX
SQL Explore 2012: P&T Part 2
PDF
Tech ED 2014 Running Oracle Databases and Application Servers on Azurev1
PPTX
Microsoft Azure, My First IaaS
PDF
MySQL Performance - Best practices
PDF
KoprowskiT_SQLRelay2014#8_Birmingham_FromPlanToBackupToCloud
PPTX
SQL Server 2014 New Features (Sql Server 2014 Yenilikleri)
PDF
KoprowskiT_Session2_SDNEvent_SourceControlForDBA
PPTX
Nadzor sql a
PDF
Upgrade to MySQL 5.7 and latest news planned for MySQL 8
PPTX
SQL Server 2017 on Linux Introduction
PPTX
PASS VC: SQL Server Performance Monitoring and Baselining
PDF
KoprowskiT - SQLBITS X - 2am a disaster just began
PDF
01 upgrade to my sql8
PPTX
Mysql ecosystem in 2019
PDF
KoprowskiT_SQLAzureLandingInBelfast
Big App Workloads on Microsoft Azure - TechEd Europe 2014
Mongo db world 2014 nyc mongodb on azure - tips tricks and examples
Sql Server 2014 In Memory
Always on in sql server 2017
SQL Explore 2012: P&T Part 2
Tech ED 2014 Running Oracle Databases and Application Servers on Azurev1
Microsoft Azure, My First IaaS
MySQL Performance - Best practices
KoprowskiT_SQLRelay2014#8_Birmingham_FromPlanToBackupToCloud
SQL Server 2014 New Features (Sql Server 2014 Yenilikleri)
KoprowskiT_Session2_SDNEvent_SourceControlForDBA
Nadzor sql a
Upgrade to MySQL 5.7 and latest news planned for MySQL 8
SQL Server 2017 on Linux Introduction
PASS VC: SQL Server Performance Monitoring and Baselining
KoprowskiT - SQLBITS X - 2am a disaster just began
01 upgrade to my sql8
Mysql ecosystem in 2019
KoprowskiT_SQLAzureLandingInBelfast
Ad

Similar to SQL Server 2019 CTP 2.5 (20)

PPTX
TSQL in SQL Server 2012
PDF
Whats New Sql Server 2008 R2 Cw
PDF
Whats New Sql Server 2008 R2
PPTX
2° Ciclo Microsoft CRUI 3° Sessione: l'evoluzione delle piattaforme tecnologi...
PPTX
Novidades do SQL Server 2016
PPT
Saying goodbye to SQL Server 2000
PDF
SQLSaturday#290_Kiev_AdHocMaintenancePlansForBeginners
PPTX
Enhancements that will make your sql database roar sp1 edition sql bits 2017
PPTX
Introduction to microsoft sql server 2008 r2
PDF
Optimiser votre infrastructure SQL Server avec Azure
PDF
In-memory ColumnStore Index
PPTX
Copy Data Management for the DBA
PPT
SQL Server 2008 Integration Services
PPTX
Azure Data platform
PDF
SQLSaturday#290_Kiev_WindowsAzureDatabaseForBeginners
PDF
SQL Server database engine 2017 enhancements
PPTX
SQL Server 2017 - Mejoras Impulsadas por la Comunidad
PDF
Automatic upgrade and new error logging in my sql 8.0 oct
PDF
Be05 introduction to sql azure
PPTX
JoTechies - Azure SQL DB
TSQL in SQL Server 2012
Whats New Sql Server 2008 R2 Cw
Whats New Sql Server 2008 R2
2° Ciclo Microsoft CRUI 3° Sessione: l'evoluzione delle piattaforme tecnologi...
Novidades do SQL Server 2016
Saying goodbye to SQL Server 2000
SQLSaturday#290_Kiev_AdHocMaintenancePlansForBeginners
Enhancements that will make your sql database roar sp1 edition sql bits 2017
Introduction to microsoft sql server 2008 r2
Optimiser votre infrastructure SQL Server avec Azure
In-memory ColumnStore Index
Copy Data Management for the DBA
SQL Server 2008 Integration Services
Azure Data platform
SQLSaturday#290_Kiev_WindowsAzureDatabaseForBeginners
SQL Server database engine 2017 enhancements
SQL Server 2017 - Mejoras Impulsadas por la Comunidad
Automatic upgrade and new error logging in my sql 8.0 oct
Be05 introduction to sql azure
JoTechies - Azure SQL DB
Ad

More from Gianluca Hotz (20)

PPTX
Multitenancy con SQL Server e Azure SQL Database
PPTX
Microsoft SQL Server PaaS (Platform as a Service)
PPTX
SQL Server 2022 Programmability & Performance
PDF
SQL Server 2022 Intelligent Query Processing
PDF
Le novità di SQL Server 2022
PDF
IaaS and PaaS relational databases in the cloud
PDF
Data Integrity with SQL Database Ledger
PDF
Azure SQL Database Ledger
PDF
Come utilizzare AWS DMS per migrare SQL Server ad Amazon Aurora
PDF
Best Practices for Running Microsoft SQL Server on AWS
PDF
SQL Server in AWS
PDF
Come utilizzare AWS Database Migration Service per migrare SQL Server ad Amaz...
PDF
Azure SQL Database Ledger
PDF
SQL Server Modern Query Processing
PDF
SQL Server in AWS
PDF
SQL Server Failover Cluster Instances con Azure Managed Disks
PDF
SQL Server Back to Basics: Sicurezza
PDF
SQL Server Failover Cluster Instances con Amazon FSx in AWS
PDF
SQL Server Data Virtualization with polybase
PDF
SQL Server Data Virtualization with Polybase
Multitenancy con SQL Server e Azure SQL Database
Microsoft SQL Server PaaS (Platform as a Service)
SQL Server 2022 Programmability & Performance
SQL Server 2022 Intelligent Query Processing
Le novità di SQL Server 2022
IaaS and PaaS relational databases in the cloud
Data Integrity with SQL Database Ledger
Azure SQL Database Ledger
Come utilizzare AWS DMS per migrare SQL Server ad Amazon Aurora
Best Practices for Running Microsoft SQL Server on AWS
SQL Server in AWS
Come utilizzare AWS Database Migration Service per migrare SQL Server ad Amaz...
Azure SQL Database Ledger
SQL Server Modern Query Processing
SQL Server in AWS
SQL Server Failover Cluster Instances con Azure Managed Disks
SQL Server Back to Basics: Sicurezza
SQL Server Failover Cluster Instances con Amazon FSx in AWS
SQL Server Data Virtualization with polybase
SQL Server Data Virtualization with Polybase

Recently uploaded (20)

PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
Business Analytics and business intelligence.pdf
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPT
ISS -ESG Data flows What is ESG and HowHow
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
IB Computer Science - Internal Assessment.pptx
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
Introduction to Knowledge Engineering Part 1
PPT
Quality review (1)_presentation of this 21
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PDF
Mega Projects Data Mega Projects Data
PPTX
Introduction to machine learning and Linear Models
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Introduction-to-Cloud-ComputingFinal.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Business Analytics and business intelligence.pdf
Fluorescence-microscope_Botany_detailed content
climate analysis of Dhaka ,Banglades.pptx
Acceptance and paychological effects of mandatory extra coach I classes.pptx
ISS -ESG Data flows What is ESG and HowHow
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Business Ppt On Nestle.pptx huunnnhhgfvu
IB Computer Science - Internal Assessment.pptx
.pdf is not working space design for the following data for the following dat...
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Reliability_Chapter_ presentation 1221.5784
Introduction to Knowledge Engineering Part 1
Quality review (1)_presentation of this 21
Business Acumen Training GuidePresentation.pptx
Supervised vs unsupervised machine learning algorithms
Mega Projects Data Mega Projects Data
Introduction to machine learning and Linear Models
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx

SQL Server 2019 CTP 2.5

  • 1. #sqlsat871 SQL Server 2019 CTP 2.5 Gianluca Hotz
  • 4. #sqlsat871 Who am I? Gianluca Hotz | @glhotz | ghotz@ugiss.org Independent Consultant, Founder and Mentor SolidQ 20+ years on SQL Server (from 4.21 in 1996) Database modeling and development, sizing and administration, upgrade and migration, performance tuning Interests Relational model, DBMS architecture, Security, High Availability and Disaster Recovery Community 20 years Microsoft MVP SQL Server (from 1998) Founder and President UGISS User Group Italiano SQL Server (PASS Chapter)
  • 6. #sqlsat871 Installation Most new things in 2016/2017 Separate downloads IFI and tempdb configuration Linux R and Python integration Integration Services Scale-out Polybase
  • 8. #sqlsat871 SQL Server on Linux Replication support Snapshot, Transactional and Merge Support for Microsoft Distributed Transaction Coordinator (MSDTC) Always On Availability Group on Docker containers with Kubernetes Kubernetes operator deploys StatefulSet including container with mssql-server container and health monitor OpenLDAP support for third-party AD providers Machine Learning Services (In-Database) on Linux New container registry
  • 9. #sqlsat871 HA solution in Azure Kubernetes Service
  • 10. #sqlsat871 Polybase Data Virtualization External Data Source External Tables SQL Server 2016+ Azure Blob Storage, Hadoop SQL Server 2019 SQL Server (all flavors), Oracle, Teradata, MongoDB, CosmosDB (Mongo API) ODBC Generic Type (e.g. DB2, SAP Hana, Excel, …)
  • 11. #sqlsat871 External Tables vs Linked Servers External Tables Database Scoped ODBC Drivers Read-only* Scale out queries with push-down Failover with AG Basic authentication Distributed Transactions not supported Linked Servers Instance Scoped OLEDB Providers Read/write Single threaded queries with push-down Requires separate config from AG Basic and integrated authentication Distributed Transactions supported
  • 13. #sqlsat871 SQL Server 2019 Big Data Clusters (Preview) Compute pool SQL Compute Node SQL Compute Node SQL Compute Node … Compute pool SQL Compute Node IoT data Directly read from HDFS Persistent storage … Storage pool SQL Serve r Spark HDFS Data Node SQL Serve r Spark HDFS Data Node SQL Serve r Spark HDFS Data Node Kubernetes pod Analytics Custom apps BI SQL Server master instance Node Node Node Node Node Node Node SQL Data mart SQL Data Node SQL Data Node Compute pool SQL Compute Node Storage Storage
  • 14. #sqlsat871 Polybase in Big Data Cluster vs Stand-alone Feature Big data cluster Stand alone Create external data source for SQL Server, Oracle, Teradata, and Mongo DB X X Create external data source using a compatible third- party ODBC Driver X Create external data source for HADOOP data source X X Create external data source for Azure Blob Storage X X Create external table on a SQL Server data pool X Create external table on a SQL Server storage pool X Scale-out query execution X X
  • 15. #sqlsat871 Other Services Master Data Services Silverlight controls replaced with HTML SQL Server Machine Learning Services Windows Server Failover Cluster support Partition-Based modeling
  • 17. #sqlsat871 Tools SQL Server Management Studio V18 Azure Data Studio (was Operations Studio)
  • 18. #sqlsat871 Resumable online index operations Resume after failure (e.g. out of disk space) Pause and resume later (e.g. free temporarily resources) Manage large indexes using less log an shorter transactions Fit rebuild operations into limited maintenance windows REBUILD WITH (ONLINE = ON, RESUMABLE = ON, MAX_DURATION = 30 MINUTES); SQL Server 2017+ Resumable Index Rebuild SQL Server 2019+ Resumable Index Create
  • 19. #sqlsat871 Transparent Data Encryption ALTER DATABASE … SET ENCRYPTION SUSPEND ALTER DATABASE … SET ENCRYPTION RESUME
  • 20. #sqlsat871 Columnstore Indexes Online build/rebuild Clustered Columnstore E.g. conversion from row-store to Columnstore
  • 21. #sqlsat871 DBCC CLONEDATABASE Instantaneous schema-only copy of a database for troubleshooting No data, full-schema, statistics and Query Store Non-blocking Read-only by default (can be changed) Optionally NO_STATISTICS, NO_QUERYSTORE SQL Server 2012 SP4, 2014 SP2 CU3, 2016 SP1, 2017 New in SQL Server 2019 Columnstore Statistics
  • 22. #sqlsat871 Accelerated Database Recovery Benefits Fast and consistent database recovery Number/size of active transactions don’t impact recovery time Instantaneous transaction rollback Active time and number of updates don’t impact rollback time Aggressive Log Truncation Even with long running transactions, prevents growing out of control High level Versioning all physical database modifications Only logical operations undone (are limited and can be undone instantly) Active transactions at crash time are marked as aborted Any versions generated aborted transactions can be ignored user queries Currently available in Preview in Azure SQL Database and CTP2.3+!
  • 23. #sqlsat871 ADR Components Persisted Version Store (PVS) New version store, stored in the database instead of tempdb Enable also resource isolation Logical Revert Asynchronous process performing row level version based undo Keeps track of all aborted transactions Performs rollback using PVS Releases all locks immediately after transaction abort sLog Secondary log stream storing log records for non versioned operations Low volume and in-memory Serialized on disk during CHECKPOINT Enables aggressive transaction log truncation Cleaner Asynchronous process that cleans page versions
  • 26. #sqlsat871 Improved diagnostic data for stats blocking Query Waiting for synchronous update operations Now sys.dm_exec_requests shows SELECT (STATMAN) New WAIT_ON_SYNC_STATISTICS_REFRESH wait stat
  • 27. #sqlsat871 Availability Groups Enhancements More synchronous replicas SQL Server 2012 4 replicas, 2 synchronous SQL Server 2014 8 replicas, 2 synchronous SQL Server 2017 8 replicas, 3 synchronous SQL Server 2019 8 replicas, 5 synchronous Secondary-to-primary read/write redirection READ_WRITE_ROUTING_URL and ApplicationIntent=ReadWrite (default) Killer feature to replace Listener Cluster technology not offering listener-like features Multi-subnet scenarios too complex to setup/maintain (e.g. Pacemaker) Read scale-out or DR with cluster type NONE
  • 28. #sqlsat871 Storage Class Memory / PMEM Allows low latency I/O memory-mapped memcpy-like operations in user mode SQL Server 2016 SP1 NVDIMM-N for tail of the log caching SQL Server 2019 PMEM devices Linux support for data, log In-Memory OLTP checkpoint files placement Hybrid Buffer Pool Clean pages direct referenced on PMEM devices without copy Dirty pages still kept in DRAM
  • 29. #sqlsat871 Estimating Data Compression savings sp_estimate_data_compression_savings Returns specified object’s current size and estimates SQL Server < 2019 ROW and PAGE compression SQL Server 2019+ Adds COLUMNSTORE and COLUMNSTORE_ARCHIVE compression Object type determines Columnstore type E.g. Heap -> Clustered, Clustered index -> Clustered
  • 30. #sqlsat871 Query Profiling Infrastructure Run-time information on query execution plans E.g. live query statistics Lightweight profiling introduced in SQL Server 2014 SP2, 2016 SP1+ 2% expected CPU overhead vs. 75% SQL Server 2019+ Enabled by default XEvents query_post_execution_plan_profile (vs query_post_execution_showplan) DMF sys.dm_exec_query_plan_stats() last known *actual* execution plan
  • 31. #sqlsat871 Internal database pages information Undocumented DBCC PAGE New in SQL Server 2019 sys.dm_db_page_info(DatabaseId, FileId, PageId, Mode) page_resource column in sys.dm_exec_requests and sys.sysprocesses sys.fn_PageResCracker(page_resource) to get db_id, file_id, page_id
  • 34. #sqlsat871 Truncation error messages Error message 8152 too generic String or binary data would be truncated SQL Server 2019 introduces message 2628 String or binary data would be truncated in table '%.*ls', column '%.*ls'. Truncated value: '%.*ls’ Enabled with Trace Flag 460 Opt-in required to avoid breaking parsing applications
  • 35. #sqlsat871 Extensibility Framework Secure external script execution Scale/optimization opportunities SQL Server integration (e.g. store procedures, PREDICT) Language Support SQL Server 2016+ Support for R SQL Server 2017+ Support for Python SQL Server 2019+ Support for Java
  • 36. #sqlsat871 Extensibility Framework Components Launchpad Service One per SQL Server instance (with Machine Learning Services) Provides security isolation BxlServer Manage communications between SQL Server and external processes Binary Exchange Language data format SQLSatellite Extensibility API used by BxlServer I/O data/arguments , error handling
  • 37. #sqlsat871 Java Language extension Leverages Extensibility Framework Through sp_execute_external_script Current support On Windows version 1.10 (JRE 10, JDK 10) On Linux version 1.8 (JRE 8, JDK 8)
  • 38. #sqlsat871 UTF-8 Support Full support for import/export, collations, replication, … Still not for Linked Servers, In-Memory OLTP, External Table (Polybase) CHAR and VARCHAR support (Windows collations only) UTF8 in collation names E.g. LATIN1_GENERAL_100_CI_AS_SC_UTF8 Can provide storage savings E.g. up to 50% from NCHAR(10) to CHAR(10) with UTF8 vs UTF16
  • 39. #sqlsat871 SQL Graph enhancements Derived tables and view support in MATCH queries Set of nodes/edges using UNION ALL Useful for heterogeneous entities or connections between them MATCH support in MERGE Edge Constraints CONNECTION constraint
  • 42. #sqlsat871 Certificate Management Extended in SQL Server Configuration manager View and validate certificates installed View certificates close to expiration Deploy Certificates across machine in Availability Groups Deploy Certificates across machine in Failover Cluster Instances
  • 43. #sqlsat871 SQL Data Discovery and Classification SQL Server management Studio Tool (V17.5) Discovery & Recommendations, Labeling, Reporting Metadata con be persisted and queried Based on Extended Properties sys_information_type_name, sys_sensitivity_label_name Support for SQL Server 2008+ and Azure SQL Database
  • 44. #sqlsat871 SQL Server Sensitivity Classification SQL Server 2019+ (already available in Azure SQL Database) T-SQL command ADD|DROP SENSITIVITY CLASSIFICATION applies to tables, columns LABEL, LAtBEL_ID, INFORMATION_TYPE, INFORMATION_TYPE_ID Metadata stored in sys.sensitivity_classifications SQL Server Audit add column data_sensitivity_information
  • 45. #sqlsat871 Data Discovery and Classification Demo
  • 46. #sqlsat871 Always Encrypted with Secure Enclaves Basic architecture as SQL Server 2016+ implementation Now allows server-side computation on encrypted columns In-Place Encryption (ALTER TABLE for initial encryption) Rich computations (e.g. range comparisons, LIKE predicates, …) Inside secure enclaves Virtualization-based Security (VBS) secure memory enclaves also known as Virtual Secure Mode(VSM) enclaves Operation on plaintexts cannot be disclosed outside enclave Column Master Keys sent over secure channel by client driver Still some limitations (no indexing) Performance optimizations pending…
  • 47. #sqlsat871 Data Masking Dynamic Data Masking On the original database Original data intact On-the-fly at query time Based on user permissions Static Data Masking On a copy of the database Original data not retrievable At storage level Masked for everyone
  • 48. #sqlsat871 Static Data Masking Component of SQL Server Management Studio V18 Preview5+ Define per-column masking configuration NULL, Single-Value, Shuffle, Group Shuffle, String Composite Can save and load it It’s basically a backup/restore and modify data according to config No automation yet 
  • 49. #sqlsat871 Static Data Masking Limitations No temporal and memory-optimzed tables No computed and identity columns No geometry and geography types Azure SQL Database Hyperscale service tier not supported Statistics not updated No cleanup in case of error can leave sensitive data copies (backupset) Data and log files may contain sensitive data retrievable with hex editor
  • 52. #sqlsat871 Intelligent Query Processing Intelligent QP Adaptive QP Adaptive Joins Batch Mode Interleaved Execution Memory Grant Feedback Row Mode Batch Mode Approximate QP Approximate Count Distinct Table Variable Deferred Compilation Batch Mode on Row Store Scalar UD Inlining
  • 53. #sqlsat871 Execution Modes Row Mode Execution tree iterators consume 1 row at a time Traditional execution mode for Rowstore Batch Mode Execution tree iterators consume a batch of rows at a time Optimal with large scan operations (e.g. large table aggregates or joins) SQL Server 2012 introduced to leverage Columnstore Indexes SQL Server 2016/2017 extended usage scenarios for CI SQL Server 2019 extended usage scenarios to Rowstore
  • 54. #sqlsat871 Batch Mode on RowStore Help reducing CPU Consumption Columnstore still a better choice for OLAP workload that is I/O bound can’t always create it (e.g. impact on OLTP, features not supported) Limitations In-Memory tables not supported (only heaps & disk-based b-trees) Not used when fetching/filtering LOB columns (including sparse columns sets & XML)
  • 55. #sqlsat871 Batch Mode on Rowstore Control SQL Server < 2019 Some scenarios covered with tricks… (article part1, part2, part3) SQL Server 2019+ Scenarios supported directly by Query Processor On by default with database compatibility level 150+ ALTER DATABASE SCOPED CONFIGURATION SET BATCH_MODE_ON_ROWSTORE = ON|OFF OPTION (USE HINT ('ALLOW_BATCH_MODE’)); OPTION (USE HINT (‘DISALLOW_BATCH_MODE'));
  • 56. #sqlsat871 Memory Grant Excessive Grant Too much memory allocated vs. memory used Impact: blocking, out-of-memory, reduced concurrency Poor Grant Not enough memory allocated resulting in data spill to tempdb Impact: slow query, excessive disk usage (tempdb) Grant increase dynamic grants increase allocation too much impact: server instability, unpredictable performance
  • 57. #sqlsat871 Memory Grant Feedback Post-execution evaluation Updates grant value for cached plan E.g. more memory if spilled, less if excessive grant Version support SQL Server 2017+ Batch Mode SQL Server 2019+ Row Mode Plan caching Not persistent (i.e. not save in Query Store) OPTION(RECOMPILE) prevents caching and memory grant feedback
  • 58. #sqlsat871 Memory Grant Feedback Control Batch Mode On by default with database compatibility level 140+ ALTER DATABASE SCOPED CONFIGURATION SET BATCH_MODE_MEMORY_GRANT_FEEDBACK = ON|OFF OPTION (USE HINT('DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK')); Row Mode On by default with database compatibility level 150+ ALTER DATABASE SCOPED CONFIGURATION SET ROW_MODE_MEMORY_GRANT_FEEDBACK = ON|OFF OPTION (USE HINT ('DISABLE_ROW_MODE_MEMORY_GRANT_FEEDBACK'));
  • 59. #sqlsat871 Troubleshooting Memory Grant Feedback Parameter sensitive scenarios Some queries requires different plans with different grants Memory grant feedback will disable itself when unstable Extended Events to monitor changes SQL Server 2017+ memory_grant_feedback_loop_disabled SQL Server 2019+ memory_grant_updated_by_feedback SQL Server 2019+ execution plan attributes IsMemoryGrantFeedbackAdjusted No: First Execution, Accurate Grant, Feedback disabled Yes: Adjusting, Stable LastRequestedMemory
  • 60. #sqlsat871 Batch mode adaptive joins Scenario Nested loop algorithm better for small build join inputs Hash algorithm better for bigger inputs Adaptive joins defer choice after first input scanned
  • 61. #sqlsat871 Interleaved Execution Problem with multi-statement table valued functions (MSTVFs) SQL Server <= 2012 optimize with cardinality = 1 SQL Server 2014 & 2016 optimize with cardinality = 100 SQL Server >= 2017 Start optimization Pause and executes MSTVFs if candidate Resume optimization with correct cardinality
  • 62. #sqlsat871 Table Variable vs Temporary Tables Area Temporary Tables Table Variables Manual statistics creation and update Yes No Indexes Yes Only inline index definitions allowed Constraints Yes Only PRIMARY KEY, UNIQUE and CHECK Automatic statistics creation Yes No Creating and using a temporary object in a single batch Compilation of a statement that references a temporary table that doesn’t exist is deferred until the first execution of the statement A statement that references a table variable is compiled along with all other statements before any statement that populates the Table Variable is executed, so compilation sees it as 1
  • 63. #sqlsat871 Table Variable Deferred Compilation Before SQL Server 2019 Statement referencing TV compiled before population Number of row estimate fixed at 1 Starting with SQL Server 2019 Behaves like Temporary Tables Statement referencing non existing TV is deferred until first execution Number of row estimate much better Control On by default with database compatibility level 150+ ALTER DATABASE SCOPED CONFIGURATION SET DEFERRED_COMPILATION_TV = ON|OFF OPTION (USE HINT ('DISABLE_DEFERRED_COMPILATION_TV'));
  • 64. #sqlsat871 Scalar UDF inlining T-SQL user defined functions that returns a single data value Performance problems Iterative invocation once per row, context switching especially with query execution Lack of costing before, only relational operators were costed, assumption to be cheap… Interpreted execution each statement executes in isolation, no cross-statement optimizations Serial execution Intra-query parallelism not allowed
  • 65. #sqlsat871 Scalar UDF Automatic inlining In SQL Server 2019 Scalar UDF automatically transformed into Scalar Expressions Scalar Subqueries Optimize the whole plan (UDFs no longer visible) Control On by default with database compatibility level 150+ ALTER DATABASE SCOPED CONFIGURATION SET TSQL_SCALAR_UDF_INLINING = ON|OFF OPTION (USE HINT ('DISABLE_TSQL_SCALAR_UDF_INLINING')); CREATE FUNCTION … WITH INLINE = ON | OFF
  • 66. #sqlsat871 Scalar UDF inlining example Query without UDF Query with UDF (no inlining) Query with UDF (inlining) Execution time 1.6 seconds 29 minutes 11 seconds 1.6 seconds CREATE FUNCTION dbo.discount_price(@price DECIMAL(12,2), @discount DECIMAL(12,2)) RETURNS DECIMAL (12,2) AS BEGIN RETURN @price * (1 - @discount); END SELECT L_SHIPDATE, O_SHIPPRIORITY , SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT)) FROM LINEITEM, ORDERS WHERE O_ORDERKEY = L_ORDERKEY GROUP BY L_SHIPDATE, O_SHIPPRIORITY ORDER BY L_SHIPDATE 10GB CCI compressed TPC-H Schema, 2 x CPUs (12 cores), 96GB RAM, SSD storage
  • 67. #sqlsat871 Scalar UDF inlining requirements Written using the following constructs DECLARE, SET (var declaration/assignments) SELECT (single/multiple var assignments) IF/ELSE (arbitrary nesting levels) RETURN (single or multiple) UDF nested/recursive function calls Relational operations like EXISTS, ISNULL No invocation of functions that are time-dependent (GETDATE()) has side effects (NEWSEQUENTIALID()) Uses EXECUTE AS CALLER (default) No table variables references No table-valued parameters references No user-defined types references Not natively compiled interop supported Not a partition function Not referenced in GROUP BY clauses computed columns check constraints No signatures added to it
  • 68. #sqlsat871 Scalar UDF inlining troubleshoting Column is_inlineable in sys.sql_modules Doesn’t imply it will always be inlined! (e.g. 1000s lines of code) Execution Plan If inlined successfully, xml node <UserDefinedFunction> will be missing Extended Events tsql_scalar_udf_not_inlineable
  • 69. #sqlsat871 APPROX_COUNT_DISTINCT Returns approximate number of unique non-null values in groups HyperLogLog algorithm guarantees up to 2% error rate within 97% probability Fast data exploration with low memory footprint E.g. dashboards, trend analysis, feature selection, etc. Think 10 billion rows, 1 user using 1,5GB memory vs 100 users using 12MBs Tradeoff: precision, only scenarios where exact values are not necessary!
  • 72. #sqlsat871 Thank you very much for attending SQL Saturday Sardegna 2019! #sqlsat871