SlideShare a Scribd company logo
ETM 
Extreme Technology Analytics Research Group –– tfdea.com 
INFORMS’14 
Technology Forecasting using DEA 
in the presence of infeasibility 
Nov. 9th. 2014 
Department of Engineering and Technology Management 
Dong-Joon Lim 
Portland State University 
Maseeh College of Engineering and Computer Science
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
2 
Introduction 
- TFDEA - 
 Technology Forecasting using Data Envelopment Analysis (TFDEA) 
 First introduced by Anderson and Inman in 2001 
 Predictive application of DEA to estimate the future state-of-the-art frontier 
 Primary usages 
- Product scheduling 
: How likely the desired level of product will be operational in a given point in time? 
- Development target setting 
: What would be the feasible sets of inputs-outputs in a certain point in time? 
 Recent applications 
- Technological forecasting on supercomputer development (Omega, 2015) 
- Technology trajectory mapping of flat panel technologies (R&D Mgt, 2015) 
- Measurement of technological change of hybrid electric vehicles (TFSC, 2014) 
- Estimation of future specifications of DSLR cameras (AMBF, 2014)
Estimated frontier (T+2) 
Estimated frontier (T+1) 
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
3 
Introduction 
- TFDEA - 
Output 
Current frontier (T) 
Input 
Evolution 
of 
frontiers 
 Conceptual framework
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
4 
Introduction 
- TFDEA - 
 Local RoC 
: Expected progress of adjacent facets 
: Value for currently efficient DMUs 
 Individualized RoC 
: Expected progress of target DMU 
: Value for target DMUs
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
5 
Motivation 
- Why should bother - 
? 
 Infeasibility 
 Occurs occasionally under the condition of VRS 
(Also a problem for input-oriented DRS model, output-oriented IRS model, 
and CRS model with a zero input value) 
 Renders TFDEA unable to estimate the arrival of target 
 Alternate measures 
- Lovell and Rouse employed a user-defined scaling factor 
- Cook et al. used Radial L1 distance 
- Lee et al. and Lee and Zhu used Slack based L1 distance 
- Chen et al. used L2 distance based on a directional distance function
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
6 
Extremity 
D’ (10,20) 
D (5,20) E (20,20) 
Extremity 
E’ (20,15) 
Region I 
Infeasible for IO&OO 
Region III 
Infeasible for OO 
I O: Input-oriented model 
OO: Output-oriented model 
Current frontier 
(T) 
Input 
Region II 
Infeasible for IO 
Region IV 
Feasible for IO&OO 
C (25,15) 
F (5,5) 
5 10 15 20 25 
20 
15 
10 
5 
2 
F’ (10,5) 
Output 
B (15,10) 
Radial 
distance 
Extremity 
Radial 
distance 
Extremity 
Radial 
distance 
Radial 
distance 
OO RoC 
I O RoC 
A (10,2) 
D’’ (5,15) 
Motivation 
- How to approach -
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Formulation 
- How to approach - 
7 
Stage 1. Efficiency measure 
< Output-oriented > < Input-oriented > 
OO efficiency IO efficiency
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Formulation 
- How to approach - 
8 
Stage 2. Local RoC 
< Output-oriented > < Input-oriented > 
OO local RoC IO local RoC
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Formulation 
- How to approach - 
9 
Stage 3. Super-efficiency measure 
< Output-oriented > < Input-oriented > 
OO extremity 
OO radial distance 
IO extremity 
IO radial distance
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Formulation 
- How to approach - 
10 
< Input-oriented > < Output-oriented > 
Stage 4. 
Forecast 
Time period for 
the radial distance 
Time period for 
the extremity 
Starting point 
of the forecast
276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 
277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 
282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 
283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 
284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 
293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 
298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 
305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 
321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 
325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 
330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 
331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 
336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 
341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 
344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 
349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 
350 LK695D3LA08 2011 0.8268 1.8865 1.1446 1.2050 2006.61 2011.42 
353 LTI700HA01 2011 0.9289 1.6223 1.1510 1.2110 2006.52 2009.56 
355 T706DB01 V0 2011 0.9060 2.8878 1.1286 1.2345 2006.56 2012.41 
357 V546H1-LS1 2011 0.8159 2.0305 1.1688 1.1940 2006.77 2012.06 
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Demonstration 
- Proof of concept - 
11 
 LCD 
 Input-oriented / VRS / 31 (out of 95) infeasible targets in 2007 
DMU 
(k) 
LCD 
panel name 
Actual 
year of release 
(푡푘 ) 
Extremity 
(1 − 휌훰 푘 
) 
Radial distance 
훰 ) 
(1 + 휏푘 
Individualized 
output-oriented RoC 
퐶푂 푛 
푗=1 ∙ 훿푗 
휆푗 ,푘 
퐶 
퐶푂 푛 
휆푗 ,푘 
푗=1 
Individualized 
input-oriented RoC 
퐶푂 푛 
푗=1 ∙ 휁푗 
휇푗 ,푘 
퐶 
퐶푂 푛 
휇푗 ,푘 
푗=1 
Effective date 
퐶푂 푛 
푗=1 ∙ 푡푗 
휇푗 ,푘 
퐶푂 푛 
휇푗 ,푘 
푗=1 
Forecasted 
year of release 
푡푓표푟푒푐푎푠푡 _퐼푂 
(푘 
) 
165 T520HW01 V0 2008 0.9351 1.6236 1.1778 1.1972 2006.72 2009.82 
166 V562D1-L04 2008 0.9632 1.0035 1.1876 1.6580 2007.00 2007.16 
212 V460H1-LH7 2009 0.8183 1.3059 1.1932 1.1879 2006.86 2009.53 
218 LTA550HF02 2009 0.9151 2.0317 1.1708 1.1986 2006.70 2011.16 
248 V400H1-L08 2009 0.8508 1.2724 1.1984 1.1849 2006.90 2009.21 
265 LK460D3LA63 2010 0.9778 2.2312 1.1752 1.1941 2006.77 2011.43 
266 LTA460HM03 2010 0.9778 1.7685 1.1826 1.1941 2006.77 2010.11 
268 LTA460HQ05 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 
271 P460HW03 V0 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 
273 V460H1-L11 2010 0.8183 1.2929 1.1932 1.1879 2006.86 2009.48 
274 V460H1-LH9 2010 0.8653 1.4340 1.1900 1.1898 2006.83 2009.73 
276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 
277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 
282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 
283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 
284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 
293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 
298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 
305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 
321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 
325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 
330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 
331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 
336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 
341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 
344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 
349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 
… 
… 
… 
… 
… 
… 
… 
… 
…
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
DMU 
(k) 
LCD 
panel name 
Actual 
year of release 
(푡푘 ) 
Demonstration 
- Proof of concept - 
Extremity 
(1 − 휌훰 푘 
) 
Radial distance 
훰 ) 
(1 + 휏푘 
Individualized 
output-oriented RoC 
퐶푂 =1 휆푗 ,푘 
∙ 푗 
푛훿푗 
퐶 
퐶푂 =1 
휆푗 ,푘 
푗 
푛Individualized 
input-oriented RoC 
퐶푂 =1 휇푗 ,푘 
∙ 푗 
푛휁푗 
퐶 
퐶푂 푛푗 
=1 
휇푗 ,푘 
Effective date 
퐶푂 =1 휇푗 ,푘 
∙ 푗 
푛푡푗 
퐶푂 푛푗 
=1 
휇푗 ,푘 
Forecasted 
year of release 
푡푓표푟푒푐푎푠푡 _퐼푂 
(푘 
) 
165 T520HW01 V0 2008 0.9351 1.6236 1.1778 1.1972 2006.72 2009.82 
166 V562D1-L04 2008 0.9632 1.0035 1.1876 1.6580 2007.00 2007.16 
212 V460H1-LH7 2009 0.8183 1.3059 1.1932 1.1879 2006.86 2009.53 
218 LTA550HF02 2009 0.9151 2.0317 1.1708 1.1986 2006.70 2011.16 
248 V400H1-L08 2009 0.8508 1.2724 1.1984 1.1849 2006.90 2009.21 
265 LK460D3LA63 2010 0.9778 2.2312 1.1752 1.1941 2006.77 2011.43 
266 LTA460HM03 2010 0.9778 1.7685 1.1826 1.1941 2006.77 2010.11 
268 LTA460HQ05 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 
271 P460HW03 V0 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 
273 V460H1-L11 2010 0.8183 1.2929 1.1932 1.1879 2006.86 2009.48 
274 V460H1-LH9 2010 0.8653 1.4340 1.1900 1.1898 2006.83 2009.73 
276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 
277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 
282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 
283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 
284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 
293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 
298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 
305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 
321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 
325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 
330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 
331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 
336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 
341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 
344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 
349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 
350 LK695D3LA08 2011 0.8268 1.8865 1.1446 1.2050 2006.61 2011.42 
353 LTI700HA01 2011 0.9289 1.6223 1.1510 1.2110 2006.52 2009.56 
355 T706DB01 V0 2011 0.9060 2.8878 1.1286 1.2345 2006.56 2012.41 
357 V546H1-LS1 2011 0.8159 2.0305 1.1688 1.1940 2006.77 2012.06 
12
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Demonstration 
- Proof of concept - 
13 
 Deviation statistics (actual vs forecast)
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
14 
 TFDEA extension 
Conclusion 
- Summary of Talk - 
 Developed based on Cook et al.’s modified super-efficiency model 
 Bi-directional distances are estimated from RoCs from corresponding orientations 
 Always yields a feasible and a finite forecast 
 Returns results equivalent to the original TFDEA model when feasibility is present 
(Feasible target has an extremity value of zero, which reduces presented model to 
the original TFDEA model) 
 Applied to the LCD dataset 
- Formerly infeasible 31 targets could be forecasted 
- Results showed not only consistent forecasts for feasible targets 
but also reasonable forecasts for infeasible targets
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
15 
Future Works 
- Matters for Speculation - 
 Comprehensive benchmark tests 
 Apply current model to more/bigger datasets 
 Comparison with alternate super-efficiency measures 
 Practical interpretation of ‘Extremity’ 
 Extremity indicates occurrences of unprecedented levels of inputs/outputs 
 Degree/Ratio of infeasible targets to feasible targets over time might imply 
the direction of technological innovation 
 Comparison between IO extremities and OO extremities 
 Weighted distance for extremity
ETM 
Extreme Technology Analytics Research Group – tfdea.com 
Backup 
16

More Related Content

PPTX
R. De Santis, M. Fioramanti, A. Girardi, C. Pappalardo - The track record of...
PPTX
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
PPTX
Technological forecasting of supercomputer development: The march to exascale...
PPT
DEA Presentation
PPTX
Data envelopment analysis untuk Cost Revenue Profit
PPT
Data envelopment analysis
PPTX
PPTX
Data envelopment analysis
R. De Santis, M. Fioramanti, A. Girardi, C. Pappalardo - The track record of...
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
Technological forecasting of supercomputer development: The march to exascale...
DEA Presentation
Data envelopment analysis untuk Cost Revenue Profit
Data envelopment analysis
Data envelopment analysis

Similar to Technology forecasting using dea in the presence of infeasibility (20)

PDF
Making better use of Data and AI in Industry 4.0
PDF
Sensors and Actuators Engineering System Instrumentation 2nd Silva Solution M...
PDF
Leveraging Topological Data Analysis and AI for Advanced Manufacturing: Integ...
PDF
Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
PDF
Ot Tech Site Ahlgren
PDF
EnrichmentWeek Binus Computer Vision
PDF
IRJET - E-Mobility Infra Load Assist, Predictor and Balancer using Multi ...
PDF
Breakthrough in Quality Management
PPTX
Career Opportunities in Electric vehicles and Autonomous vehicles .pptx
PPTX
Pro-active Thermal MonitoringFINALPRESENTATIONCOLLEGE.pptx
PDF
Digitwin An Approach For Production Process Optimization In A Built Environme...
PDF
Predicting Utility of Electric Vehicles for Specific Mobility Behavior
PPTX
DA1-IOT.pptx
PPTX
Machine Learning - Startup weekend UCSB 2018
PPTX
Technorizz_Solution1power_point_presentation.pptx
PDF
Milan_thesis.pdf
PDF
Sensors and Actuators Engineering System Instrumentation 2nd Silva Solution M...
PPTX
DFR Conference, March 2019
PDF
Improved Performance of Fuzzy Logic Algorithm for Lane Detection Images
DOCX
Industrial big data analytics for prediction of remaining useful life based o...
Making better use of Data and AI in Industry 4.0
Sensors and Actuators Engineering System Instrumentation 2nd Silva Solution M...
Leveraging Topological Data Analysis and AI for Advanced Manufacturing: Integ...
Evolving Fuzzy System Applied to Battery Charge Capacity Prediction for Faul...
Ot Tech Site Ahlgren
EnrichmentWeek Binus Computer Vision
IRJET - E-Mobility Infra Load Assist, Predictor and Balancer using Multi ...
Breakthrough in Quality Management
Career Opportunities in Electric vehicles and Autonomous vehicles .pptx
Pro-active Thermal MonitoringFINALPRESENTATIONCOLLEGE.pptx
Digitwin An Approach For Production Process Optimization In A Built Environme...
Predicting Utility of Electric Vehicles for Specific Mobility Behavior
DA1-IOT.pptx
Machine Learning - Startup weekend UCSB 2018
Technorizz_Solution1power_point_presentation.pptx
Milan_thesis.pdf
Sensors and Actuators Engineering System Instrumentation 2nd Silva Solution M...
DFR Conference, March 2019
Improved Performance of Fuzzy Logic Algorithm for Lane Detection Images
Industrial big data analytics for prediction of remaining useful life based o...
Ad

Recently uploaded (20)

PDF
Hybrid model detection and classification of lung cancer
PDF
Architecture types and enterprise applications.pdf
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
A novel scalable deep ensemble learning framework for big data classification...
PPT
Module 1.ppt Iot fundamentals and Architecture
PPT
What is a Computer? Input Devices /output devices
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
cloud_computing_Infrastucture_as_cloud_p
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PPTX
Chapter 5: Probability Theory and Statistics
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Hindi spoken digit analysis for native and non-native speakers
PPTX
1. Introduction to Computer Programming.pptx
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
Getting started with AI Agents and Multi-Agent Systems
Hybrid model detection and classification of lung cancer
Architecture types and enterprise applications.pdf
Developing a website for English-speaking practice to English as a foreign la...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
A novel scalable deep ensemble learning framework for big data classification...
Module 1.ppt Iot fundamentals and Architecture
What is a Computer? Input Devices /output devices
gpt5_lecture_notes_comprehensive_20250812015547.pdf
cloud_computing_Infrastucture_as_cloud_p
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Chapter 5: Probability Theory and Statistics
A comparative study of natural language inference in Swahili using monolingua...
Hindi spoken digit analysis for native and non-native speakers
1. Introduction to Computer Programming.pptx
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Final SEM Unit 1 for mit wpu at pune .pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
O2C Customer Invoices to Receipt V15A.pptx
Getting started with AI Agents and Multi-Agent Systems
Ad

Technology forecasting using dea in the presence of infeasibility

  • 1. ETM Extreme Technology Analytics Research Group –– tfdea.com INFORMS’14 Technology Forecasting using DEA in the presence of infeasibility Nov. 9th. 2014 Department of Engineering and Technology Management Dong-Joon Lim Portland State University Maseeh College of Engineering and Computer Science
  • 2. ETM Extreme Technology Analytics Research Group – tfdea.com 2 Introduction - TFDEA -  Technology Forecasting using Data Envelopment Analysis (TFDEA)  First introduced by Anderson and Inman in 2001  Predictive application of DEA to estimate the future state-of-the-art frontier  Primary usages - Product scheduling : How likely the desired level of product will be operational in a given point in time? - Development target setting : What would be the feasible sets of inputs-outputs in a certain point in time?  Recent applications - Technological forecasting on supercomputer development (Omega, 2015) - Technology trajectory mapping of flat panel technologies (R&D Mgt, 2015) - Measurement of technological change of hybrid electric vehicles (TFSC, 2014) - Estimation of future specifications of DSLR cameras (AMBF, 2014)
  • 3. Estimated frontier (T+2) Estimated frontier (T+1) ETM Extreme Technology Analytics Research Group – tfdea.com 3 Introduction - TFDEA - Output Current frontier (T) Input Evolution of frontiers  Conceptual framework
  • 4. ETM Extreme Technology Analytics Research Group – tfdea.com 4 Introduction - TFDEA -  Local RoC : Expected progress of adjacent facets : Value for currently efficient DMUs  Individualized RoC : Expected progress of target DMU : Value for target DMUs
  • 5. ETM Extreme Technology Analytics Research Group – tfdea.com 5 Motivation - Why should bother - ?  Infeasibility  Occurs occasionally under the condition of VRS (Also a problem for input-oriented DRS model, output-oriented IRS model, and CRS model with a zero input value)  Renders TFDEA unable to estimate the arrival of target  Alternate measures - Lovell and Rouse employed a user-defined scaling factor - Cook et al. used Radial L1 distance - Lee et al. and Lee and Zhu used Slack based L1 distance - Chen et al. used L2 distance based on a directional distance function
  • 6. ETM Extreme Technology Analytics Research Group – tfdea.com 6 Extremity D’ (10,20) D (5,20) E (20,20) Extremity E’ (20,15) Region I Infeasible for IO&OO Region III Infeasible for OO I O: Input-oriented model OO: Output-oriented model Current frontier (T) Input Region II Infeasible for IO Region IV Feasible for IO&OO C (25,15) F (5,5) 5 10 15 20 25 20 15 10 5 2 F’ (10,5) Output B (15,10) Radial distance Extremity Radial distance Extremity Radial distance Radial distance OO RoC I O RoC A (10,2) D’’ (5,15) Motivation - How to approach -
  • 7. ETM Extreme Technology Analytics Research Group – tfdea.com Formulation - How to approach - 7 Stage 1. Efficiency measure < Output-oriented > < Input-oriented > OO efficiency IO efficiency
  • 8. ETM Extreme Technology Analytics Research Group – tfdea.com Formulation - How to approach - 8 Stage 2. Local RoC < Output-oriented > < Input-oriented > OO local RoC IO local RoC
  • 9. ETM Extreme Technology Analytics Research Group – tfdea.com Formulation - How to approach - 9 Stage 3. Super-efficiency measure < Output-oriented > < Input-oriented > OO extremity OO radial distance IO extremity IO radial distance
  • 10. ETM Extreme Technology Analytics Research Group – tfdea.com Formulation - How to approach - 10 < Input-oriented > < Output-oriented > Stage 4. Forecast Time period for the radial distance Time period for the extremity Starting point of the forecast
  • 11. 276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 350 LK695D3LA08 2011 0.8268 1.8865 1.1446 1.2050 2006.61 2011.42 353 LTI700HA01 2011 0.9289 1.6223 1.1510 1.2110 2006.52 2009.56 355 T706DB01 V0 2011 0.9060 2.8878 1.1286 1.2345 2006.56 2012.41 357 V546H1-LS1 2011 0.8159 2.0305 1.1688 1.1940 2006.77 2012.06 ETM Extreme Technology Analytics Research Group – tfdea.com Demonstration - Proof of concept - 11  LCD  Input-oriented / VRS / 31 (out of 95) infeasible targets in 2007 DMU (k) LCD panel name Actual year of release (푡푘 ) Extremity (1 − 휌훰 푘 ) Radial distance 훰 ) (1 + 휏푘 Individualized output-oriented RoC 퐶푂 푛 푗=1 ∙ 훿푗 휆푗 ,푘 퐶 퐶푂 푛 휆푗 ,푘 푗=1 Individualized input-oriented RoC 퐶푂 푛 푗=1 ∙ 휁푗 휇푗 ,푘 퐶 퐶푂 푛 휇푗 ,푘 푗=1 Effective date 퐶푂 푛 푗=1 ∙ 푡푗 휇푗 ,푘 퐶푂 푛 휇푗 ,푘 푗=1 Forecasted year of release 푡푓표푟푒푐푎푠푡 _퐼푂 (푘 ) 165 T520HW01 V0 2008 0.9351 1.6236 1.1778 1.1972 2006.72 2009.82 166 V562D1-L04 2008 0.9632 1.0035 1.1876 1.6580 2007.00 2007.16 212 V460H1-LH7 2009 0.8183 1.3059 1.1932 1.1879 2006.86 2009.53 218 LTA550HF02 2009 0.9151 2.0317 1.1708 1.1986 2006.70 2011.16 248 V400H1-L08 2009 0.8508 1.2724 1.1984 1.1849 2006.90 2009.21 265 LK460D3LA63 2010 0.9778 2.2312 1.1752 1.1941 2006.77 2011.43 266 LTA460HM03 2010 0.9778 1.7685 1.1826 1.1941 2006.77 2010.11 268 LTA460HQ05 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 271 P460HW03 V0 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 273 V460H1-L11 2010 0.8183 1.2929 1.1932 1.1879 2006.86 2009.48 274 V460H1-LH9 2010 0.8653 1.4340 1.1900 1.1898 2006.83 2009.73 276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 … … … … … … … … …
  • 12. ETM Extreme Technology Analytics Research Group – tfdea.com DMU (k) LCD panel name Actual year of release (푡푘 ) Demonstration - Proof of concept - Extremity (1 − 휌훰 푘 ) Radial distance 훰 ) (1 + 휏푘 Individualized output-oriented RoC 퐶푂 =1 휆푗 ,푘 ∙ 푗 푛훿푗 퐶 퐶푂 =1 휆푗 ,푘 푗 푛Individualized input-oriented RoC 퐶푂 =1 휇푗 ,푘 ∙ 푗 푛휁푗 퐶 퐶푂 푛푗 =1 휇푗 ,푘 Effective date 퐶푂 =1 휇푗 ,푘 ∙ 푗 푛푡푗 퐶푂 푛푗 =1 휇푗 ,푘 Forecasted year of release 푡푓표푟푒푐푎푠푡 _퐼푂 (푘 ) 165 T520HW01 V0 2008 0.9351 1.6236 1.1778 1.1972 2006.72 2009.82 166 V562D1-L04 2008 0.9632 1.0035 1.1876 1.6580 2007.00 2007.16 212 V460H1-LH7 2009 0.8183 1.3059 1.1932 1.1879 2006.86 2009.53 218 LTA550HF02 2009 0.9151 2.0317 1.1708 1.1986 2006.70 2011.16 248 V400H1-L08 2009 0.8508 1.2724 1.1984 1.1849 2006.90 2009.21 265 LK460D3LA63 2010 0.9778 2.2312 1.1752 1.1941 2006.77 2011.43 266 LTA460HM03 2010 0.9778 1.7685 1.1826 1.1941 2006.77 2010.11 268 LTA460HQ05 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 271 P460HW03 V0 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 273 V460H1-L11 2010 0.8183 1.2929 1.1932 1.1879 2006.86 2009.48 274 V460H1-LH9 2010 0.8653 1.4340 1.1900 1.1898 2006.83 2009.73 276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 350 LK695D3LA08 2011 0.8268 1.8865 1.1446 1.2050 2006.61 2011.42 353 LTI700HA01 2011 0.9289 1.6223 1.1510 1.2110 2006.52 2009.56 355 T706DB01 V0 2011 0.9060 2.8878 1.1286 1.2345 2006.56 2012.41 357 V546H1-LS1 2011 0.8159 2.0305 1.1688 1.1940 2006.77 2012.06 12
  • 13. ETM Extreme Technology Analytics Research Group – tfdea.com Demonstration - Proof of concept - 13  Deviation statistics (actual vs forecast)
  • 14. ETM Extreme Technology Analytics Research Group – tfdea.com 14  TFDEA extension Conclusion - Summary of Talk -  Developed based on Cook et al.’s modified super-efficiency model  Bi-directional distances are estimated from RoCs from corresponding orientations  Always yields a feasible and a finite forecast  Returns results equivalent to the original TFDEA model when feasibility is present (Feasible target has an extremity value of zero, which reduces presented model to the original TFDEA model)  Applied to the LCD dataset - Formerly infeasible 31 targets could be forecasted - Results showed not only consistent forecasts for feasible targets but also reasonable forecasts for infeasible targets
  • 15. ETM Extreme Technology Analytics Research Group – tfdea.com 15 Future Works - Matters for Speculation -  Comprehensive benchmark tests  Apply current model to more/bigger datasets  Comparison with alternate super-efficiency measures  Practical interpretation of ‘Extremity’  Extremity indicates occurrences of unprecedented levels of inputs/outputs  Degree/Ratio of infeasible targets to feasible targets over time might imply the direction of technological innovation  Comparison between IO extremities and OO extremities  Weighted distance for extremity
  • 16. ETM Extreme Technology Analytics Research Group – tfdea.com Backup 16

Editor's Notes

  • #16: Limitation: RoC would not be captured depending on the model: constant 1 for IO