Stochastic runoff forecasting and real time control
of urban drainage systems
Ude af øje, ude af sind, ude af kontrol, 13/03/2013
Roland Löwe (DTU Compute) rolo@imm.dtu.dk
Luca Vezzaro (DTU Environment / Krüger A/S)
Morten Grum (Krüger A/S)
Peter Steen Mikkelsen (DTU Environment)
Henrik Madsen (DTU Compute)
13/03/2013Stochastic runoff forecasting and RTC2 DTU Compute, Technical University of Denmark
Why do we need probabilistic forecasts? -
The way home
10min5min
20min
13/03/2013Stochastic runoff forecasting and RTC3 DTU Compute, Technical University of Denmark
Why do we need probabilistic forecasts? -
The way home
20min5min
20min
13/03/2013Stochastic runoff forecasting and RTC4 DTU Compute, Technical University of Denmark
Source: Vezzaro and Grum (2012)
Why do we need probabilistic forecasts? –
Stormwater Storage Basins
13/03/2013Stochastic runoff forecasting and RTC5 DTU Compute, Technical University of Denmark
0100030005000
predictedrunoffvolume[m3]
12.08. 01:20 14.08. 00:00
0100030005000
predictedrunoffvolume[m3]
12.08. 01:20 14.08. 00:00
Generating probabilistic forecasts
13/03/2013Stochastic runoff forecasting and RTC6 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts
Output Y Model f(X) Stochastic term σ(X)= +
e.g. flow e.g. reservoir
cascade,
simple clarifier
model
describes error
in model
description
13/03/2013Stochastic runoff forecasting and RTC7 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
The Greybox Modeling Approach
• combines prior physical knowledge with data
• the system is not completely described by physical equations, but
equations and parameters are physically interpretable
13/03/2013Stochastic runoff forecasting and RTC8 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
Why Greybox Models
vs. white box models
• online applications – need simple, fast models for real time operation
• greybox models can be tuned for forecasting
• white box models typically do not account for uncertainty
vs. black box models
• include physical knowledge about the system in the model
• model nonlinear relationships which is not possible e.g. in ARX, ARMAX
...
13/03/2013Stochastic runoff forecasting and RTC9 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
Runoff Forecasting Models
Graph from Breinholt et al.
(2011)
𝑑𝑆1 = 𝐴 ∙ 𝑃 + 𝑎0 −
1
𝑘
𝑆1 𝑑𝑡
𝑑𝑆2 =
1
𝑘
𝑆1 −
1
𝑘
𝑆2 𝑑𝑡
𝜎1 ∙ 𝑆1 𝑑𝜔1
𝜎2 ∙ 𝑆2 𝑑𝜔2
+
𝑄𝑡 =
1
𝑘
𝑆3 + 𝐷 + 𝜀𝑡
𝐴 – area parameter
k – time constant
𝑎0 – mean dry weather flow
𝑃 – rain input
𝑄𝑡 – observed flow
𝐷 – dry weather variation
13/03/2013Stochastic runoff forecasting and RTC10 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
Runoff Forecasting Models
Graph from Breinholt et al.
(2011)
𝑑𝑆1 = 𝐴 ∙ 𝑃 + 𝑎0 −
1
𝑘
𝑆1 𝑑𝑡
𝑑𝑆2 =
1
𝑘
𝑆1 −
1
𝑘
𝑆2 𝑑𝑡
𝜎1 ∙ 𝑆1 𝑑𝜔1
𝜎2 ∙ 𝑆2 𝑑𝜔2
+
0100030005000
predictedrunoffvolume[m3]
12.08. 01:20 13.08. 00:40 14.08. 00:00
13/03/2013Stochastic runoff forecasting and RTC11 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
Runoff Forecasting Models - Updating
Predicted states
(Basin storage)
Graph from Breinholt et al.
(2011)
Input
predict
Flow
predict
Difference predicted -
measured flow
Reconstructed states
update
weighting by state and
observation uncertainty
13/03/2013Stochastic runoff forecasting and RTC12 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
Runoff Forecasting Models - Updating
0100200300400500600
predictedrunoffvolume[m3]
11.08. 23:50 12.08. 23:10 13.08. 22:30
13/03/2013Stochastic runoff forecasting and RTC13 DTU Compute, Technical University of Denmark
Generating probabilistic forecasts –
Runoff Forecasting Models - Adaptivity
rainintensity[mm/min]
600 800 1000 1200 1400
0.000.100.20
flow[m3/s]
600 800 1000 1200 1400
0.01.02.0
time steps [2min]
K
600 800 1000 1200 1400
040008000
𝑑𝑆1 = 𝐴 ∙ 𝑃 + 𝑎0 −
1
𝑘
𝑆1 𝑑𝑡 + 𝜎1 ∙ 𝑆1 𝑑𝜔1
𝑑𝑆2 =
1
𝑘
𝑆1 −
1
𝑘
𝑆2 𝑑𝑡 + 𝜎2 ∙ 𝑆2 𝑑𝜔2
𝒅𝒌 = 𝟎 𝒅𝒕 + 𝝈 𝟒 𝒅𝝎 𝟒
𝑄𝑡 =
1
𝑘
𝑆3 + 𝐷 + 𝜀𝑡
13/03/2013Stochastic runoff forecasting and RTC14 DTU Compute, Technical University of Denmark
Stochastic Greybox Models – Pros and Cons
application range for greybox models
• online applications and forecasting
• quantifying simulation / forecast uncertainty
advantages
• simple, fast models
• state updating – models adapt to observations
• flexible framework for modeling forecast uncertainty
• typically better predictions than deterministic model
• adaptivity can be implemented
limitation
• complex, physical models cannot be handled in the current framework
13/03/2013Stochastic runoff forecasting and RTC15 DTU Compute, Technical University of Denmark
Stochastic Greybox Models –Software CTSM
CTSM = Continuous Time Stochastic Modeling
• model development, parameter estimation, simulation and forecasting
• developed at DTU Compute
• implement as a package in R (‘open source MATLAB’)
• download from www.ctsm.info (and www.r-project.org + www.rstudio.com)
13/03/2013Stochastic runoff forecasting and RTC16 DTU Compute, Technical University of Denmark
Generating Probabilistic Forecasts –
What is a good forecast???
0100030005000
predictedrunoffvolume[m3]
12.08. 01:20 14.08. 00:00
0100030005000
predictedrunoffvolume[m3]
12.08. 01:20 14.08. 00:00
0100030005000
predictedrunoffvolume[m3]
12.08. 01:20 14.08. 00:00
13/03/2013Stochastic runoff forecasting and RTC17 DTU Compute, Technical University of Denmark
Generating Probabilistic Forecasts –
What is a good forecast???
reliability
% of observations not included in a
‘x %’ prediction interval
Requirement
sharpness
width of a ‘x %’ prediction interval
Minimize
skillscores
(e.g. CRPS – continuous ranked
probability score)
Minimize 0100020003000400050006000
predictedrunoffvolume[m3]
12.08. 01:20 13.08. 00:40 14.08. 00:00
13/03/2013Stochastic runoff forecasting and RTC18 DTU Compute, Technical University of Denmark
Case Study 1
Value of radar rainfall observations and
forecasts for online runoff forecasting
(thank you to Aalborg University and DMI for providing
radar data)
13/03/2013Stochastic runoff forecasting and RTC19 DTU Compute, Technical University of Denmark
Radar rainfall and online runoff forecasting
!
!
!
!
! !
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
0 1.500 3.000 Meters
• Ballerup and
Damhusåen
catchments
• 5min rain gauge
observations
• 10min C-band
radar data from
Stevns (DMI /
AAU)
• Period
25/06-06/09/2010
13/03/2013Stochastic runoff forecasting and RTC20 DTU Compute, Technical University of Denmark
Radar rainfall and online runoff forecasting –
comparing radar and rain gauge input
• use mean area rainfall
• 100min runoff forecasts with
different rainfall inputs
• using radar rainfall
measurements and forecasts
reduces error of probabilistic
runoff forecasts
(compared to input from rain
gauges)
Ballerup Damhusåen
RMSE
Raingauge
276.8 3464.1
RMSE
Radar
260.3 2624.7
CRPS
Raingauge
152.3 1463.3
CRPS
Radar
144.9 1399.1
RMSE (root mean square error) – average
error of 100min point forecast [m3]
CRPS (continuous ranked probability score)
– average error of probabilistic forecast
13/03/2013Stochastic runoff forecasting and RTC21 DTU Compute, Technical University of Denmark
Radar rainfall and online runoff forecasting –
comparing model complexity
!
!
!
!
! !
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!!
!
!
!
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
!.
0 1.500 3.000 Meters
13/03/2013Stochastic runoff forecasting and RTC22 DTU Compute, Technical University of Denmark
Radar rainfall and online runoff forecasting –
comparing model complexity
• use rain gauge input
• model 1 – mean area rainfall
• model 2 – subcatchment model
• 100min runoff forecasts with
different model structures
• accounting for spatial
distribution of rainfall in the
model improves forecasts
Ballerup Damhusåen
RMSE
model 1
276.8 3464.1
RMSE
model 2
262.4 2631.3
CRPS
model 1
152.3 1463.3
CRPS
model 2
146.0 1352.2
RMSE (root mean square error) – average
error of 100min point forecast [m3]
CRPS (continuous ranked probability score)
– average error of probabilistic forecast
13/03/2013Stochastic runoff forecasting and RTC23 DTU Compute, Technical University of Denmark
Case Study 2
Value of probabilistic runoff forecasts in real
time control
(in cooperation with Krüger AS)
13/03/2013Stochastic runoff forecasting and RTC24 DTU Compute, Technical University of Denmark
Real Time Control of Stormwater Flows
• dynamic operation of drainage
system
• objectives:
– reduction of combined sewer
overflows
– avoiding flooding
– ...
• actuators: pumps, valves
• operational examples: Québec, Paris,
Dresden
Source: Stadtentwässerung Dresden
13/03/2013Stochastic runoff forecasting and RTC25 DTU Compute, Technical University of Denmark
The Lynetten Catchment
13/03/2013Stochastic runoff forecasting and RTC26 DTU Compute, Technical University of Denmark
Real Time Control Lynetten Catchment
(METSAM project)
Source: Krüger A/S
Sewer Network Control
(DORA)
Current state Desired State
13/03/2013Stochastic runoff forecasting and RTC27 DTU Compute, Technical University of Denmark
Integrated control strategy
(Dynamic Overflow Risk Analysis – DORA)
• runoff forecasts are uncertain
• uncertainty varies
– between wet and dry
weather
– in the course of events
– from event to event
• proper decision making
requires dynamic
quantification of forecast
uncertainty Source: Vezzaro and Grum (2012)
13/03/2013Stochastic runoff forecasting and RTC28 DTU Compute, Technical University of Denmark
Real Time Control Lynetten Catchment
(METSAM project)
Control Strategy
(DORA)
Model
now
future
Fixed uncertainty
distribution
Measurements
(flows & volumes)
rain
flow future
Current state Future evolution
13/03/2013Stochastic runoff forecasting and RTC29 DTU Compute, Technical University of Denmark
Stochastic runoff models
Control Strategy
(DORA)
Model
now
future
Fixed uncertainty
distribution
Measurements
(flows & volumes)
rain
flow future
Current state Future evolution
13/03/2013Stochastic runoff forecasting and RTC30 DTU Compute, Technical University of Denmark
Stochastic runoff models
Control Strategy
(DORA)
Model
now
future
Measurements
(flows & volumes)
rain
Current state Future evolution
Greybox model
13/03/2013Stochastic runoff forecasting and RTC31 DTU Compute, Technical University of Denmark
Probabilistic Runoff Forecasting –
Example
Forecast horizon 4 min Forecast horizon 120 min
black – observation, green – state of the art deterministic forecast, red /
blue – probabilistic forecast with 95% confidence bounds
13/03/2013Stochastic runoff forecasting and RTC32 DTU Compute, Technical University of Denmark
Experimental design
Stochastic
Greybox Model
(CTSM)
Control
Algorithm
(DORA)
Simplified
Catchment
Model
(Water Aspects)
simulated basin
overflow resulting
from control
decisions
generates
probabilistic
forecasts
evaluates risk of
overflow and sends
control decision
13/03/2013Stochastic runoff forecasting and RTC33 DTU Compute, Technical University of Denmark
Effect of Probabilistic Forecasts on Real
Time Control
0
100
200
300
400
500
600
700
800
1000m3
Overflow Volume
deterministic forecast stochastic forecast
overflow volume
in 7 sample
events increased
by +3%
(compared to
state-of-the-art)
control objective
is not overflow
volume but
overflow cost
(overflow volume
weighted by
location where it
occurs)
13/03/2013Stochastic runoff forecasting and RTC34 DTU Compute, Technical University of Denmark
Effect of Probabilistic Forecasts on Real
Time Control
0
2
4
6
8
10
12
14
16
18
Millions
Overflow Cost
deterministic forecast stochastic forecast
overflow cost in 7
sample events
reduced by -32%
(compared to
state-of-the-art)
13/03/2013Stochastic runoff forecasting and RTC35 DTU Compute, Technical University of Denmark
Summary
13/03/2013Stochastic runoff forecasting and RTC36 DTU Compute, Technical University of Denmark
Summary and Outlook
Use greybox models for
• online applications –simple, fast models for real time operation that
adapt to online measurements
• quantifying predictive uncertainties
Applications
• runoff forecasting – simulation studies indicate improved decisions in real
time control
• other applications where forecasts and quantification of uncertainties are
required (predicting capacity of secondary clarifiers, predicting TSS)
Future work
• study effect of probabilistic forecasts on real time control in more detail
• model runoff forecast uncertainties depending on rainfall input (rainfall
patterns, weather model data)
Thank you!
For further info: rolo@dtu.dk

More Related Content

PPTX
Parameter estimation of distributed hydrological model using polynomial chaos...
PDF
WATERSHED MODELING USING ARTIFICIAL NEURAL NETWORKS
PPT
A data-information sharing framework for roading organizations’ response to a...
PDF
Morales, Randulph: Spatio-temporal kriging in estimating local methane source...
PDF
report_present
PDF
Internship Report Presentation
PDF
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
PDF
Impact of Signal Length in CrossCorrelation Based Underwater Network Size Est...
Parameter estimation of distributed hydrological model using polynomial chaos...
WATERSHED MODELING USING ARTIFICIAL NEURAL NETWORKS
A data-information sharing framework for roading organizations’ response to a...
Morales, Randulph: Spatio-temporal kriging in estimating local methane source...
report_present
Internship Report Presentation
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Impact of Signal Length in CrossCorrelation Based Underwater Network Size Est...

What's hot (7)

PPT
PPT
IGARSS_LIU_XU_2011.ppt
PDF
SPACE TIME ADAPTIVE PROCESSING FOR CLUTTER SUPPRESSION IN RADAR USING SUBSPAC...
PDF
CLEARMiner: Mining of Multitemporal Remote Sensing Images
PDF
EMERGENCIES Paris & EMERGENCIES Mediterranean
PPTX
Uniform geometrical theory of diffraction (User body shadowing)
PPTX
Real-Time Analysis of Streaming Synchotron Data: SCinet SC19 Technology Chall...
IGARSS_LIU_XU_2011.ppt
SPACE TIME ADAPTIVE PROCESSING FOR CLUTTER SUPPRESSION IN RADAR USING SUBSPAC...
CLEARMiner: Mining of Multitemporal Remote Sensing Images
EMERGENCIES Paris & EMERGENCIES Mediterranean
Uniform geometrical theory of diffraction (User body shadowing)
Real-Time Analysis of Streaming Synchotron Data: SCinet SC19 Technology Chall...
Ad

Similar to Stochastic runoff forecasting and real time control of urban drainage systems (20)

PDF
DSD-INT 2015 - Satellite based near-real time information services for aquati...
PDF
4 - DHI-Presentation-flood management-16 Sept
PPTX
069MSW405_Devendra Tamrakar_Presentation
PDF
The effect of microscale spatial variability of wind on estimation of technic...
PDF
Modelling of water quality in sewer wwtp systems during normal and extreme co...
PDF
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
PDF
Global grid of master events for waveform cross correlation: design and testing
PDF
DSD-INT 2019 The FEWSPo system - actual state and new developments - Tonelli
PDF
E012662431
PDF
Determining The Coefficient Of Tr, Α And River Length (L) Of Flood Runoff Mod...
PDF
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
PDF
Nir y. krakauer
PDF
PDF
Urban flood prediction digital ocean august edition
PPT
Abdel1
PDF
Downscaling climate information (BC3 Summer School _July 2015)
PDF
Chapter 1.pdf
PDF
ScaleMaster 2.0: a ScaleMaster extension to monitor automatic multi-scales ge...
PPTX
Simulating several flood events using Nays 2D Flood
PDF
5 ijsrms-02617 (1)
DSD-INT 2015 - Satellite based near-real time information services for aquati...
4 - DHI-Presentation-flood management-16 Sept
069MSW405_Devendra Tamrakar_Presentation
The effect of microscale spatial variability of wind on estimation of technic...
Modelling of water quality in sewer wwtp systems during normal and extreme co...
AWS 클라우드를 통한 쓰나미 연구 사례: 日츄오대 - AWS Summit Seoul 2017
Global grid of master events for waveform cross correlation: design and testing
DSD-INT 2019 The FEWSPo system - actual state and new developments - Tonelli
E012662431
Determining The Coefficient Of Tr, Α And River Length (L) Of Flood Runoff Mod...
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
Nir y. krakauer
Urban flood prediction digital ocean august edition
Abdel1
Downscaling climate information (BC3 Summer School _July 2015)
Chapter 1.pdf
ScaleMaster 2.0: a ScaleMaster extension to monitor automatic multi-scales ge...
Simulating several flood events using Nays 2D Flood
5 ijsrms-02617 (1)
Ad

More from EVAnetDenmark (20)

PDF
Storkeengen-Klimatilpasning-af-Vorup.pdf
PDF
Udvidelse-af-Kalundborg-Renseanlaeg-EVAnet
PDF
Miljoevurderinger-hvorfor-hvornaar-og-hvordan.pdf
PDF
Sikring-af-vand-og-naturinteresser-EVAnet
PDF
Hvilken-vej-viser-forskningen | EVAnet temadag
PDF
Sulfinizer-ansvarlig-og-naturbaseret-svovlbrinteneutralisering-baseret-på-mus...
PDF
10-år-med-offerledninger-til-håndtering-af-svovlbrinte-problemer.pdf
PDF
Fuldskala-monitorering-af-svovlbrinte-til-kalibrering-af-procesmodellering-i-...
PDF
Svovlbrintemåling-og-monitorering-med-SulfiLogger.pdf
PDF
Hvorfor-lugter-spildevandet-og-hvordan-kan-vi-modellere-det.pdf
PDF
Naturgenopretning-af-Danmarks-måske-største-klima-lavbundsprojekt.pdf
PDF
Drukner-birkemusen-og-skades-naturen-ved-opmagasinering-af-vand-i-Kolding-Åda...
PDF
Multifunktionel-jordfordeling-med-fokus-på-vandhåndtering.pdf
PDF
Synergi-projekt-Fovrfelt-Ådal | EVAnet temadag
PDF
Etablering-af-kunstige-vådområder | EVAnet
PDF
Samlet-påvirkning-af-udledninger-til-de-enkelte-recipienter
PDF
Udledning af miljøfarlige stoffer |EVAnet
PDF
Gennemgang af værktøjerne til Skrift 32 | EVAnet
PDF
Klimatilpasning af Helsingør Bykerne EVAnet
PDF
Vakuumkloakering – hvordan laver man det gode vakuumsystem, hvor har det sin ...
Storkeengen-Klimatilpasning-af-Vorup.pdf
Udvidelse-af-Kalundborg-Renseanlaeg-EVAnet
Miljoevurderinger-hvorfor-hvornaar-og-hvordan.pdf
Sikring-af-vand-og-naturinteresser-EVAnet
Hvilken-vej-viser-forskningen | EVAnet temadag
Sulfinizer-ansvarlig-og-naturbaseret-svovlbrinteneutralisering-baseret-på-mus...
10-år-med-offerledninger-til-håndtering-af-svovlbrinte-problemer.pdf
Fuldskala-monitorering-af-svovlbrinte-til-kalibrering-af-procesmodellering-i-...
Svovlbrintemåling-og-monitorering-med-SulfiLogger.pdf
Hvorfor-lugter-spildevandet-og-hvordan-kan-vi-modellere-det.pdf
Naturgenopretning-af-Danmarks-måske-største-klima-lavbundsprojekt.pdf
Drukner-birkemusen-og-skades-naturen-ved-opmagasinering-af-vand-i-Kolding-Åda...
Multifunktionel-jordfordeling-med-fokus-på-vandhåndtering.pdf
Synergi-projekt-Fovrfelt-Ådal | EVAnet temadag
Etablering-af-kunstige-vådområder | EVAnet
Samlet-påvirkning-af-udledninger-til-de-enkelte-recipienter
Udledning af miljøfarlige stoffer |EVAnet
Gennemgang af værktøjerne til Skrift 32 | EVAnet
Klimatilpasning af Helsingør Bykerne EVAnet
Vakuumkloakering – hvordan laver man det gode vakuumsystem, hvor har det sin ...

Recently uploaded (20)

PPTX
Climate_Change_Renewable_and_Energy.pptx
PPTX
Unit 1 - Environmental management, politics and.pptx
PPTX
Definition, Causes And Effects Of Greenhouse.pptx
PPTX
Drought and it's classification in a simplified way
PPTX
Biodiversity Environmental Sustainability ppt
DOCX
The Ripple Effect: Understanding Extreme Weather Patterns and Geomagnetic Dyn...
DOCX
Aluminum Dome Roofs for Livestock Water Storage Tanks Guard Farm Water from P...
PPTX
102602734019608717246081273460745534.pptx
PPTX
computer of health my name i d kussta lpaggyhsgd
DOCX
Anaerobic Digester Tanks An ideal solution for a circular economy..docx
PDF
rainfed swc for nature and agroforestrys
DOCX
Biogas Tank for Breweries & Food Processing The main container for biogas dig...
PPTX
Minor Species of nutmeg, cinnamon and clove
PPTX
RadiationSafetyPt120252026nucchemis.pptx
PPTX
Introduction to GLOBE by well renowned people
DOCX
Biogas Tank for Bio CNG Plants The main container for biogas digestion..docx
DOCX
Double Membrane Roofs for Biogas Digesters A sealed cover for biogas producti...
PPTX
Lecture-05-Audio-lingual. Method & Appro
PPTX
Relation Between Forest Growth and Stand Density.pptx
PPTX
Microbial-Pathogens-and-Parasites-Their-Impact-on-Plant-Health.pptx
Climate_Change_Renewable_and_Energy.pptx
Unit 1 - Environmental management, politics and.pptx
Definition, Causes And Effects Of Greenhouse.pptx
Drought and it's classification in a simplified way
Biodiversity Environmental Sustainability ppt
The Ripple Effect: Understanding Extreme Weather Patterns and Geomagnetic Dyn...
Aluminum Dome Roofs for Livestock Water Storage Tanks Guard Farm Water from P...
102602734019608717246081273460745534.pptx
computer of health my name i d kussta lpaggyhsgd
Anaerobic Digester Tanks An ideal solution for a circular economy..docx
rainfed swc for nature and agroforestrys
Biogas Tank for Breweries & Food Processing The main container for biogas dig...
Minor Species of nutmeg, cinnamon and clove
RadiationSafetyPt120252026nucchemis.pptx
Introduction to GLOBE by well renowned people
Biogas Tank for Bio CNG Plants The main container for biogas digestion..docx
Double Membrane Roofs for Biogas Digesters A sealed cover for biogas producti...
Lecture-05-Audio-lingual. Method & Appro
Relation Between Forest Growth and Stand Density.pptx
Microbial-Pathogens-and-Parasites-Their-Impact-on-Plant-Health.pptx

Stochastic runoff forecasting and real time control of urban drainage systems

  • 1. Stochastic runoff forecasting and real time control of urban drainage systems Ude af øje, ude af sind, ude af kontrol, 13/03/2013 Roland Löwe (DTU Compute) rolo@imm.dtu.dk Luca Vezzaro (DTU Environment / Krüger A/S) Morten Grum (Krüger A/S) Peter Steen Mikkelsen (DTU Environment) Henrik Madsen (DTU Compute)
  • 2. 13/03/2013Stochastic runoff forecasting and RTC2 DTU Compute, Technical University of Denmark Why do we need probabilistic forecasts? - The way home 10min5min 20min
  • 3. 13/03/2013Stochastic runoff forecasting and RTC3 DTU Compute, Technical University of Denmark Why do we need probabilistic forecasts? - The way home 20min5min 20min
  • 4. 13/03/2013Stochastic runoff forecasting and RTC4 DTU Compute, Technical University of Denmark Source: Vezzaro and Grum (2012) Why do we need probabilistic forecasts? – Stormwater Storage Basins
  • 5. 13/03/2013Stochastic runoff forecasting and RTC5 DTU Compute, Technical University of Denmark 0100030005000 predictedrunoffvolume[m3] 12.08. 01:20 14.08. 00:00 0100030005000 predictedrunoffvolume[m3] 12.08. 01:20 14.08. 00:00 Generating probabilistic forecasts
  • 6. 13/03/2013Stochastic runoff forecasting and RTC6 DTU Compute, Technical University of Denmark Generating probabilistic forecasts Output Y Model f(X) Stochastic term σ(X)= + e.g. flow e.g. reservoir cascade, simple clarifier model describes error in model description
  • 7. 13/03/2013Stochastic runoff forecasting and RTC7 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – The Greybox Modeling Approach • combines prior physical knowledge with data • the system is not completely described by physical equations, but equations and parameters are physically interpretable
  • 8. 13/03/2013Stochastic runoff forecasting and RTC8 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – Why Greybox Models vs. white box models • online applications – need simple, fast models for real time operation • greybox models can be tuned for forecasting • white box models typically do not account for uncertainty vs. black box models • include physical knowledge about the system in the model • model nonlinear relationships which is not possible e.g. in ARX, ARMAX ...
  • 9. 13/03/2013Stochastic runoff forecasting and RTC9 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – Runoff Forecasting Models Graph from Breinholt et al. (2011) 𝑑𝑆1 = 𝐴 ∙ 𝑃 + 𝑎0 − 1 𝑘 𝑆1 𝑑𝑡 𝑑𝑆2 = 1 𝑘 𝑆1 − 1 𝑘 𝑆2 𝑑𝑡 𝜎1 ∙ 𝑆1 𝑑𝜔1 𝜎2 ∙ 𝑆2 𝑑𝜔2 + 𝑄𝑡 = 1 𝑘 𝑆3 + 𝐷 + 𝜀𝑡 𝐴 – area parameter k – time constant 𝑎0 – mean dry weather flow 𝑃 – rain input 𝑄𝑡 – observed flow 𝐷 – dry weather variation
  • 10. 13/03/2013Stochastic runoff forecasting and RTC10 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – Runoff Forecasting Models Graph from Breinholt et al. (2011) 𝑑𝑆1 = 𝐴 ∙ 𝑃 + 𝑎0 − 1 𝑘 𝑆1 𝑑𝑡 𝑑𝑆2 = 1 𝑘 𝑆1 − 1 𝑘 𝑆2 𝑑𝑡 𝜎1 ∙ 𝑆1 𝑑𝜔1 𝜎2 ∙ 𝑆2 𝑑𝜔2 + 0100030005000 predictedrunoffvolume[m3] 12.08. 01:20 13.08. 00:40 14.08. 00:00
  • 11. 13/03/2013Stochastic runoff forecasting and RTC11 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – Runoff Forecasting Models - Updating Predicted states (Basin storage) Graph from Breinholt et al. (2011) Input predict Flow predict Difference predicted - measured flow Reconstructed states update weighting by state and observation uncertainty
  • 12. 13/03/2013Stochastic runoff forecasting and RTC12 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – Runoff Forecasting Models - Updating 0100200300400500600 predictedrunoffvolume[m3] 11.08. 23:50 12.08. 23:10 13.08. 22:30
  • 13. 13/03/2013Stochastic runoff forecasting and RTC13 DTU Compute, Technical University of Denmark Generating probabilistic forecasts – Runoff Forecasting Models - Adaptivity rainintensity[mm/min] 600 800 1000 1200 1400 0.000.100.20 flow[m3/s] 600 800 1000 1200 1400 0.01.02.0 time steps [2min] K 600 800 1000 1200 1400 040008000 𝑑𝑆1 = 𝐴 ∙ 𝑃 + 𝑎0 − 1 𝑘 𝑆1 𝑑𝑡 + 𝜎1 ∙ 𝑆1 𝑑𝜔1 𝑑𝑆2 = 1 𝑘 𝑆1 − 1 𝑘 𝑆2 𝑑𝑡 + 𝜎2 ∙ 𝑆2 𝑑𝜔2 𝒅𝒌 = 𝟎 𝒅𝒕 + 𝝈 𝟒 𝒅𝝎 𝟒 𝑄𝑡 = 1 𝑘 𝑆3 + 𝐷 + 𝜀𝑡
  • 14. 13/03/2013Stochastic runoff forecasting and RTC14 DTU Compute, Technical University of Denmark Stochastic Greybox Models – Pros and Cons application range for greybox models • online applications and forecasting • quantifying simulation / forecast uncertainty advantages • simple, fast models • state updating – models adapt to observations • flexible framework for modeling forecast uncertainty • typically better predictions than deterministic model • adaptivity can be implemented limitation • complex, physical models cannot be handled in the current framework
  • 15. 13/03/2013Stochastic runoff forecasting and RTC15 DTU Compute, Technical University of Denmark Stochastic Greybox Models –Software CTSM CTSM = Continuous Time Stochastic Modeling • model development, parameter estimation, simulation and forecasting • developed at DTU Compute • implement as a package in R (‘open source MATLAB’) • download from www.ctsm.info (and www.r-project.org + www.rstudio.com)
  • 16. 13/03/2013Stochastic runoff forecasting and RTC16 DTU Compute, Technical University of Denmark Generating Probabilistic Forecasts – What is a good forecast??? 0100030005000 predictedrunoffvolume[m3] 12.08. 01:20 14.08. 00:00 0100030005000 predictedrunoffvolume[m3] 12.08. 01:20 14.08. 00:00 0100030005000 predictedrunoffvolume[m3] 12.08. 01:20 14.08. 00:00
  • 17. 13/03/2013Stochastic runoff forecasting and RTC17 DTU Compute, Technical University of Denmark Generating Probabilistic Forecasts – What is a good forecast??? reliability % of observations not included in a ‘x %’ prediction interval Requirement sharpness width of a ‘x %’ prediction interval Minimize skillscores (e.g. CRPS – continuous ranked probability score) Minimize 0100020003000400050006000 predictedrunoffvolume[m3] 12.08. 01:20 13.08. 00:40 14.08. 00:00
  • 18. 13/03/2013Stochastic runoff forecasting and RTC18 DTU Compute, Technical University of Denmark Case Study 1 Value of radar rainfall observations and forecasts for online runoff forecasting (thank you to Aalborg University and DMI for providing radar data)
  • 19. 13/03/2013Stochastic runoff forecasting and RTC19 DTU Compute, Technical University of Denmark Radar rainfall and online runoff forecasting ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! !. !. !. !. !. !. !. !. !. !. !. !. !. !. !. !. !. 0 1.500 3.000 Meters • Ballerup and Damhusåen catchments • 5min rain gauge observations • 10min C-band radar data from Stevns (DMI / AAU) • Period 25/06-06/09/2010
  • 20. 13/03/2013Stochastic runoff forecasting and RTC20 DTU Compute, Technical University of Denmark Radar rainfall and online runoff forecasting – comparing radar and rain gauge input • use mean area rainfall • 100min runoff forecasts with different rainfall inputs • using radar rainfall measurements and forecasts reduces error of probabilistic runoff forecasts (compared to input from rain gauges) Ballerup Damhusåen RMSE Raingauge 276.8 3464.1 RMSE Radar 260.3 2624.7 CRPS Raingauge 152.3 1463.3 CRPS Radar 144.9 1399.1 RMSE (root mean square error) – average error of 100min point forecast [m3] CRPS (continuous ranked probability score) – average error of probabilistic forecast
  • 21. 13/03/2013Stochastic runoff forecasting and RTC21 DTU Compute, Technical University of Denmark Radar rainfall and online runoff forecasting – comparing model complexity ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! !. !. !. !. !. !. !. !. !. !. !. !. !. !. !. !. !. 0 1.500 3.000 Meters
  • 22. 13/03/2013Stochastic runoff forecasting and RTC22 DTU Compute, Technical University of Denmark Radar rainfall and online runoff forecasting – comparing model complexity • use rain gauge input • model 1 – mean area rainfall • model 2 – subcatchment model • 100min runoff forecasts with different model structures • accounting for spatial distribution of rainfall in the model improves forecasts Ballerup Damhusåen RMSE model 1 276.8 3464.1 RMSE model 2 262.4 2631.3 CRPS model 1 152.3 1463.3 CRPS model 2 146.0 1352.2 RMSE (root mean square error) – average error of 100min point forecast [m3] CRPS (continuous ranked probability score) – average error of probabilistic forecast
  • 23. 13/03/2013Stochastic runoff forecasting and RTC23 DTU Compute, Technical University of Denmark Case Study 2 Value of probabilistic runoff forecasts in real time control (in cooperation with Krüger AS)
  • 24. 13/03/2013Stochastic runoff forecasting and RTC24 DTU Compute, Technical University of Denmark Real Time Control of Stormwater Flows • dynamic operation of drainage system • objectives: – reduction of combined sewer overflows – avoiding flooding – ... • actuators: pumps, valves • operational examples: Québec, Paris, Dresden Source: Stadtentwässerung Dresden
  • 25. 13/03/2013Stochastic runoff forecasting and RTC25 DTU Compute, Technical University of Denmark The Lynetten Catchment
  • 26. 13/03/2013Stochastic runoff forecasting and RTC26 DTU Compute, Technical University of Denmark Real Time Control Lynetten Catchment (METSAM project) Source: Krüger A/S Sewer Network Control (DORA) Current state Desired State
  • 27. 13/03/2013Stochastic runoff forecasting and RTC27 DTU Compute, Technical University of Denmark Integrated control strategy (Dynamic Overflow Risk Analysis – DORA) • runoff forecasts are uncertain • uncertainty varies – between wet and dry weather – in the course of events – from event to event • proper decision making requires dynamic quantification of forecast uncertainty Source: Vezzaro and Grum (2012)
  • 28. 13/03/2013Stochastic runoff forecasting and RTC28 DTU Compute, Technical University of Denmark Real Time Control Lynetten Catchment (METSAM project) Control Strategy (DORA) Model now future Fixed uncertainty distribution Measurements (flows & volumes) rain flow future Current state Future evolution
  • 29. 13/03/2013Stochastic runoff forecasting and RTC29 DTU Compute, Technical University of Denmark Stochastic runoff models Control Strategy (DORA) Model now future Fixed uncertainty distribution Measurements (flows & volumes) rain flow future Current state Future evolution
  • 30. 13/03/2013Stochastic runoff forecasting and RTC30 DTU Compute, Technical University of Denmark Stochastic runoff models Control Strategy (DORA) Model now future Measurements (flows & volumes) rain Current state Future evolution Greybox model
  • 31. 13/03/2013Stochastic runoff forecasting and RTC31 DTU Compute, Technical University of Denmark Probabilistic Runoff Forecasting – Example Forecast horizon 4 min Forecast horizon 120 min black – observation, green – state of the art deterministic forecast, red / blue – probabilistic forecast with 95% confidence bounds
  • 32. 13/03/2013Stochastic runoff forecasting and RTC32 DTU Compute, Technical University of Denmark Experimental design Stochastic Greybox Model (CTSM) Control Algorithm (DORA) Simplified Catchment Model (Water Aspects) simulated basin overflow resulting from control decisions generates probabilistic forecasts evaluates risk of overflow and sends control decision
  • 33. 13/03/2013Stochastic runoff forecasting and RTC33 DTU Compute, Technical University of Denmark Effect of Probabilistic Forecasts on Real Time Control 0 100 200 300 400 500 600 700 800 1000m3 Overflow Volume deterministic forecast stochastic forecast overflow volume in 7 sample events increased by +3% (compared to state-of-the-art) control objective is not overflow volume but overflow cost (overflow volume weighted by location where it occurs)
  • 34. 13/03/2013Stochastic runoff forecasting and RTC34 DTU Compute, Technical University of Denmark Effect of Probabilistic Forecasts on Real Time Control 0 2 4 6 8 10 12 14 16 18 Millions Overflow Cost deterministic forecast stochastic forecast overflow cost in 7 sample events reduced by -32% (compared to state-of-the-art)
  • 35. 13/03/2013Stochastic runoff forecasting and RTC35 DTU Compute, Technical University of Denmark Summary
  • 36. 13/03/2013Stochastic runoff forecasting and RTC36 DTU Compute, Technical University of Denmark Summary and Outlook Use greybox models for • online applications –simple, fast models for real time operation that adapt to online measurements • quantifying predictive uncertainties Applications • runoff forecasting – simulation studies indicate improved decisions in real time control • other applications where forecasts and quantification of uncertainties are required (predicting capacity of secondary clarifiers, predicting TSS) Future work • study effect of probabilistic forecasts on real time control in more detail • model runoff forecast uncertainties depending on rainfall input (rainfall patterns, weather model data)
  • 37. Thank you! For further info: rolo@dtu.dk