SlideShare a Scribd company logo
Steady Groundwater Flow
Simulation towards Ains in
a Heterogeneous Subsurface
Dr. Amro M. M. Elfeki
Water Resources Dept.,
Faculty of Meteorology, Environment and Arid Land
Agriculture,
King Abdulaziz University, Jeddah, KSA
E-mail: amro_elfeki@yahoo.com
9/16/2016 Dr. Amro Elfeki 2
Presentation Layout
• Typical Ains.
• Subsurface Heterogeneity.
• Modeling Heterogeneity.
• GW Model Equation in “FLOW2AIN”.
• Monte-Carlo Approach.
• Results.
• Conclusions.
9/16/2016 Dr. Amro Elfeki 3
Definition of Ains (Qanats)
• Qanats are underground tunnels, with a
canal in the floor of the tunnel, which
carries water.
• The difference between the qanat and a
surface canal is that the qanat can get
water from an underground aquifer.
Source: CharYu, Oz, Jun 21, 2005
9/16/2016 Dr. Amro Elfeki 4
Ain Longitudinal Section
9/16/2016 Dr. Amro Elfeki 5
Ain Cross-Section
9/16/2016 Dr. Amro Elfeki 6
How much water will flow to
Ain?
9/16/2016 Dr. Amro Elfeki 7
Subsurface Heterogeneity
• One can easily experience the heterogeneity from
most fields by observing huge variation of its
properties from point to point
(Gelhar, 1993)
• The heterogeneity of subsurface has been a long-
existing troublesome topic from the very
beginning of the subsurface hydrology
(Anderson, 1983)
9/16/2016 Dr. Amro Elfeki 8
Subsurface Heterogeneity
(cont.)
Saudi Arabia Geological Survey Web Site
9/16/2016 Dr. Amro Elfeki 9
Space series from Mount Simon
sandstone aquifer: Gelhar, (1996).
Laboratory
Measurements:
Conductivity and
porosity.
Observation:
Variability of
hydrological parameters.
Subsurface Heterogeneity
(cont.)
9/16/2016 Dr. Amro Elfeki 10
Modeling Subsurface:
Deterministic, Random, or
Stochastic?
Purely random?
No Regularity
Pure Random Process
Purely deterministic?
Deterministic Regularity
Pure Deterministic Process
Something in between?
Stochastic Regularity
Stochastic Process
9/16/2016 Dr. Amro Elfeki 11
Why do we need the
Stochastic Approach?
• The erratic nature of the subsurface
parameters observed at field data
• The uncertainty due to the lack of
information about the subsurface structure
which is known only at sparse sampled
locations
9/16/2016 Dr. Amro Elfeki 12
Geostatistics
Kriging (stochastic
interpolation)
Gaussian Random
Field
Non-Gaussian Random
Field
Simulation of
Sedimentary
Depositional
Process
a priori knowledge
sedimentary history
geometry of
sedimentary structure
Site Specific
Information
a priori knowledge
well logs
geophysical data
Koltermann and Gorelick (1996)
9/16/2016 Dr. Amro Elfeki 13
Facts about Each Method
• Descriptive
– Quantification is difficult
• Process-Imitating
– Conditioning is difficult, too sensitive
to initial condition, and
computationally demanding
• Structure-Imitating
– Lateral variability data is hard to get
– Produce multiple, equally probable
images
9/16/2016 Dr. Amro Elfeki 14
Structure Imitating Models
Gaussian Random
Fields.
Indicator Random
Fields.
Combined Fields.
Fractals Fields.
0 20 40 60 80 100 120 140 160 180 200
-40
-20
0
-3.3 -2.3 -1.3 -0.3 0.7 1.7 2.7
Y=Log (K)
0 200 400 600 800 1000 1200 1400 1600 1800 2000
-400
-200
0
-10 -8 -6 -4 -2 0 2 4 -5.0 -3.0 -1.0 1.0 3.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
-400
-200
0
0.0 0.8 1.5 2.3 3.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
-400
-200
0
-8 -6 -4 -2 0 2 4
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Horizontal Distance (m)
-400
-200
0
Depth(m)
1 2 3 4
Log (Hydraulic Conductivity m/day) Log (Hydraulic Conductivity m/day)
Log (Hydraulic Conductivity m/day)
Log (Hydraulic Conductivity m/day)
(a) Non-Stationarity
in The Mean.
(b) Non-Stationarity
in The Variance.
(c) Non-Stationarity
in Correlation Lengths.
(d) Global Non-
Stationarity.
Geological Structure.
0 200 400 600 800 1000 1200 1400 1600 1800 2000
-400
-200
0
9/16/2016 Dr. Amro Elfeki 15
)( Z,Z= Covc jiij
...),(
.....
....
...),(
),(..),(
2
1
2
2
12
121
2
2
1

















p
i
Zp
Z
Z
pZ
ZZCov
ZZCov
ZZCovZZCov




C


i
j
X
Y
0
Z
Z
sij
1
p



2 3

Modeling Heterogeneity
(LU-decomposition method)
9/16/2016 Dr. Amro Elfeki 16
UL=C where,
L is a unique lower triangular matrix,
U is a unique upper triangular matrix, and
U is LT , i.e., U is the transpose of L.
LU-Decomposition
T
21 },...,,{ p
εU=X
X+μ=Z
9/16/2016 Dr. Amro Elfeki 17
Realization of Variance
Ln(K)=0.1
0 1 2 3 4 5
Hydraulic Conductivity (m/day)
0
0.4
0.8
1.2
1.6
pdf
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-0.3
-0.15
0
0.15
0.3
9/16/2016 Dr. Amro Elfeki 18
Realization of Variance
Ln(K)=0.5
0 2 4 6 8 10
Hydraulic Conductivity (m/day)
0
0.2
0.4
0.6
0.8
pdf
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-1.4
-1.15
-0.9
-0.65
-0.4
-0.15
0.1
0.35
0.6
0.85
1.1
1.35
9/16/2016 Dr. Amro Elfeki 19
Realization of Variance
Ln(K)=1.
0 4 8 12 16
Hydraulic Conductivity (m/day)
0
0.2
0.4
0.6
0.8
pdf
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
3
9/16/2016 Dr. Amro Elfeki 20
Realization of Variance
Ln(K)=1.5
0 4 8 12 16 20
Hydraulic Conductivity (m/day)
0
0.2
0.4
0.6
0.8
pdf
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-4
-3
-2
-1
0
1
2
3
4
9/16/2016 Dr. Amro Elfeki 21
Realization of Variance
Ln(K)=2.
0 4 8 12 16 20
Hydraulic Conductivity (m/day)
0
0.2
0.4
0.6
0.8
pdf
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-4
-3
-2
-1
0
1
2
3
4
9/16/2016 Dr. Amro Elfeki 22
Steady Groundwater Flow
Model in “FLOW2AIN”
where
is the hydraulic conductivity,
and
is the hydraulic head at location
 . ( ) ( ) 0K  x x
( )K x
( ) x x
9/16/2016 Dr. Amro Elfeki 23
Model Domain and
Boundaries
Lx
Ly
B
H d
9/16/2016 Dr. Amro Elfeki 24
Expected Values and
Uncertainty
x
1
1
( ) ( ),
MC
k
k
=
MC 
  x x
 
22
1
1
( ) ( ) ( )
MC
k
k
=
MC


   x x x
( )k x xis the hydraulic head at location x
in the kth realization, and
2
( ) x represents the uncertainty in the predictions.
9/16/2016 Dr. Amro Elfeki 25
Simulation Parameters used in
the Numerical Experiment (MC)
Parameter Numerical Value
Geometric mean of hydraulic
conductivity
1 m/day
Variance of Ln (K) 0.1, 0.5, 1.0, 1.5, 2
Correlation length in both directions 2 m
No of Monte-Carlo 1000
Domain dimensions Lx=50. m, Ly=20. m
Domain discretezation Dx=dy = 1 m
Water table elev. in the ambient
groundwater
1.0 m
Accuracy of computations 0.00001
Ain dimensions 5 m x 5 m
Water surface elevation in Ain 0. m
Ain dimensions H = 5 m. B = 5 m
9/16/2016 Dr. Amro Elfeki 26
Expected Hydraulic Head and
Variance
-1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-4 -3 -2 -1 0 1 2 3 4
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
-6-5-4-3-2 -1 0 1 2 3 4 5 6
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
0 5 10 15 20 25 30 35 40 45 50
-20
-15
-10
-5
0
Ln (K) variability
9/16/2016 Dr. Amro Elfeki 27
Uncertainty Profiles in
Hydraulic Head
Lx
Ly
B
H d
9/16/2016 Dr. Amro Elfeki 28
Expected Flux to Ain,
Variance and CV
0 0.4 0.8 1.2 1.6 2
Variance of Ln(K)
-5
0
5
10
15
20
25
ExpectedFluxtoAin(m^3/day/m'),VarianceinFlux
Expected Flux to Ain
Variance of Flux to Ain
CV of Expected Flux
0 1 2 3 4 5
Hydraulic Conductivity (m/day)
0
0.4
0.8
1.2
1.6
pdf
0 4 8 12 16 20
Hydraulic Conductivity (m/day)
0
0.2
0.4
0.6
0.8
pdf
9/16/2016 Dr. Amro Elfeki 29
86% Confidence Interval of
Expected Flux to Ain
0 0.4 0.8 1.2 1.6 2
Variance of Ln(K)
0
4
8
12
FluxtoAin(m^3/day/m') Expected Flux to Ain
Upper Limit: E(Q)+Q
Lower Limit: E(Q)-Q
9/16/2016 Dr. Amro Elfeki 30
Conclusions
• FLOW2AIN has been developed to study the influence of
subsurface heterogeneity on hydraulic head and water
flux to Ains.
• Increasing heterogeneity of the hydraulic conductivity
leads to an increase in the hydraulic head uncertainty,
and
• Increasing heterogeneity leads to an increase in the
expected water discharge to Ain. This reflects the Log-
normal distribution of K.
• For Ln(K) Less than 1.5 the uncertainty is relatively low,
however, it increases drastically over this value.

More Related Content

DOCX
LA DIDÁCTICA EN LA SOCIEDAD DEL CONOCIMIENTO Y LOS ENTORNOS VIRTUALES DE APR...
PPTX
Ambar lópez c.i. 21.001.737
PDF
جيل واعد
PPTX
Cpdch2identity
DOCX
Mu0018 change management
PPTX
Casa sustentable
PPTX
Researchers’ perceptions of DH trends and topics
LA DIDÁCTICA EN LA SOCIEDAD DEL CONOCIMIENTO Y LOS ENTORNOS VIRTUALES DE APR...
Ambar lópez c.i. 21.001.737
جيل واعد
Cpdch2identity
Mu0018 change management
Casa sustentable
Researchers’ perceptions of DH trends and topics

Similar to Steady Groundwater Flow Simulation towards Ains in a Heterogeneous Subsurface (20)

PDF
ABB POLIM-D High Voltage Surge Arresters AC 4kV - 36kV - AC Surge Arresters ...
PDF
SUBSURFACE EVALUATION FULL SCALE EOR WATER FLOODING A - M FAULT ANTICLINE SHA...
PPSX
Modeling Saltwater Intrusion along Jeddah Coast Using Multiple Spreadsheets
PDF
CV Siam Update 31-10-2016
DOCX
Detailed report of processing gdv images in the gdv scientific laboratory pro...
PPSX
Modeling Monthly Rainfall Records in Arid Zones Using Markov Chains: Saudi Ar...
PDF
Jaya r pudashine
PPT
power system analysis PPT
PDF
Giorgio Cassiani
PDF
MUMS: Transition & SPUQ Workshop - Dimensional Analysis in Computer Experimen...
PDF
Kyoritsu Electrical Test Tools in ROnexbd
PDF
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
PPTX
Ferrara Ring - 1st Red Sea Ophthalmology Symposium
PDF
Dtafile2011923105530890
PDF
ABB POLIM-C..N High Voltage Surge Arresters AC up to 7.5 kV - AC Surge Arrest...
PDF
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
PDF
ABB POLIM-D..PI-2/-3 (Indoor) High Voltage Surge Arresters AC 4-42kV - AC Sur...
DOCX
Kaizenreport
PPTX
Proposal Wide Blower No.1 & 2 with inverter
PDF
Aligning on SH Needs - Zaleski v0103
ABB POLIM-D High Voltage Surge Arresters AC 4kV - 36kV - AC Surge Arresters ...
SUBSURFACE EVALUATION FULL SCALE EOR WATER FLOODING A - M FAULT ANTICLINE SHA...
Modeling Saltwater Intrusion along Jeddah Coast Using Multiple Spreadsheets
CV Siam Update 31-10-2016
Detailed report of processing gdv images in the gdv scientific laboratory pro...
Modeling Monthly Rainfall Records in Arid Zones Using Markov Chains: Saudi Ar...
Jaya r pudashine
power system analysis PPT
Giorgio Cassiani
MUMS: Transition & SPUQ Workshop - Dimensional Analysis in Computer Experimen...
Kyoritsu Electrical Test Tools in ROnexbd
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
Ferrara Ring - 1st Red Sea Ophthalmology Symposium
Dtafile2011923105530890
ABB POLIM-C..N High Voltage Surge Arresters AC up to 7.5 kV - AC Surge Arrest...
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
ABB POLIM-D..PI-2/-3 (Indoor) High Voltage Surge Arresters AC 4-42kV - AC Sur...
Kaizenreport
Proposal Wide Blower No.1 & 2 with inverter
Aligning on SH Needs - Zaleski v0103
Ad

More from Amro Elfeki (20)

PPSX
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
PPTX
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
PPT
Basics of Contaminant Transport in Aquifers (Lecture)
PPT
Well Hydraulics (Lecture 1)
PPT
Gradually Varied Flow in Open Channel
PPTX
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
PDF
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
PDF
Lecture 5: Stochastic Hydrology
PDF
Lecture 4: Stochastic Hydrology (Site Characterization)
PDF
Lecture 3: Stochastic Hydrology
PDF
Lecture 2: Stochastic Hydrology
PDF
Stochastic Hydrology Lecture 1: Introduction
PPS
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
PPSX
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
PPSX
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
PPSX
Empirical equations for flood analysis in arid zones
PPSX
Simulation of the central limit theorem
PPSX
Empirical equations for estimation of transmission losses
PPTX
Representative elementary volume (rev) in porous
PPSX
Civil Engineering Drawings (Collection of Sheets)
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Basics of Contaminant Transport in Aquifers (Lecture)
Well Hydraulics (Lecture 1)
Gradually Varied Flow in Open Channel
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 5: Stochastic Hydrology
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 3: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
Stochastic Hydrology Lecture 1: Introduction
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Empirical equations for flood analysis in arid zones
Simulation of the central limit theorem
Empirical equations for estimation of transmission losses
Representative elementary volume (rev) in porous
Civil Engineering Drawings (Collection of Sheets)
Ad

Recently uploaded (20)

PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Geodesy 1.pptx...............................................
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
CH1 Production IntroductoryConcepts.pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Digital Logic Computer Design lecture notes
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
web development for engineering and engineering
PDF
composite construction of structures.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPT
Project quality management in manufacturing
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Geodesy 1.pptx...............................................
Foundation to blockchain - A guide to Blockchain Tech
Lecture Notes Electrical Wiring System Components
bas. eng. economics group 4 presentation 1.pptx
OOP with Java - Java Introduction (Basics)
CH1 Production IntroductoryConcepts.pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mechanical Engineering MATERIALS Selection
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Digital Logic Computer Design lecture notes
R24 SURVEYING LAB MANUAL for civil enggi
web development for engineering and engineering
composite construction of structures.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Project quality management in manufacturing
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx

Steady Groundwater Flow Simulation towards Ains in a Heterogeneous Subsurface

  • 1. Steady Groundwater Flow Simulation towards Ains in a Heterogeneous Subsurface Dr. Amro M. M. Elfeki Water Resources Dept., Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, KSA E-mail: amro_elfeki@yahoo.com
  • 2. 9/16/2016 Dr. Amro Elfeki 2 Presentation Layout • Typical Ains. • Subsurface Heterogeneity. • Modeling Heterogeneity. • GW Model Equation in “FLOW2AIN”. • Monte-Carlo Approach. • Results. • Conclusions.
  • 3. 9/16/2016 Dr. Amro Elfeki 3 Definition of Ains (Qanats) • Qanats are underground tunnels, with a canal in the floor of the tunnel, which carries water. • The difference between the qanat and a surface canal is that the qanat can get water from an underground aquifer. Source: CharYu, Oz, Jun 21, 2005
  • 4. 9/16/2016 Dr. Amro Elfeki 4 Ain Longitudinal Section
  • 5. 9/16/2016 Dr. Amro Elfeki 5 Ain Cross-Section
  • 6. 9/16/2016 Dr. Amro Elfeki 6 How much water will flow to Ain?
  • 7. 9/16/2016 Dr. Amro Elfeki 7 Subsurface Heterogeneity • One can easily experience the heterogeneity from most fields by observing huge variation of its properties from point to point (Gelhar, 1993) • The heterogeneity of subsurface has been a long- existing troublesome topic from the very beginning of the subsurface hydrology (Anderson, 1983)
  • 8. 9/16/2016 Dr. Amro Elfeki 8 Subsurface Heterogeneity (cont.) Saudi Arabia Geological Survey Web Site
  • 9. 9/16/2016 Dr. Amro Elfeki 9 Space series from Mount Simon sandstone aquifer: Gelhar, (1996). Laboratory Measurements: Conductivity and porosity. Observation: Variability of hydrological parameters. Subsurface Heterogeneity (cont.)
  • 10. 9/16/2016 Dr. Amro Elfeki 10 Modeling Subsurface: Deterministic, Random, or Stochastic? Purely random? No Regularity Pure Random Process Purely deterministic? Deterministic Regularity Pure Deterministic Process Something in between? Stochastic Regularity Stochastic Process
  • 11. 9/16/2016 Dr. Amro Elfeki 11 Why do we need the Stochastic Approach? • The erratic nature of the subsurface parameters observed at field data • The uncertainty due to the lack of information about the subsurface structure which is known only at sparse sampled locations
  • 12. 9/16/2016 Dr. Amro Elfeki 12 Geostatistics Kriging (stochastic interpolation) Gaussian Random Field Non-Gaussian Random Field Simulation of Sedimentary Depositional Process a priori knowledge sedimentary history geometry of sedimentary structure Site Specific Information a priori knowledge well logs geophysical data Koltermann and Gorelick (1996)
  • 13. 9/16/2016 Dr. Amro Elfeki 13 Facts about Each Method • Descriptive – Quantification is difficult • Process-Imitating – Conditioning is difficult, too sensitive to initial condition, and computationally demanding • Structure-Imitating – Lateral variability data is hard to get – Produce multiple, equally probable images
  • 14. 9/16/2016 Dr. Amro Elfeki 14 Structure Imitating Models Gaussian Random Fields. Indicator Random Fields. Combined Fields. Fractals Fields. 0 20 40 60 80 100 120 140 160 180 200 -40 -20 0 -3.3 -2.3 -1.3 -0.3 0.7 1.7 2.7 Y=Log (K) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -400 -200 0 -10 -8 -6 -4 -2 0 2 4 -5.0 -3.0 -1.0 1.0 3.0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -400 -200 0 0.0 0.8 1.5 2.3 3.0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -400 -200 0 -8 -6 -4 -2 0 2 4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Horizontal Distance (m) -400 -200 0 Depth(m) 1 2 3 4 Log (Hydraulic Conductivity m/day) Log (Hydraulic Conductivity m/day) Log (Hydraulic Conductivity m/day) Log (Hydraulic Conductivity m/day) (a) Non-Stationarity in The Mean. (b) Non-Stationarity in The Variance. (c) Non-Stationarity in Correlation Lengths. (d) Global Non- Stationarity. Geological Structure. 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -400 -200 0
  • 15. 9/16/2016 Dr. Amro Elfeki 15 )( Z,Z= Covc jiij ...),( ..... .... ...),( ),(..),( 2 1 2 2 12 121 2 2 1                  p i Zp Z Z pZ ZZCov ZZCov ZZCovZZCov     C   i j X Y 0 Z Z sij 1 p    2 3  Modeling Heterogeneity (LU-decomposition method)
  • 16. 9/16/2016 Dr. Amro Elfeki 16 UL=C where, L is a unique lower triangular matrix, U is a unique upper triangular matrix, and U is LT , i.e., U is the transpose of L. LU-Decomposition T 21 },...,,{ p εU=X X+μ=Z
  • 17. 9/16/2016 Dr. Amro Elfeki 17 Realization of Variance Ln(K)=0.1 0 1 2 3 4 5 Hydraulic Conductivity (m/day) 0 0.4 0.8 1.2 1.6 pdf 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -0.3 -0.15 0 0.15 0.3
  • 18. 9/16/2016 Dr. Amro Elfeki 18 Realization of Variance Ln(K)=0.5 0 2 4 6 8 10 Hydraulic Conductivity (m/day) 0 0.2 0.4 0.6 0.8 pdf 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -1.4 -1.15 -0.9 -0.65 -0.4 -0.15 0.1 0.35 0.6 0.85 1.1 1.35
  • 19. 9/16/2016 Dr. Amro Elfeki 19 Realization of Variance Ln(K)=1. 0 4 8 12 16 Hydraulic Conductivity (m/day) 0 0.2 0.4 0.6 0.8 pdf 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
  • 20. 9/16/2016 Dr. Amro Elfeki 20 Realization of Variance Ln(K)=1.5 0 4 8 12 16 20 Hydraulic Conductivity (m/day) 0 0.2 0.4 0.6 0.8 pdf 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -4 -3 -2 -1 0 1 2 3 4
  • 21. 9/16/2016 Dr. Amro Elfeki 21 Realization of Variance Ln(K)=2. 0 4 8 12 16 20 Hydraulic Conductivity (m/day) 0 0.2 0.4 0.6 0.8 pdf 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -4 -3 -2 -1 0 1 2 3 4
  • 22. 9/16/2016 Dr. Amro Elfeki 22 Steady Groundwater Flow Model in “FLOW2AIN” where is the hydraulic conductivity, and is the hydraulic head at location  . ( ) ( ) 0K  x x ( )K x ( ) x x
  • 23. 9/16/2016 Dr. Amro Elfeki 23 Model Domain and Boundaries Lx Ly B H d
  • 24. 9/16/2016 Dr. Amro Elfeki 24 Expected Values and Uncertainty x 1 1 ( ) ( ), MC k k = MC    x x   22 1 1 ( ) ( ) ( ) MC k k = MC      x x x ( )k x xis the hydraulic head at location x in the kth realization, and 2 ( ) x represents the uncertainty in the predictions.
  • 25. 9/16/2016 Dr. Amro Elfeki 25 Simulation Parameters used in the Numerical Experiment (MC) Parameter Numerical Value Geometric mean of hydraulic conductivity 1 m/day Variance of Ln (K) 0.1, 0.5, 1.0, 1.5, 2 Correlation length in both directions 2 m No of Monte-Carlo 1000 Domain dimensions Lx=50. m, Ly=20. m Domain discretezation Dx=dy = 1 m Water table elev. in the ambient groundwater 1.0 m Accuracy of computations 0.00001 Ain dimensions 5 m x 5 m Water surface elevation in Ain 0. m Ain dimensions H = 5 m. B = 5 m
  • 26. 9/16/2016 Dr. Amro Elfeki 26 Expected Hydraulic Head and Variance -1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -4 -3 -2 -1 0 1 2 3 4 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 -6-5-4-3-2 -1 0 1 2 3 4 5 6 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 0 5 10 15 20 25 30 35 40 45 50 -20 -15 -10 -5 0 Ln (K) variability
  • 27. 9/16/2016 Dr. Amro Elfeki 27 Uncertainty Profiles in Hydraulic Head Lx Ly B H d
  • 28. 9/16/2016 Dr. Amro Elfeki 28 Expected Flux to Ain, Variance and CV 0 0.4 0.8 1.2 1.6 2 Variance of Ln(K) -5 0 5 10 15 20 25 ExpectedFluxtoAin(m^3/day/m'),VarianceinFlux Expected Flux to Ain Variance of Flux to Ain CV of Expected Flux 0 1 2 3 4 5 Hydraulic Conductivity (m/day) 0 0.4 0.8 1.2 1.6 pdf 0 4 8 12 16 20 Hydraulic Conductivity (m/day) 0 0.2 0.4 0.6 0.8 pdf
  • 29. 9/16/2016 Dr. Amro Elfeki 29 86% Confidence Interval of Expected Flux to Ain 0 0.4 0.8 1.2 1.6 2 Variance of Ln(K) 0 4 8 12 FluxtoAin(m^3/day/m') Expected Flux to Ain Upper Limit: E(Q)+Q Lower Limit: E(Q)-Q
  • 30. 9/16/2016 Dr. Amro Elfeki 30 Conclusions • FLOW2AIN has been developed to study the influence of subsurface heterogeneity on hydraulic head and water flux to Ains. • Increasing heterogeneity of the hydraulic conductivity leads to an increase in the hydraulic head uncertainty, and • Increasing heterogeneity leads to an increase in the expected water discharge to Ain. This reflects the Log- normal distribution of K. • For Ln(K) Less than 1.5 the uncertainty is relatively low, however, it increases drastically over this value.