SlideShare a Scribd company logo
Inverse Problems
Regularization
www.numerical-tours.com
Gabriel Peyré
Overview
• Variational Priors
• Gradient Descent and PDE’s
• Inverse Problems Regularization
J(f) = ||f||2
W 1,2 =
Z
R2
||rf(x)||dxSobolev semi-norm:
Smooth and Cartoon Priors
| f|2
J(f) = ||f||2
W 1,2 =
Z
R2
||rf(x)||dxSobolev semi-norm:
Total variation semi-norm: J(f) = ||f||TV =
Z
R2
||rf(x)||dx
Smooth and Cartoon Priors
| f|| f|2
J(f) = ||f||2
W 1,2 =
Z
R2
||rf(x)||dxSobolev semi-norm:
Total variation semi-norm: J(f) = ||f||TV =
Z
R2
||rf(x)||dx
Smooth and Cartoon Priors
| f|| f|2
Natural Image Priors
Discrete Priors
Discrete Priors
Discrete Differential Operators
Discrete Differential Operators
Laplacian Operator
Laplacian Operator
Function: ˜f : x 2 R2
7! f(x) 2 R
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
Gradient: Images vs. Functionals
Function: ˜f : x 2 R2
7! f(x) 2 R
Discrete image: f 2 RN
, N = n2
f[i1, i2] = ˜f(i1/n, i2/n) rf[i] ⇡ r ˜f(i/n)
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
Gradient: Images vs. Functionals
Function: ˜f : x 2 R2
7! f(x) 2 R
Discrete image: f 2 RN
, N = n2
f[i1, i2] = ˜f(i1/n, i2/n)
Functional: J : f 2 RN
7! J(f) 2 R
J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2
RN )
rf[i] ⇡ r ˜f(i/n)
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
rJ : RN
7! RN
Gradient: Images vs. Functionals
Function: ˜f : x 2 R2
7! f(x) 2 R
Discrete image: f 2 RN
, N = n2
f[i1, i2] = ˜f(i1/n, i2/n)
Functional: J : f 2 RN
7! J(f) 2 R
Sobolev:
rJ(f) = (r⇤
r)f = f
J(f) =
1
2
||rf||2
J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2
RN )
rf[i] ⇡ r ˜f(i/n)
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
rJ : RN
7! RN
Gradient: Images vs. Functionals
rJ(f) = div
✓
rf
||rf||
◆
If 8 n, rf[n] 6= 0,
If 9n, rf[n] = 0, J not di↵erentiable at f.
Total Variation Gradient
||rf||
rJ(f)
rJ(f) = div
✓
rf
||rf||
◆
If 8 n, rf[n] 6= 0,
Sub-di↵erential:
If 9n, rf[n] = 0, J not di↵erentiable at f.
Cu = ↵ 2 R2⇥N
 (u[n] = 0) ) (↵[n] = u[n]/||u[n]||)
@J(f) = { div(↵) ; ||↵[n]|| 6 1 and ↵ 2 Crf }
Total Variation Gradient
||rf||
rJ(f)
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
p
x2 + "2
|x|
Regularized Total Variation
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
rJ"(f) = div
✓
rf
||rf||"
◆
p
x2 + "2
|x|
rJ" ⇠ /" when " ! +1
Regularized Total Variation
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
rJ"(f)
Overview
• Variational Priors
• Gradient Descent and PDE’s
• Inverse Problems Regularization
f(k+1)
= f(k)
⌧krJ(f(k)
) f(0)
is given.
Gradient Descent
and 0 < ⌧ < 2/L, then f(k) k!+1
! f?
a solution of min
f
J(f).
If f is convex, C1
, rf is L-Lipschitz,Theorem:
f(k+1)
= f(k)
⌧krJ(f(k)
) f(0)
is given.
Gradient Descent
and 0 < ⌧ < 2/L, then f(k) k!+1
! f?
a solution of min
f
J(f).
If f is convex, C1
, rf is L-Lipschitz,Theorem:
f(k+1)
= f(k)
⌧krJ(f(k)
) f(0)
is given.
Optimal step size: ⌧k = argmin
⌧2R+
J(f(k)
⌧rJ(f(k)
))
Proposition: One has
hrJ(f(k+1)
), rJ(f(k)
)i = 0
Gradient Descent
Gradient Flows and PDE’s
f(k+1)
f(k)
⌧
= rJ(f(k)
)Fixed step size ⌧k = ⌧:
Gradient Flows and PDE’s
f(k+1)
f(k)
⌧
= rJ(f(k)
)Fixed step size ⌧k = ⌧:
Denote ft = f(k)
for t = k⌧, one obtains formally as ⌧ ! 0:
8 t > 0,
@ft
@t
= rJ(ft) and f0 = f(0)
J(f) =
R
||rf(x)||dxSobolev flow:
@ft
@t
= ftHeat equation:
Explicit solution:
Gradient Flows and PDE’s
f(k+1)
f(k)
⌧
= rJ(f(k)
)Fixed step size ⌧k = ⌧:
Denote ft = f(k)
for t = k⌧, one obtains formally as ⌧ ! 0:
8 t > 0,
@ft
@t
= rJ(ft) and f0 = f(0)
Total Variation Flow
@ft
@t
= rJ(ft)
Noisy observations: y = f + w, w ⇠ N(0, IdN ).
and ft=0 = y
Application: Denoising
Optimal choice of t: minimize ||ft f||
! not accessible in practice.
SNR(ft, f) = 20 log10
✓
||f ft||
||f||
◆
Optimal Parameter Selection
t t
Overview
• Variational Priors
• Gradient Descent and PDE’s
• Inverse Problems Regularization
Inverse Problems
Inverse Problems
Inverse Problems
Inverse Problems
Inverse Problems
Inverse Problem Regularization
Inverse Problem Regularization
Inverse Problem Regularization
Sobolev prior: J(f) = 1
2 ||rf||2
f?
= argmin
f2RN
E(f) = ||y f||2
+ ||rf||2
(assuming 1 /2 ker( ))
Sobolev Regularization
Sobolev prior: J(f) = 1
2 ||rf||2
f?
= argmin
f2RN
E(f) = ||y f||2
+ ||rf||2
rE(f?
) = 0 () ( ⇤
)f?
= ⇤
yProposition:
! Large scale linear system.
(assuming 1 /2 ker( ))
Sobolev Regularization
Sobolev prior: J(f) = 1
2 ||rf||2
f?
= argmin
f2RN
E(f) = ||y f||2
+ ||rf||2
rE(f?
) = 0 () ( ⇤
)f?
= ⇤
yProposition:
! Large scale linear system.
Gradient descent:
(assuming 1 /2 ker( ))
where ||A|| = max(A)
! Slow convergence.
Sobolev Regularization
Convergence: ⇥ < 2/||⇥ ⇥ ||
Mask M, = diagi(1i2M )
Example: InpaintingFigure 3 shows iterations of the algorithm 1 to solve the inpainting problem
on a smooth image using a manifold prior with 2D linear patches, as defined in
16. This manifold together with the overlapping of the patches allow a smooth
interpolation of the missing pixels.
Measurements y Iter. #1 Iter. #3 Iter. #50
Fig. 3. Iterations of the inpainting algorithm on an uniformly regular image.
5 Manifold of Step Discontinuities
In order to introduce some non-linearity in the manifold M, one needs to go
log10(||f(k)
f( )
||/||f0||)
k k
E(f(k)
)
M
( f)[i] =
⇢
0 if i 2 M,
f[i] otherwise.
Symmetric linear system:
Conjugate Gradient
Ax = b () min
x2Rn
E(x) =
1
2
hAx, xi hx, bi
Symmetric linear system:
x(k+1)
= argmin E(x)
s.t. x x(k)
2 span(rE(x(0)
), . . . , rE(x(k)
))
Intuition:
Conjugate Gradient
Ax = b () min
x2Rn
E(x) =
1
2
hAx, xi hx, bi
Proposition: 8 ` < k, hrE(xk
), rE(x`
)i = 0
Symmetric linear system:
Initialization: x(0)
2 RN
, r(0)
= b Ax(0)
, p(0)
= r(0)
r(k)
=
hrE(x(k)
), d(k)
i
hAd(k), d(k)i
d(k)
= rE(x(k)
) +
||v(k)
||
||v(k 1)||
d(k 1)
v(k)
= rE(x(k)
) = Ax(k)
b
x(k+1)
= x(k)
r(k)
d(k)
Iterations:
x(k+1)
= argmin E(x)
s.t. x x(k)
2 span(rE(x(0)
), . . . , rE(x(k)
))
Intuition:
Conjugate Gradient
Ax = b () min
x2Rn
E(x) =
1
2
hAx, xi hx, bi
Proposition: 8 ` < k, hrE(xk
), rE(x`
)i = 0
TV" regularization: (assuming 1 /2 ker( ))
f?
= argmin
f2RN
E(f) =
1
2
|| f y|| + J"
(f)
Total Variation Regularization
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
TV" regularization: (assuming 1 /2 ker( ))
f(k+1)
= f(k)
⌧krE(f(k)
)
rE(f) = ⇤
( f y) + rJ"(f)
rJ"(f) = div
✓
rf
||rf||"
◆
Convergence: requires ⌧ ⇠ ".
Gradient descent:
f?
= argmin
f2RN
E(f) =
1
2
|| f y|| + J"
(f)
Total Variation Regularization
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
TV" regularization: (assuming 1 /2 ker( ))
f(k+1)
= f(k)
⌧krE(f(k)
)
rE(f) = ⇤
( f y) + rJ"(f)
rJ"(f) = div
✓
rf
||rf||"
◆
Convergence: requires ⌧ ⇠ ".
Gradient descent:
f?
= argmin
f2RN
E(f) =
1
2
|| f y|| + J"
(f)
Newton descent:
f(k+1)
= f(k)
H 1
k rE(f(k)
) where Hk = @2
E"(f(k)
)
Total Variation Regularization
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
k
Large" TV vs. Sobolev ConvergeSmall"
Observations y Sobolev Total variation
Inpainting: Sobolev vs. TV
Noiseless problem: f?
2 argmin
f
J"
(f) s.t. f 2 H
Contraint: H = {f ; f = y}.
f(k+1)
= ProjH
⇣
f(k)
⌧krJ"(f(k)
)
⌘
ProjH(f) = argmin
g=y
||g f||2
= f + ⇤
( ⇤
) 1
(y f)
Inpainting: ProjH(f)[i] =
⇢
f[i] if i 2 M,
y[i] otherwise.
Projected gradient descent:
f(k) k!+1
! f?
a solution of (?).
(?)
Projected Gradient Descent
Proposition: If rJ" is L-Lipschitz and 0 < ⌧k < 2/L,
TV
Priors: Non-quadratic
better edge recovery.
=)
Conclusion
Sobolev
TV
Priors: Non-quadratic
better edge recovery.
=)
Optimization
Variational regularization:
()
– Gradient descent. – Newton.
– Projected gradient. – Conjugate gradient.
Non-smooth optimization ?
Conclusion
Sobolev

More Related Content

PDF
Signal Processing Course : Convex Optimization
PDF
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
PDF
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
PDF
Low Complexity Regularization of Inverse Problems
PDF
Proximal Splitting and Optimal Transport
PDF
Model Selection with Piecewise Regular Gauges
PDF
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
PDF
Mesh Processing Course : Active Contours
Signal Processing Course : Convex Optimization
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems
Proximal Splitting and Optimal Transport
Model Selection with Piecewise Regular Gauges
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Mesh Processing Course : Active Contours

What's hot (20)

PDF
Signal Processing Course : Sparse Regularization of Inverse Problems
PDF
Learning Sparse Representation
PDF
Geodesic Method in Computer Vision and Graphics
PDF
Mesh Processing Course : Multiresolution
PDF
Mesh Processing Course : Mesh Parameterization
PDF
Classification with mixtures of curved Mahalanobis metrics
PDF
Bregman divergences from comparative convexity
PDF
A series of maximum entropy upper bounds of the differential entropy
PDF
Andreas Eberle
PDF
The dual geometry of Shannon information
PDF
Lecture 2: linear SVM in the dual
PDF
Quantitative norm convergence of some ergodic averages
PDF
Actuarial Science Reference Sheet
PDF
Tele3113 wk1wed
PDF
Lecture5 kernel svm
PDF
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
PDF
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
PDF
Adaptive Signal and Image Processing
PDF
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
PDF
Computational Information Geometry: A quick review (ICMS)
Signal Processing Course : Sparse Regularization of Inverse Problems
Learning Sparse Representation
Geodesic Method in Computer Vision and Graphics
Mesh Processing Course : Multiresolution
Mesh Processing Course : Mesh Parameterization
Classification with mixtures of curved Mahalanobis metrics
Bregman divergences from comparative convexity
A series of maximum entropy upper bounds of the differential entropy
Andreas Eberle
The dual geometry of Shannon information
Lecture 2: linear SVM in the dual
Quantitative norm convergence of some ergodic averages
Actuarial Science Reference Sheet
Tele3113 wk1wed
Lecture5 kernel svm
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
Adaptive Signal and Image Processing
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
Computational Information Geometry: A quick review (ICMS)
Ad

Similar to Signal Processing Course : Inverse Problems Regularization (20)

DOCX
Noname manuscript No.(will be inserted by the editor)A c.docx
PDF
A Four Directions Variational Method For Solving Image Processing Problems
PPTX
1 d,2d laplace inversion of lr nmr
PDF
NIPS2009: Sparse Methods for Machine Learning: Theory and Algorithms
PDF
Regularization Methods to Solve
PPTX
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
PDF
IVR - Chapter 1 - Introduction
PDF
Linear regression
PDF
Maximum likelihood estimation of regularisation parameters in inverse problem...
PDF
Pydata Katya Vasilaky
PDF
DL_lecture3_regularization_I.pdf
PDF
Defense_Talk
PDF
lec4_annotated.pdf ml csci 567 vatsal sharan
PPTX
chan.pptx
PDF
Regularization Methods In Banach Spaces Thomas Schuster Barbara Kaltenbacher ...
PDF
Optimum Engineering Design - Day 2b. Classical Optimization methods
PDF
Regularization Methods In Banach Spaces Thomas Schuster Barbara Kaltenbacher ...
PDF
8517ijaia06
PDF
Error Estimates for Multi-Penalty Regularization under General Source Condition
PDF
State of art pde based ip to bt vijayakrishna rowthu
Noname manuscript No.(will be inserted by the editor)A c.docx
A Four Directions Variational Method For Solving Image Processing Problems
1 d,2d laplace inversion of lr nmr
NIPS2009: Sparse Methods for Machine Learning: Theory and Algorithms
Regularization Methods to Solve
Artyom Makovetskii - An Efficient Algorithm for Total Variation Denoising
IVR - Chapter 1 - Introduction
Linear regression
Maximum likelihood estimation of regularisation parameters in inverse problem...
Pydata Katya Vasilaky
DL_lecture3_regularization_I.pdf
Defense_Talk
lec4_annotated.pdf ml csci 567 vatsal sharan
chan.pptx
Regularization Methods In Banach Spaces Thomas Schuster Barbara Kaltenbacher ...
Optimum Engineering Design - Day 2b. Classical Optimization methods
Regularization Methods In Banach Spaces Thomas Schuster Barbara Kaltenbacher ...
8517ijaia06
Error Estimates for Multi-Penalty Regularization under General Source Condition
State of art pde based ip to bt vijayakrishna rowthu
Ad

More from Gabriel Peyré (16)

PDF
Mesh Processing Course : Introduction
PDF
Mesh Processing Course : Geodesics
PDF
Mesh Processing Course : Geodesic Sampling
PDF
Mesh Processing Course : Differential Calculus
PDF
Signal Processing Course : Theory for Sparse Recovery
PDF
Signal Processing Course : Presentation of the Course
PDF
Signal Processing Course : Orthogonal Bases
PDF
Signal Processing Course : Fourier
PDF
Signal Processing Course : Denoising
PDF
Signal Processing Course : Compressed Sensing
PDF
Signal Processing Course : Approximation
PDF
Signal Processing Course : Wavelets
PDF
Sparsity and Compressed Sensing
PDF
Optimal Transport in Imaging Sciences
PDF
An Introduction to Optimal Transport
PDF
A Review of Proximal Methods, with a New One
Mesh Processing Course : Introduction
Mesh Processing Course : Geodesics
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Differential Calculus
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Presentation of the Course
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Fourier
Signal Processing Course : Denoising
Signal Processing Course : Compressed Sensing
Signal Processing Course : Approximation
Signal Processing Course : Wavelets
Sparsity and Compressed Sensing
Optimal Transport in Imaging Sciences
An Introduction to Optimal Transport
A Review of Proximal Methods, with a New One

Recently uploaded (20)

PDF
RMMM.pdf make it easy to upload and study
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
PDF
Pre independence Education in Inndia.pdf
PPTX
master seminar digital applications in india
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Institutional Correction lecture only . . .
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Cell Structure & Organelles in detailed.
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
RMMM.pdf make it easy to upload and study
2.FourierTransform-ShortQuestionswithAnswers.pdf
Introduction to Child Health Nursing – Unit I | Child Health Nursing I | B.Sc...
Pre independence Education in Inndia.pdf
master seminar digital applications in india
VCE English Exam - Section C Student Revision Booklet
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPH.pptx obstetrics and gynecology in nursing
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Final Presentation General Medicine 03-08-2024.pptx
Institutional Correction lecture only . . .
Module 4: Burden of Disease Tutorial Slides S2 2025
Cell Structure & Organelles in detailed.
TR - Agricultural Crops Production NC III.pdf
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
STATICS OF THE RIGID BODIES Hibbelers.pdf
Anesthesia in Laparoscopic Surgery in India
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf

Signal Processing Course : Inverse Problems Regularization

  • 2. Overview • Variational Priors • Gradient Descent and PDE’s • Inverse Problems Regularization
  • 3. J(f) = ||f||2 W 1,2 = Z R2 ||rf(x)||dxSobolev semi-norm: Smooth and Cartoon Priors | f|2
  • 4. J(f) = ||f||2 W 1,2 = Z R2 ||rf(x)||dxSobolev semi-norm: Total variation semi-norm: J(f) = ||f||TV = Z R2 ||rf(x)||dx Smooth and Cartoon Priors | f|| f|2
  • 5. J(f) = ||f||2 W 1,2 = Z R2 ||rf(x)||dxSobolev semi-norm: Total variation semi-norm: J(f) = ||f||TV = Z R2 ||rf(x)||dx Smooth and Cartoon Priors | f|| f|2
  • 13. Function: ˜f : x 2 R2 7! f(x) 2 R ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 Gradient: Images vs. Functionals
  • 14. Function: ˜f : x 2 R2 7! f(x) 2 R Discrete image: f 2 RN , N = n2 f[i1, i2] = ˜f(i1/n, i2/n) rf[i] ⇡ r ˜f(i/n) ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 Gradient: Images vs. Functionals
  • 15. Function: ˜f : x 2 R2 7! f(x) 2 R Discrete image: f 2 RN , N = n2 f[i1, i2] = ˜f(i1/n, i2/n) Functional: J : f 2 RN 7! J(f) 2 R J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2 RN ) rf[i] ⇡ r ˜f(i/n) ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 rJ : RN 7! RN Gradient: Images vs. Functionals
  • 16. Function: ˜f : x 2 R2 7! f(x) 2 R Discrete image: f 2 RN , N = n2 f[i1, i2] = ˜f(i1/n, i2/n) Functional: J : f 2 RN 7! J(f) 2 R Sobolev: rJ(f) = (r⇤ r)f = f J(f) = 1 2 ||rf||2 J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2 RN ) rf[i] ⇡ r ˜f(i/n) ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 rJ : RN 7! RN Gradient: Images vs. Functionals
  • 17. rJ(f) = div ✓ rf ||rf|| ◆ If 8 n, rf[n] 6= 0, If 9n, rf[n] = 0, J not di↵erentiable at f. Total Variation Gradient ||rf|| rJ(f)
  • 18. rJ(f) = div ✓ rf ||rf|| ◆ If 8 n, rf[n] 6= 0, Sub-di↵erential: If 9n, rf[n] = 0, J not di↵erentiable at f. Cu = ↵ 2 R2⇥N (u[n] = 0) ) (↵[n] = u[n]/||u[n]||) @J(f) = { div(↵) ; ||↵[n]|| 6 1 and ↵ 2 Crf } Total Variation Gradient ||rf|| rJ(f)
  • 19. −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 p x2 + "2 |x| Regularized Total Variation ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 20. −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 rJ"(f) = div ✓ rf ||rf||" ◆ p x2 + "2 |x| rJ" ⇠ /" when " ! +1 Regularized Total Variation ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||" rJ"(f)
  • 21. Overview • Variational Priors • Gradient Descent and PDE’s • Inverse Problems Regularization
  • 22. f(k+1) = f(k) ⌧krJ(f(k) ) f(0) is given. Gradient Descent
  • 23. and 0 < ⌧ < 2/L, then f(k) k!+1 ! f? a solution of min f J(f). If f is convex, C1 , rf is L-Lipschitz,Theorem: f(k+1) = f(k) ⌧krJ(f(k) ) f(0) is given. Gradient Descent
  • 24. and 0 < ⌧ < 2/L, then f(k) k!+1 ! f? a solution of min f J(f). If f is convex, C1 , rf is L-Lipschitz,Theorem: f(k+1) = f(k) ⌧krJ(f(k) ) f(0) is given. Optimal step size: ⌧k = argmin ⌧2R+ J(f(k) ⌧rJ(f(k) )) Proposition: One has hrJ(f(k+1) ), rJ(f(k) )i = 0 Gradient Descent
  • 25. Gradient Flows and PDE’s f(k+1) f(k) ⌧ = rJ(f(k) )Fixed step size ⌧k = ⌧:
  • 26. Gradient Flows and PDE’s f(k+1) f(k) ⌧ = rJ(f(k) )Fixed step size ⌧k = ⌧: Denote ft = f(k) for t = k⌧, one obtains formally as ⌧ ! 0: 8 t > 0, @ft @t = rJ(ft) and f0 = f(0)
  • 27. J(f) = R ||rf(x)||dxSobolev flow: @ft @t = ftHeat equation: Explicit solution: Gradient Flows and PDE’s f(k+1) f(k) ⌧ = rJ(f(k) )Fixed step size ⌧k = ⌧: Denote ft = f(k) for t = k⌧, one obtains formally as ⌧ ! 0: 8 t > 0, @ft @t = rJ(ft) and f0 = f(0)
  • 29. @ft @t = rJ(ft) Noisy observations: y = f + w, w ⇠ N(0, IdN ). and ft=0 = y Application: Denoising
  • 30. Optimal choice of t: minimize ||ft f|| ! not accessible in practice. SNR(ft, f) = 20 log10 ✓ ||f ft|| ||f|| ◆ Optimal Parameter Selection t t
  • 31. Overview • Variational Priors • Gradient Descent and PDE’s • Inverse Problems Regularization
  • 40. Sobolev prior: J(f) = 1 2 ||rf||2 f? = argmin f2RN E(f) = ||y f||2 + ||rf||2 (assuming 1 /2 ker( )) Sobolev Regularization
  • 41. Sobolev prior: J(f) = 1 2 ||rf||2 f? = argmin f2RN E(f) = ||y f||2 + ||rf||2 rE(f? ) = 0 () ( ⇤ )f? = ⇤ yProposition: ! Large scale linear system. (assuming 1 /2 ker( )) Sobolev Regularization
  • 42. Sobolev prior: J(f) = 1 2 ||rf||2 f? = argmin f2RN E(f) = ||y f||2 + ||rf||2 rE(f? ) = 0 () ( ⇤ )f? = ⇤ yProposition: ! Large scale linear system. Gradient descent: (assuming 1 /2 ker( )) where ||A|| = max(A) ! Slow convergence. Sobolev Regularization Convergence: ⇥ < 2/||⇥ ⇥ ||
  • 43. Mask M, = diagi(1i2M ) Example: InpaintingFigure 3 shows iterations of the algorithm 1 to solve the inpainting problem on a smooth image using a manifold prior with 2D linear patches, as defined in 16. This manifold together with the overlapping of the patches allow a smooth interpolation of the missing pixels. Measurements y Iter. #1 Iter. #3 Iter. #50 Fig. 3. Iterations of the inpainting algorithm on an uniformly regular image. 5 Manifold of Step Discontinuities In order to introduce some non-linearity in the manifold M, one needs to go log10(||f(k) f( ) ||/||f0||) k k E(f(k) ) M ( f)[i] = ⇢ 0 if i 2 M, f[i] otherwise.
  • 44. Symmetric linear system: Conjugate Gradient Ax = b () min x2Rn E(x) = 1 2 hAx, xi hx, bi
  • 45. Symmetric linear system: x(k+1) = argmin E(x) s.t. x x(k) 2 span(rE(x(0) ), . . . , rE(x(k) )) Intuition: Conjugate Gradient Ax = b () min x2Rn E(x) = 1 2 hAx, xi hx, bi Proposition: 8 ` < k, hrE(xk ), rE(x` )i = 0
  • 46. Symmetric linear system: Initialization: x(0) 2 RN , r(0) = b Ax(0) , p(0) = r(0) r(k) = hrE(x(k) ), d(k) i hAd(k), d(k)i d(k) = rE(x(k) ) + ||v(k) || ||v(k 1)|| d(k 1) v(k) = rE(x(k) ) = Ax(k) b x(k+1) = x(k) r(k) d(k) Iterations: x(k+1) = argmin E(x) s.t. x x(k) 2 span(rE(x(0) ), . . . , rE(x(k) )) Intuition: Conjugate Gradient Ax = b () min x2Rn E(x) = 1 2 hAx, xi hx, bi Proposition: 8 ` < k, hrE(xk ), rE(x` )i = 0
  • 47. TV" regularization: (assuming 1 /2 ker( )) f? = argmin f2RN E(f) = 1 2 || f y|| + J" (f) Total Variation Regularization ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 48. TV" regularization: (assuming 1 /2 ker( )) f(k+1) = f(k) ⌧krE(f(k) ) rE(f) = ⇤ ( f y) + rJ"(f) rJ"(f) = div ✓ rf ||rf||" ◆ Convergence: requires ⌧ ⇠ ". Gradient descent: f? = argmin f2RN E(f) = 1 2 || f y|| + J" (f) Total Variation Regularization ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 49. TV" regularization: (assuming 1 /2 ker( )) f(k+1) = f(k) ⌧krE(f(k) ) rE(f) = ⇤ ( f y) + rJ"(f) rJ"(f) = div ✓ rf ||rf||" ◆ Convergence: requires ⌧ ⇠ ". Gradient descent: f? = argmin f2RN E(f) = 1 2 || f y|| + J" (f) Newton descent: f(k+1) = f(k) H 1 k rE(f(k) ) where Hk = @2 E"(f(k) ) Total Variation Regularization ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 50. k Large" TV vs. Sobolev ConvergeSmall"
  • 51. Observations y Sobolev Total variation Inpainting: Sobolev vs. TV
  • 52. Noiseless problem: f? 2 argmin f J" (f) s.t. f 2 H Contraint: H = {f ; f = y}. f(k+1) = ProjH ⇣ f(k) ⌧krJ"(f(k) ) ⌘ ProjH(f) = argmin g=y ||g f||2 = f + ⇤ ( ⇤ ) 1 (y f) Inpainting: ProjH(f)[i] = ⇢ f[i] if i 2 M, y[i] otherwise. Projected gradient descent: f(k) k!+1 ! f? a solution of (?). (?) Projected Gradient Descent Proposition: If rJ" is L-Lipschitz and 0 < ⌧k < 2/L,
  • 53. TV Priors: Non-quadratic better edge recovery. =) Conclusion Sobolev
  • 54. TV Priors: Non-quadratic better edge recovery. =) Optimization Variational regularization: () – Gradient descent. – Newton. – Projected gradient. – Conjugate gradient. Non-smooth optimization ? Conclusion Sobolev