SlideShare a Scribd company logo
BASLE BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA
HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA ZURICH
Customer Project "Trend-Analytics"
Data Analytics & Semantic Web
Olaf Nimz
Martin Zablocki
Agenda
Customer Project "Trend-Analytics"2 14.09.2018
1. Introduction (short repetition of Part 1)
2. Data Analytics
3. Demo of Fraunhofer Trend-Analytics Platform
4. Semantic Web Technologies
5. Demo Knowledge Graphs
Customer Project "Trend-Analytics"3 14.09.2018
Introduction
Introduction
Customer Project "Trend-Analytics"4 14.09.2018
Research project for the automatic search,
analysis, and evaluation of sector specific
trend indicators in online publications
Cooperation with the Fraunhofer Institute
and the Technische Hochschule Nuremberg
Develop a Trend-Analytics platform that enables users to
– follow developments in the field of new technologies in a targeted manner
– react adequately to trends and market changes
martechtoday.com, New B2B analytics platform called Proof
Challenges
Customer Project "Trend-Analytics"5 14.09.2018
Research on modern machine-
learning algorithms & Semantic Web
Technologies
Identify trends and innovation
opportunities in different domains
Start by using a relatively small
number of high quality data, e.g.
RSS feeds
Permanently optimizing quantity and
quality of analytics
https://irishadvantage.com/news/irish-companies-making-iot-opportunity/
Overview Trend-Analytics Platform
Customer Project "Trend-Analytics"6 14.09.2018
Data Collection
– Implement crawling mechanism
– Implement database (e.g. in Azure)
– Create administration interface (web)
– Identify (manually) high quality data (RSS-Feeds & Articles)
Data Analysis
– Evaluate existing machine learning techniques
– E.g. Unsupervised Learning, Supervised, …
– Investigate Semantic Web Technologies
Data Presentation & Interpretation
– Create a Web Interface and illustrate the results
– Interpret results
Customer Project "Trend-Analytics"7 14.09.2018
Data Analytics
Word Embeddings
Customer Project "Trend-Analytics"8 14.09.2018
Word embedding is a technique that treats words as vectors
whose relative similarities correlate with semantic similarity.
Measuring similarity between vectors is possible using
measures such as cosine similarity.
So, when we subtract the vector of the word man from
the vector of the word woman, then its cosine distance
would be close to the distance between the word queen
minus the word king
https://www.oreilly.com/learning/capturing-semantic-meanings-using-deep-learning
Word2vec
Customer Project "Trend-Analytics"9 14.09.2018
Word2vec
Continuous Bag of Words (CBOW)
Model predicts the current word from
a window of surrounding context
words.
Same approach as recommender
systems with collaborative filtering.
(Customer => Item)
Instead of computing and storing large amounts of data, we create a neural network
model that will be able to learn the relationship between the words and do it efficiently.
https://www.oreilly.com/learning/capturing-semantic-meanings-using-deep-learning
Topic model
Customer Project "Trend-Analytics"10 14.09.2018
statistical model for discovering the abstract "topics" that occur in a collection of
documents. It captures intuition about frequency of words in a mathematical framework.
Li et al. Energies 2017, 10(11), 1913
Cluster of Term Frequencies
Customer Project "Trend-Analytics"11 14.09.2018
Latent Dirichlet Allocation
TF*IDF (inverse document freq.)
Reduced to a vector space of only
1000 dimensions
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
Customer Project "Trend-Analytics"12 14.09.2018
Demo Trend-Analytics Platform
Demo Trend-Analytics Platform
Customer Project "Trend-Analytics"13 14.09.2018
Customer Project "Trend-Analytics"14 14.09.2018
Semantic Web
Semantic Web – a vision in 2001
Customer Project "Trend-Analytics"15 14.09.2018
Semantic Web, a visionary concept proposed in 2001 by
Sir Tim Berners-Lee, the inventor of the World Wide Web
– “I have a dream for the Web [in which computers] become
capable of analyzing all the data on the Web – the content, links,
and transactions between people and computers. ..”
Sir Tim Berners-Lee, fossbytes.com, 2016
Amazon illustrates Knowledge
Graph in Neptune
Semantic Web now
Customer Project "Trend-Analytics"16 14.09.2018
Linking Open Data cloud
diagram showing 1.163 highly
interconnected datasets
(http://lod-cloud.net)
Semantic Data Enrichment for Trend-Analytics
Customer Project "Trend-Analytics"17 14.09.2018
headlines,
abstracts,
articles
Storage Entity detection
Spotting Candidate
Selection
Disambi-
guation
Filtering
Sets of
matched
resources
Semantic
Querying
Federated
Querying
Filtering
Storage
RDBMS RDBMS
Specific metadata
or neighborhood
Knowledge
Graph
Semantic Data Enrichment for Trend-Analytics
Customer Project "Trend-Analytics"18 14.09.2018
headlines,
abstracts,
articles
Storage Entity detection
Spotting Candidate
Selection
Disambi-
guation
Filtering
Sets of
matched
resources
Semantic
Querying
Federated
Querying
Filtering
Storage
RDBMS RDBMS
Specific metadata
or neighborhood
Knowledge
Graph
Semantic Data Enrichment for Trend-Analytics
Customer Project "Trend-Analytics"19 14.09.2018
headlines,
abstracts,
articles
Storage Entity detection
Spotting Candidate
Selection
Disambi-
guation
Filtering
Sets of
matched
resources
Semantic
Querying
Federated
Querying
Filtering
Storage
RDBMS RDBMS
Specific metadata
or neighborhood
Knowledge
Graph
DBpedia
Spotlight
DBpedia
SPARQL
Endpoint
DBpedia
talend talend
Relational
Databases
Relational
Databases
Next Steps
Customer Project "Trend-Analytics"20 14.09.2018
Understanding data using Knowledge Graphs
– Pull identified entities through to the user interface
and provide additional meta information on displayed
terms (e.g. as popups, hover-links, …)
– Objective: Improve the user's understanding of the
results, e.g. what is meant by a specific term?
Complex Ontology-based Data Enrichment
– Develop a domain-specific ontology which integerates with Knowledge Graphs
– Objective: Restrict search space in Knowledge Graphs & hide not relevant entities
– Requires extensive use of Semantic Web technologies and semantic data
modeling (TripleStores, RDF, RDF-S, OWL, …)
https://www.w3.org/TR/rdf11-primer/
Customer Project "Trend-Analytics"21 14.09.2018
Demo Knowledge Graphs
Demo: Semantic Data Enrichment
Customer Project "Trend-Analytics"22 14.09.2018
DBpedia Spotlight
https://www.dbpedia-spotlight.org/demo/
Nokia and Zain Saudi Arabia have taken a significant step towards the creation of an
IoT ecosystem in the Kingdom of Saudi Arabia with the successful trial of NB-IoT
technology at a live site in Mina area of Makkah Province.
Nokia and Zain Saudi Arabia have taken a significant step towards the creation of
an IoT ecosystem in the Kingdom of Saudi Arabia with the successful trial of NB-
IoT technology at a live site in Mina area of Makkah Province.
Demo: Semantic Data Enrichment (2)
Customer Project "Trend-Analytics"23 14.09.2018
Wikidata
https://query.wikidata.org/
https://www.wikidata.org/wiki/Q1418 (Nokia)
https://www.wikidata.org/wiki/Q851 (Saudi Arabia)
Wikidata Graph Builder
https://angryloki.github.io/wikidata-graph-builder/
https://angryloki.github.io/wikidata-graph-
builder/?property=P355&item=Q1418&iterations=8&mode=undirected
Metaphactory
https://wikidata.metaphacts.com/resource/app:Start
https://wikidata.metaphacts.com/resource/wd:Q1418
Questions & Answers…
Dr. Olaf Nimz
Principal Consultant
Olaf.Nimz@trivadis.com
14.09.2018 Customer Project "Analytical Data Lake"24
Dr. Martin Zablocki
Consultant
Martin.Zablocki@trivadis.com

More Related Content

PPT
Roland Haeve (Atos): 'Using the Cloud for Big Data Analytics'
PDF
Treparel lt innovate summit june 27, 2013
PDF
Structured Content Meets Taxonomy
PDF
How Graphs Continue to Revolutionize The Prevention of Financial Crime & Frau...
PPTX
Stephen Buxton | Data Integration - a Multi-Model Approach - Documents and Tr...
PDF
Scaling up business value with real-time operational graph analytics
PDF
Leveraging Knowledge Graphs in your Enterprise Knowledge Management System
PPTX
Tagging with Rich Knowledge Graphs
Roland Haeve (Atos): 'Using the Cloud for Big Data Analytics'
Treparel lt innovate summit june 27, 2013
Structured Content Meets Taxonomy
How Graphs Continue to Revolutionize The Prevention of Financial Crime & Frau...
Stephen Buxton | Data Integration - a Multi-Model Approach - Documents and Tr...
Scaling up business value with real-time operational graph analytics
Leveraging Knowledge Graphs in your Enterprise Knowledge Management System
Tagging with Rich Knowledge Graphs

What's hot (20)

PDF
Data Market Austria and Data Science Continuing Education Course
PPTX
Robert Isele | eccenca CorporateMemory - Semantically integrated Enterprise D...
PPTX
BrightTALK - Semantic AI
PDF
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
PDF
Enterprise Knowledge Graph
PDF
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
PDF
Oracle NoSQL DB & InfiniteGraph - Trends in Big Data and Graph Technology
PPTX
Presentation data mining
PDF
Using Knowledge Graphs to Predict Customer Needs and Improve Quality
PPTX
GRAPHITE — An Extensible Graph Traversal Framework for RDBMS
PDF
FIWARE Global Summit - International Data Spaces - From Industry 4.0 to Data ...
PDF
Big Data and the Semantic Web: Challenges and Opportunities
PPTX
Sören Auer | Enterprise Knowledge Graphs
PDF
Channeling insights to the right people
PPTX
PhD Projects in Software Engineering For Beginners
PDF
An introduction to Data Mining
PDF
Cyber risk at the edge: current and future trends on cyber risk analytics and...
PPTX
Virtual BenchLearning - Data Bench Framework
PDF
An introduction to Data Mining by Kurt Thearling
PDF
DevTalks Keynote Powering interactive data analysis with Google BigQuery
Data Market Austria and Data Science Continuing Education Course
Robert Isele | eccenca CorporateMemory - Semantically integrated Enterprise D...
BrightTALK - Semantic AI
II-SDV 2017: How Visualisation of Open Patent Data can help with Strategic De...
Enterprise Knowledge Graph
GraphTalk Copenhagen - Killing Data Silos in the Life Sciences with Neo4j
Oracle NoSQL DB & InfiniteGraph - Trends in Big Data and Graph Technology
Presentation data mining
Using Knowledge Graphs to Predict Customer Needs and Improve Quality
GRAPHITE — An Extensible Graph Traversal Framework for RDBMS
FIWARE Global Summit - International Data Spaces - From Industry 4.0 to Data ...
Big Data and the Semantic Web: Challenges and Opportunities
Sören Auer | Enterprise Knowledge Graphs
Channeling insights to the right people
PhD Projects in Software Engineering For Beginners
An introduction to Data Mining
Cyber risk at the edge: current and future trends on cyber risk analytics and...
Virtual BenchLearning - Data Bench Framework
An introduction to Data Mining by Kurt Thearling
DevTalks Keynote Powering interactive data analysis with Google BigQuery
Ad

Similar to TechEvent Customer Project "Trend-Analytics" (20)

PPT
Related Entity Finding on the Web
PPTX
Semantic Search tutorial at SemTech 2012
PPTX
Making things findable
PPTX
SWT Lecture Session 1 - Introduction
PDF
Using the Semantic Web Stack to Make Big Data Smarter
PPT
Netflix presentation final
PPT
Spivack Blogtalk 2008
PPT
Building the Inform Semantic Publishing Ecosystem: from Author to Audience
PPTX
Large-Scale Semantic Search
PDF
Machine Learning Techniques for the Semantic Web
PPTX
(Keynote) Peter Mika - “Making the Web Searchable”
PPTX
Making the Web Searchable - Keynote ICWE 2015
PPT
Semantic Search
PDF
Semantic Search Tutorial at SemTech 2012
PPT
Applications of Semantic Technology in the Real World Today
ODP
Semantic Web - Introduction
PPTX
Mining Web content for Enhanced Search
PDF
Ak4301197200
PPT
Peter Mika's Presentation at SSSW 2011
PPTX
Knowledge Integration in Practice
Related Entity Finding on the Web
Semantic Search tutorial at SemTech 2012
Making things findable
SWT Lecture Session 1 - Introduction
Using the Semantic Web Stack to Make Big Data Smarter
Netflix presentation final
Spivack Blogtalk 2008
Building the Inform Semantic Publishing Ecosystem: from Author to Audience
Large-Scale Semantic Search
Machine Learning Techniques for the Semantic Web
(Keynote) Peter Mika - “Making the Web Searchable”
Making the Web Searchable - Keynote ICWE 2015
Semantic Search
Semantic Search Tutorial at SemTech 2012
Applications of Semantic Technology in the Real World Today
Semantic Web - Introduction
Mining Web content for Enhanced Search
Ak4301197200
Peter Mika's Presentation at SSSW 2011
Knowledge Integration in Practice
Ad

More from Trivadis (20)

PDF
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
PDF
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
PDF
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
PDF
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
PDF
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
PDF
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
PDF
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
PDF
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
PDF
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
PDF
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
PDF
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
PDF
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
PDF
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
PDF
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
PDF
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
PDF
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
PDF
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
PDF
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
PDF
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
PDF
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis

Recently uploaded (20)

PPTX
A Presentation on Artificial Intelligence
PPTX
Machine Learning_overview_presentation.pptx
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Empathic Computing: Creating Shared Understanding
PDF
Approach and Philosophy of On baking technology
PPT
Teaching material agriculture food technology
PDF
Encapsulation theory and applications.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Electronic commerce courselecture one. Pdf
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
A Presentation on Artificial Intelligence
Machine Learning_overview_presentation.pptx
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Encapsulation_ Review paper, used for researhc scholars
Per capita expenditure prediction using model stacking based on satellite ima...
MIND Revenue Release Quarter 2 2025 Press Release
Empathic Computing: Creating Shared Understanding
Approach and Philosophy of On baking technology
Teaching material agriculture food technology
Encapsulation theory and applications.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Diabetes mellitus diagnosis method based random forest with bat algorithm
Electronic commerce courselecture one. Pdf
Programs and apps: productivity, graphics, security and other tools
Network Security Unit 5.pdf for BCA BBA.
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
The AUB Centre for AI in Media Proposal.docx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
20250228 LYD VKU AI Blended-Learning.pptx

TechEvent Customer Project "Trend-Analytics"

  • 1. BASLE BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA ZURICH Customer Project "Trend-Analytics" Data Analytics & Semantic Web Olaf Nimz Martin Zablocki
  • 2. Agenda Customer Project "Trend-Analytics"2 14.09.2018 1. Introduction (short repetition of Part 1) 2. Data Analytics 3. Demo of Fraunhofer Trend-Analytics Platform 4. Semantic Web Technologies 5. Demo Knowledge Graphs
  • 3. Customer Project "Trend-Analytics"3 14.09.2018 Introduction
  • 4. Introduction Customer Project "Trend-Analytics"4 14.09.2018 Research project for the automatic search, analysis, and evaluation of sector specific trend indicators in online publications Cooperation with the Fraunhofer Institute and the Technische Hochschule Nuremberg Develop a Trend-Analytics platform that enables users to – follow developments in the field of new technologies in a targeted manner – react adequately to trends and market changes martechtoday.com, New B2B analytics platform called Proof
  • 5. Challenges Customer Project "Trend-Analytics"5 14.09.2018 Research on modern machine- learning algorithms & Semantic Web Technologies Identify trends and innovation opportunities in different domains Start by using a relatively small number of high quality data, e.g. RSS feeds Permanently optimizing quantity and quality of analytics https://irishadvantage.com/news/irish-companies-making-iot-opportunity/
  • 6. Overview Trend-Analytics Platform Customer Project "Trend-Analytics"6 14.09.2018 Data Collection – Implement crawling mechanism – Implement database (e.g. in Azure) – Create administration interface (web) – Identify (manually) high quality data (RSS-Feeds & Articles) Data Analysis – Evaluate existing machine learning techniques – E.g. Unsupervised Learning, Supervised, … – Investigate Semantic Web Technologies Data Presentation & Interpretation – Create a Web Interface and illustrate the results – Interpret results
  • 7. Customer Project "Trend-Analytics"7 14.09.2018 Data Analytics
  • 8. Word Embeddings Customer Project "Trend-Analytics"8 14.09.2018 Word embedding is a technique that treats words as vectors whose relative similarities correlate with semantic similarity. Measuring similarity between vectors is possible using measures such as cosine similarity. So, when we subtract the vector of the word man from the vector of the word woman, then its cosine distance would be close to the distance between the word queen minus the word king https://www.oreilly.com/learning/capturing-semantic-meanings-using-deep-learning
  • 9. Word2vec Customer Project "Trend-Analytics"9 14.09.2018 Word2vec Continuous Bag of Words (CBOW) Model predicts the current word from a window of surrounding context words. Same approach as recommender systems with collaborative filtering. (Customer => Item) Instead of computing and storing large amounts of data, we create a neural network model that will be able to learn the relationship between the words and do it efficiently. https://www.oreilly.com/learning/capturing-semantic-meanings-using-deep-learning
  • 10. Topic model Customer Project "Trend-Analytics"10 14.09.2018 statistical model for discovering the abstract "topics" that occur in a collection of documents. It captures intuition about frequency of words in a mathematical framework. Li et al. Energies 2017, 10(11), 1913
  • 11. Cluster of Term Frequencies Customer Project "Trend-Analytics"11 14.09.2018 Latent Dirichlet Allocation TF*IDF (inverse document freq.) Reduced to a vector space of only 1000 dimensions https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
  • 12. Customer Project "Trend-Analytics"12 14.09.2018 Demo Trend-Analytics Platform
  • 13. Demo Trend-Analytics Platform Customer Project "Trend-Analytics"13 14.09.2018
  • 14. Customer Project "Trend-Analytics"14 14.09.2018 Semantic Web
  • 15. Semantic Web – a vision in 2001 Customer Project "Trend-Analytics"15 14.09.2018 Semantic Web, a visionary concept proposed in 2001 by Sir Tim Berners-Lee, the inventor of the World Wide Web – “I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web – the content, links, and transactions between people and computers. ..” Sir Tim Berners-Lee, fossbytes.com, 2016 Amazon illustrates Knowledge Graph in Neptune
  • 16. Semantic Web now Customer Project "Trend-Analytics"16 14.09.2018 Linking Open Data cloud diagram showing 1.163 highly interconnected datasets (http://lod-cloud.net)
  • 17. Semantic Data Enrichment for Trend-Analytics Customer Project "Trend-Analytics"17 14.09.2018 headlines, abstracts, articles Storage Entity detection Spotting Candidate Selection Disambi- guation Filtering Sets of matched resources Semantic Querying Federated Querying Filtering Storage RDBMS RDBMS Specific metadata or neighborhood Knowledge Graph
  • 18. Semantic Data Enrichment for Trend-Analytics Customer Project "Trend-Analytics"18 14.09.2018 headlines, abstracts, articles Storage Entity detection Spotting Candidate Selection Disambi- guation Filtering Sets of matched resources Semantic Querying Federated Querying Filtering Storage RDBMS RDBMS Specific metadata or neighborhood Knowledge Graph
  • 19. Semantic Data Enrichment for Trend-Analytics Customer Project "Trend-Analytics"19 14.09.2018 headlines, abstracts, articles Storage Entity detection Spotting Candidate Selection Disambi- guation Filtering Sets of matched resources Semantic Querying Federated Querying Filtering Storage RDBMS RDBMS Specific metadata or neighborhood Knowledge Graph DBpedia Spotlight DBpedia SPARQL Endpoint DBpedia talend talend Relational Databases Relational Databases
  • 20. Next Steps Customer Project "Trend-Analytics"20 14.09.2018 Understanding data using Knowledge Graphs – Pull identified entities through to the user interface and provide additional meta information on displayed terms (e.g. as popups, hover-links, …) – Objective: Improve the user's understanding of the results, e.g. what is meant by a specific term? Complex Ontology-based Data Enrichment – Develop a domain-specific ontology which integerates with Knowledge Graphs – Objective: Restrict search space in Knowledge Graphs & hide not relevant entities – Requires extensive use of Semantic Web technologies and semantic data modeling (TripleStores, RDF, RDF-S, OWL, …) https://www.w3.org/TR/rdf11-primer/
  • 21. Customer Project "Trend-Analytics"21 14.09.2018 Demo Knowledge Graphs
  • 22. Demo: Semantic Data Enrichment Customer Project "Trend-Analytics"22 14.09.2018 DBpedia Spotlight https://www.dbpedia-spotlight.org/demo/ Nokia and Zain Saudi Arabia have taken a significant step towards the creation of an IoT ecosystem in the Kingdom of Saudi Arabia with the successful trial of NB-IoT technology at a live site in Mina area of Makkah Province. Nokia and Zain Saudi Arabia have taken a significant step towards the creation of an IoT ecosystem in the Kingdom of Saudi Arabia with the successful trial of NB- IoT technology at a live site in Mina area of Makkah Province.
  • 23. Demo: Semantic Data Enrichment (2) Customer Project "Trend-Analytics"23 14.09.2018 Wikidata https://query.wikidata.org/ https://www.wikidata.org/wiki/Q1418 (Nokia) https://www.wikidata.org/wiki/Q851 (Saudi Arabia) Wikidata Graph Builder https://angryloki.github.io/wikidata-graph-builder/ https://angryloki.github.io/wikidata-graph- builder/?property=P355&item=Q1418&iterations=8&mode=undirected Metaphactory https://wikidata.metaphacts.com/resource/app:Start https://wikidata.metaphacts.com/resource/wd:Q1418
  • 24. Questions & Answers… Dr. Olaf Nimz Principal Consultant Olaf.Nimz@trivadis.com 14.09.2018 Customer Project "Analytical Data Lake"24 Dr. Martin Zablocki Consultant Martin.Zablocki@trivadis.com