SlideShare a Scribd company logo
TALAT Lecture 2301

                        Design of Members

            Deviation of linear stress distribution


 Example 10.1 : Transverse bending of unsymmetrical
                       flange

                                   4 pages

                               Advanced Level

    prepared by Torsten Höglund, Royal Institute of Technology, Stockholm




Date of Issue: 1999
 EAA - European Aluminium Association


TALAT 2301 – Example 10.1               1
Example 10.1. Transverse bending of unsymmetical flange
Check transverse bending of the web due to shear
force gradient in the flanges


Section height:            hw       400 . mm
Flange widths:             bo       300 . mm      bu    120 . mm
Flange thickness:          to       16 . mm       tu   16 . mm
Web thickness:             tw       6 . mm
Overall length:            L    6 .m              O    0 . mm


                                10 . kN . m
                                              1
Load                       q


Cross section, half profile
Co-ordinates


       bu                               tu
                      O
       O              O                 tu
y      O          z             t
                      hw               tw
       bo
                      hw                to
       2

    400




    300




    200




                                                                                                 kN 1000 . newton
    100

                                                                                                 MPa 10 . Pa
                                                                                                       6

       0                                                                                         E 70000 . MPa
            100       0               100



[1] ENV 1999-1-1.         Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997

[2] StBK-N5Regulations for cold-formed steel and aluminium structures. Svensk Byggtjänst
Stockholm 1979
[3] Hetenyi, M. Beams on elastic foundation. University of Michigan, 1958




TALAT 2301 – Example 10.1                                          2
Nodes                          i      1 .. rows ( y )        1
                                                                                                                                    rows ( y )          1
Area of half
                                           ti .
                                                                       2                         2
cross section                  dAi                  yi    yi 1                  zi     zi 1                                 A                               dAi
                                                                                                                                           i =1
First moment                              rows ( y )         1
                                                                                  dAi                                                 Sy
of area, y axis,               Sy                                 zi       zi 1 .                                           z gc                             z gc = 214.3 mm
gravity centre                                                                     2                                                   A
                                            i =1
Second moment                            rows ( y ) 1
                                                                                                                 dAi
                                                                                                     zi . zi 1 .                                                           A . z gc
                                                                           2                2                                                                                        2
of area, y axis,               Iy                                  zi                zi 1                                                                    Iy     Iy
section modulus                                                                                                   3
                                             i =1                                                                                                                    Iy
                                          rows ( y )         1                                                                                               Wy
First moment                                                                      dAi                                                                                z gc
                               Sz                                 yi       yi 1 .
of area, z axis
                                                                                                                                                             W y = 9.493 . 10 mm
                                                                                   2                                                                                             5       3
                                                  i =1
Second moment                             rows ( y )          1
of area with                                                                                                                                dAi                               S y .S z
respect to                     I yz                                2 . yi 1 . zi 1              2 . yi . zi     yi 1 . zi       yi . zi 1 .                  I yz   I yz
                                                                                                                                             6                                   A
y and z axes                                      i =1
                                                                                                                                                             I yz = 5.811 . 10 mm
                                                                                                                                                                                7        4

Lateral force         k h .q   on bottom flange

Lateral force                             I yz
                               kh                             k h = 0.143
constant [2]                             2 .I y

Second moment                                                                                                                                       2
                                                                                                              t u .b u          0.5 . b u . t u                     0.5 . b u . t u
                                                                                                                      3                  2                                   2
of area of bottom
flange + 0.27 . h w            Au        b u .t u        0.27 . h      w w
                                                                           .t                   I u.z                                                        yu
                                                                                                                 3                   Au                                    Au
[2]

                                    E .t w
                                             3
Modulus of
                                                                  k = 59.062 kN . m
                                                                                                     2
foundation [3]             k                                                                                  (Transverse bending of top flange neglected)
                                    4 .h w
                                             3

                                                         1
                                                         4
                                            k
                                                                                                                                                             λ . L = 2.867
                                                                                        1
Parameter λ [3]            λ                                      λ = 0.478 m
                                        4 .E .I   u.z

                                                                         L .         L
Lateral deflection of
                                         k h .q              2 . cosh λ .    cos λ .
the bottom flange                                                        2           2
                               vc               .    1                                                                                                       v c = 22.3 mm
at the middle of                                                      . L ) cos ( λ . L )
                                           k                 cosh ( λ
the span [3]

Transverse bending                                                                                                                       m z.6
moment and stresses m z                  k .v c .h w               m z = 0.527 kN                                     σ transv                               σ transv= 87.9 MPa
                                                                                                                                                2
in the web                                                                                                                                 tw
                                                           L          L
                                                   sinh λ . . sin λ .
Lateral moment                            k h .q           2          2                                                                                             M c .y u
                               Mc                .                                                                    M c = 1.56 kN . m                      σ c
in bottom flange [3]                         2 cosh ( λ . L ) cos ( λ . L )                                                                                           I u.z
                                           λ
                                                                                                                                                             σ c= 17.3 MPa




TALAT 2301 – Example 10.1                                                              3
Comment : If the web resistk h . q by itself then
                                                                              k h .q .h w
                                                                                          3
                                                                         vc                     v c = 24.184 mm
                             k h .q .h w
                                                                                            3
                        mz                          m z = 0.571 kN                     tw
                                                                              3 .E .
                                    m z.6                                              12
                        σ transv                    σ transv= 95.2 MPa
                                        2
                                     tw

                                        2               My
                                    L
Main axis bending       My     q.                   σ x                  σ x = 47.4 MPa         σ x σ c = 64.7 MPa
                                    8                   Wy




TALAT 2301 – Example 10.1                                 4

More Related Content

PDF
TALAT Lecture 2301: Design of Members Example 5.2: Axial force resistance of ...
PDF
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
PDF
Mhf4 U Trig
PPTX
Note chapter9 0708-edit-1
PDF
Role of Microalloying Elements during Thin Slab Direct Rolling
PDF
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
PPTX
Interference
PDF
Thalesian_Monte_Carlo_NAG
TALAT Lecture 2301: Design of Members Example 5.2: Axial force resistance of ...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Mhf4 U Trig
Note chapter9 0708-edit-1
Role of Microalloying Elements during Thin Slab Direct Rolling
Optimization of Rolling Conditions in Nb Microalloyed Steels Processed by Thi...
Interference
Thalesian_Monte_Carlo_NAG

What's hot (8)

PDF
Research in Composites for Aero Engine Applications
PPTX
Speech waves in tube and filters
ZIP
Perimeter Institute Talk 2009
PDF
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
PDF
Lesson 10: The Chain Rule (handout)
PPTX
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
PDF
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
PDF
Attitude Dynamics of Re-entry Vehicle
Research in Composites for Aero Engine Applications
Speech waves in tube and filters
Perimeter Institute Talk 2009
TALAT Lecture 2301: Design of Members Example 9.2: Beam-column with rectangul...
Lesson 10: The Chain Rule (handout)
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
Attitude Dynamics of Re-entry Vehicle
Ad

Viewers also liked (10)

PPTX
1 static failure theories ductile r1
PPT
Slope
PPTX
Theories of Failure
PPTX
Unsymmetrical bending.ppt
PPT
Slope (Algebra 2)
PPTX
Design of beams
PPTX
Slope deflection method
PPT
Shear Force And Bending Moment In Beams
PDF
Lecture 10 bending stresses in beams
DOCX
Unsymmetrical bending and shear centre
1 static failure theories ductile r1
Slope
Theories of Failure
Unsymmetrical bending.ppt
Slope (Algebra 2)
Design of beams
Slope deflection method
Shear Force And Bending Moment In Beams
Lecture 10 bending stresses in beams
Unsymmetrical bending and shear centre
Ad

Similar to TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of unsymmetrical flange (13)

PDF
TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance ...
PDF
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
PDF
TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
PDF
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
PDF
TALAT Lecture 2301: Design of Members Example 9.4: Beam-column with cross weld
DOCX
1 d wave equation
PDF
Expert Design & Empirical Test Strategies for Practical Transformer Development
PDF
Short-time homomorphic wavelet estimation
PPTX
การเคล อนท__แบบหม_น
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PDF
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
PDF
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
PPT
Anil2003
TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
TALAT Lecture 2301: Design of Members Example 9.4: Beam-column with cross weld
1 d wave equation
Expert Design & Empirical Test Strategies for Practical Transformer Development
Short-time homomorphic wavelet estimation
การเคล อนท__แบบหม_น
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
Anil2003

More from CORE-Materials (20)

PPTX
Drawing Processes
PPTX
Testing Techniques for Composite Materials
PPTX
Composite Forming Techniques
PPT
The role of technology in sporting performance
PDF
Chemical analysis in the electron microscope
PDF
The scanning electron microscope
PDF
The transmission electron microscope
PDF
Electron diffraction
PDF
Electrons and their interaction with the specimen
PDF
Electron microscopy and other techniques
PDF
Microscopy with light and electrons
PDF
Durability of Materials
PDF
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
PDF
TALAT Lecture 5205: Plating on Aluminium
PDF
TALAT Lecture 5203: Anodizing of Aluminium
PDF
TALAT Lecture 5202: Conversion Coatings
PDF
TALAT Lecture 5105: Surface Treatment of Aluminium
PDF
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
PDF
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
PDF
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
Drawing Processes
Testing Techniques for Composite Materials
Composite Forming Techniques
The role of technology in sporting performance
Chemical analysis in the electron microscope
The scanning electron microscope
The transmission electron microscope
Electron diffraction
Electrons and their interaction with the specimen
Electron microscopy and other techniques
Microscopy with light and electrons
Durability of Materials
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions

Recently uploaded (20)

PDF
Updated Idioms and Phrasal Verbs in English subject
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Computing-Curriculum for Schools in Ghana
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
Updated Idioms and Phrasal Verbs in English subject
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Microbial disease of the cardiovascular and lymphatic systems
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Computing-Curriculum for Schools in Ghana
Anesthesia in Laparoscopic Surgery in India
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
202450812 BayCHI UCSC-SV 20250812 v17.pptx
What if we spent less time fighting change, and more time building what’s rig...
Microbial diseases, their pathogenesis and prophylaxis
Supply Chain Operations Speaking Notes -ICLT Program
Orientation - ARALprogram of Deped to the Parents.pptx
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
01-Introduction-to-Information-Management.pdf
Final Presentation General Medicine 03-08-2024.pptx

TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of unsymmetrical flange

  • 1. TALAT Lecture 2301 Design of Members Deviation of linear stress distribution Example 10.1 : Transverse bending of unsymmetrical flange 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 10.1 1
  • 2. Example 10.1. Transverse bending of unsymmetical flange Check transverse bending of the web due to shear force gradient in the flanges Section height: hw 400 . mm Flange widths: bo 300 . mm bu 120 . mm Flange thickness: to 16 . mm tu 16 . mm Web thickness: tw 6 . mm Overall length: L 6 .m O 0 . mm 10 . kN . m 1 Load q Cross section, half profile Co-ordinates bu tu O O O tu y O z t hw tw bo hw to 2 400 300 200 kN 1000 . newton 100 MPa 10 . Pa 6 0 E 70000 . MPa 100 0 100 [1] ENV 1999-1-1. Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997 [2] StBK-N5Regulations for cold-formed steel and aluminium structures. Svensk Byggtjänst Stockholm 1979 [3] Hetenyi, M. Beams on elastic foundation. University of Michigan, 1958 TALAT 2301 – Example 10.1 2
  • 3. Nodes i 1 .. rows ( y ) 1 rows ( y ) 1 Area of half ti . 2 2 cross section dAi yi yi 1 zi zi 1 A dAi i =1 First moment rows ( y ) 1 dAi Sy of area, y axis, Sy zi zi 1 . z gc z gc = 214.3 mm gravity centre 2 A i =1 Second moment rows ( y ) 1 dAi zi . zi 1 . A . z gc 2 2 2 of area, y axis, Iy zi zi 1 Iy Iy section modulus 3 i =1 Iy rows ( y ) 1 Wy First moment dAi z gc Sz yi yi 1 . of area, z axis W y = 9.493 . 10 mm 2 5 3 i =1 Second moment rows ( y ) 1 of area with dAi S y .S z respect to I yz 2 . yi 1 . zi 1 2 . yi . zi yi 1 . zi yi . zi 1 . I yz I yz 6 A y and z axes i =1 I yz = 5.811 . 10 mm 7 4 Lateral force k h .q on bottom flange Lateral force I yz kh k h = 0.143 constant [2] 2 .I y Second moment 2 t u .b u 0.5 . b u . t u 0.5 . b u . t u 3 2 2 of area of bottom flange + 0.27 . h w Au b u .t u 0.27 . h w w .t I u.z yu 3 Au Au [2] E .t w 3 Modulus of k = 59.062 kN . m 2 foundation [3] k (Transverse bending of top flange neglected) 4 .h w 3 1 4 k λ . L = 2.867 1 Parameter λ [3] λ λ = 0.478 m 4 .E .I u.z L . L Lateral deflection of k h .q 2 . cosh λ . cos λ . the bottom flange 2 2 vc . 1 v c = 22.3 mm at the middle of . L ) cos ( λ . L ) k cosh ( λ the span [3] Transverse bending m z.6 moment and stresses m z k .v c .h w m z = 0.527 kN σ transv σ transv= 87.9 MPa 2 in the web tw L L sinh λ . . sin λ . Lateral moment k h .q 2 2 M c .y u Mc . M c = 1.56 kN . m σ c in bottom flange [3] 2 cosh ( λ . L ) cos ( λ . L ) I u.z λ σ c= 17.3 MPa TALAT 2301 – Example 10.1 3
  • 4. Comment : If the web resistk h . q by itself then k h .q .h w 3 vc v c = 24.184 mm k h .q .h w 3 mz m z = 0.571 kN tw 3 .E . m z.6 12 σ transv σ transv= 95.2 MPa 2 tw 2 My L Main axis bending My q. σ x σ x = 47.4 MPa σ x σ c = 64.7 MPa 8 Wy TALAT 2301 – Example 10.1 4