SlideShare a Scribd company logo
The Data Center and Hadoop

Jacob Rapp, Cisco

jarapp@cisco.com
Hadoop Considerations
•

Traffic Types, Job Patterns, Network Considerations, Compute

Network Integration
•

Co-exist with current Data Center infrastructure

•

Open, Programmable and Application-Aware Networks

Multi-tenancy
• Remove the “Silo clusters”

2
3
Reduce
Ingress vs.
Egress
Data Set

Analyze

1:0.3
The Time the reducers
start is dependent on:

Reduce

Extract Transform Load
(ETL)

Ingress vs.
Egress
Data Set

mapred.reduce.slowstart.co
mpleted.maps
It doesn’t change the amount
of data sent to Reducers, but
may change the timing to
send that data

1:1
Reduce

Explode

Ingress vs.
Egress
Data Set

1:2
4
Small Flows/Messaging
(Admin Related, Heart-beats, Keep-alive,
delay sensitive application messaging)

Small – Medium Incast
(Hadoop Shuffle)

Large Flows
(HDFS Ingest)

Large Incast
(Hadoop Replication)

5
NameNode
JobTracker
ZooKeeper

Many-to-Many Traffic Pattern

Map 1

Map 2

Map 3

Map N

Shuffle

Reducer 1

Reducer 2

Reducer 3

Reducer N
Output
Replication

HDFS

6
Job Patterns have varying impact on network utilization
Analyze
Simulated with
Shakespeare
Wordcount

Extract Transform Load
(ETL)
Simulated with
Yahoo TeraSort

Extract Transform Load
(ETL)
Simulated with
Yahoo TeraSort with output
replication
8
Integration Considerations
 Network Attributes
 Architecture
 Availability
 Capacity, Scale &
Oversubscription
 Flexibility
 Management & Visibility

9
Generally 1G is being used largely due to the cost/performance trade-offs.
Though 10GE can provide benefits depending on workload

Single 1GE
100% Utilized

Dual 1GE
75% Utilized

10GE
40% Utilized

10
• No single point of failure from network view point. No impact on job completion time
• NIC bonding configured at Linux – with LACP mode of bonding

• Effective load-sharing of traffic flow on two NICs.
• Recommended to change the hashing to src-dst-ip-port (both network and NIC bonding in

Linux) for optimal load-sharing

11
1GE vs. 10GE Buffer Usage

1
13
25
37
49
61
73
85
97
109
121
133
145
157
169
181
193
205
217
229
241
253
265
277
289
301
313
325
337
349
361
373
385
397
409
421
433
445
457
469
481
493
505
517
529
541
553
565
577
589
601
613
625
637
649
661
673
685
697
709
721
733
745
757
769
781
793

Cell Usage

Job Completion

Moving from 1GE to 10GE actually lowers the buffer requirement at the switching layer.

1G Buffer Used

10G Buffer Used

1G Map %

1G Reduce %

10G Map %

10G Reduce %

By moving to 10GE, the data node has a wider pipe to receive data lessening the
need for buffers on the network as the total aggregate transfer rate and amount of
data does not increase substantially. This is due, in part, to limits of I/O and
Compute capabilities
12
Findings

Goals

• 10G and/or Dual attached server provides

• Extensive Validation of

Hadoop Workload
• Reference Architecture
Make it easy for Enterprise
Demystify Network for Hadoop
Deployment
Integration with Enterprise
with efficient choices of
network topology/devices

More Details From Hadoop
Summit 2012 at:

consistent job completion time & better buffer
utilization
• 10G provide reduce burst at the access layer
• Dual Attached Sever is recommended design –

1G or 10G. 10G for future proofing
• Rack failure has the biggest impact on job

completion time
• Does not require non-blocking network
• Latency does not matter much in Hadoop

workloads

http://www.slideshare.net/Hadoop_Summit/ref-arch-validated-and-tested-approach-to-define-a-network-design
http://youtu.be/YJODsK0T67A

13
14
n3548-001# show interface brief
-------------------------------------------------------------------------------Ethernet
VLAN
Type Mode
Status Reason
Speed
Port
Interface
Ch #
-------------------------------------------------------------------------------Eth1/1
1
eth access up
none
10G(D) -Eth1/2
1
eth access up
none
10G(D) -Eth1/3
1
eth access up
none
10G(D) -Eth1/4
1
eth access up
none
10G(D) -Eth1/5
1
eth access up
none
10G(D) –.
.
Eth1/33
1
eth access up
none
10G(D) -Eth1/34
1
eth access up
none
10G(D) -Eth1/35
1
eth access down
SFP not inserted
10G(D) -Eth1/36
1
eth access down
SFP not inserted
10G(D) -Eth1/37
1
eth access down
Administratively down
10G(D) –
.

© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

15
n3548-001# show mac address-table dynamic
Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay
MAC
age - seconds since first seen,+ - primary entry using vPC PeerLink
MAC Addresses
VLAN
MAC Address
Type
age
Secure NTFY
Ports
of the connected
---------+-----------------+--------+---------+------+----+----------------devices … and
* 1
e8b7.484d.a208
dynamic
60570
F Eth1/31
the port they are F
* 1
e8b7.484d.a20a
dynamic
60560
F
F Eth1/31
on…
* 1
e8b7.484d.a73e
dynamic
60560
F
F Eth1/34
* 1
e8b7.484d.a740
dynamic
60560
F
F Eth1/34
* 1
e8b7.484d.ad15
dynamic
60560
F
F Eth1/28
* 1
e8b7.484d.ad17
dynamic
60560
F
F Eth1/28
* 1
e8b7.484d.b3e9
dynamic
60570
F
F Eth1/25
* 1
e8b7.484d.b3eb
dynamic
60560
F
F Eth1/25
.
.

© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

16
n3548-001# portServerMap
=======================================
Port
Server FQDN
--------------------------------------Eth1/1 c200-m2-10g2-001.cluster10g.com
Eth1/2 c200-m2-10g2-002.cluster10g.com
Eth1/3 c200-m2-10g2-003.cluster10g.com
Eth1/4 c200-m2-10g2-004.cluster10g.com
Eth1/5 c200-m2-10g2-005.cluster10g.com
Eth1/6 c200-m2-10g2-006.cluster10g.com
Eth1/7 c200-m2-10g2-031.cluster10g.com
Eth1/8 c200-m2-10g2-008.cluster10g.com
Eth1/9 c200-m2-10g2-009.cluster10g.com
Eth1/11 c200-m2-10g2-011.cluster10g.com
.
.
.

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

17
n3548-001# trackerList
===========================================
Port
Server
Server Port
------------------------------------------Eth1/2 c200-m2-10g2-002
50544
Eth1/3 c200-m2-10g2-003
41909
Eth1/4 c200-m2-10g2-004
36480
Eth1/5 c200-m2-10g2-005
38179
Eth1/6 c200-m2-10g2-006
51375
Eth1/7 c200-m2-10g2-031
41915
Eth1/8 c200-m2-10g2-008
50983
Eth1/9 c200-m2-10g2-009
37056
Eth1/11 c200-m2-10g2-011
35882
Eth1/12 c200-m2-10g2-012
44551
.
.
.

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

18
n3548-001# bufferServerMap
===================================================================
Port
Server
1sec
5sec
60sec
5min
1hr
------------------------------------------------------------------Eth1/1 c200-m2-10g2-001
0KB
0KB
0KB
0KB
0KB
Eth1/2 c200-m2-10g2-002
384KB
384KB
1536KB 2304KB 2304KB
Eth1/3 c200-m2-10g2-003
384KB
384KB
1152KB 1536KB 1536KB
Eth1/4 c200-m2-10g2-004
384KB
384KB
2304KB 2304KB 2304KB
Eth1/5 c200-m2-10g2-005
384KB
384KB
768KB
1536KB 1536KB
Eth1/6 c200-m2-10g2-006
384KB
2304KB 2304KB 2304KB 2304KB
Eth1/7 c200-m2-10g2-031
384KB
384KB
3456KB 3840KB 3840KB
Eth1/8 c200-m2-10g2-008
768KB
768KB
2688KB 2688KB 2688KB
Eth1/9 c200-m2-10g2-009
384KB
384KB
2304KB 2304KB 2304KB
Eth1/11 c200-m2-10g2-011
384KB
384KB
1920KB 1920KB 1920KB
.
.
Eth1/1(c200-m2-10g2-001)
.

has 0 buffer usage because
it’s the name node

© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

19
n3548-001# jobsBuffer
Hadoop Job Info ...
What jobs were running
===================================================================
during peak buffer usage
1 jobs currently running
JobId
RunTime(secs)
User
Priority … and for how long were
job_201306131423_0009
120
hadoop NORMAL
they running
===================================================================
Buffer Info - Per Port
Port
Server
1sec
5sec
60sec
5min
1hr
------------------------------------------------------------------Eth1/1 c200-m2-10g2-001
0KB
0KB
0KB
0KB
0KB
Eth1/2 c200-m2-10g2-002
384KB
384KB
768KB
768KB
768KB
Eth1/3 c200-m2-10g2-003
384KB
384KB
1152KB 1152KB 1152KB
Eth1/4 c200-m2-10g2-004
384KB
1536KB 1536KB 1536KB 1536KB
Eth1/5 c200-m2-10g2-005
384KB
768KB
1152KB 1152KB 1152KB
.
.

© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

20
n3548-001(config)# jobsBuffer
Hadoop Job Info ...
Historic look at
=================================================================== the
0 jobs currently running
buffer usage …
JobId
RunTime(secs)
User
Priority
===================================================================
Buffer Info - Per Port
Port
Server
1sec
5sec
60sec
5min
1hr
------------------------------------------------------------------Eth1/1 c200-m2-10g2-001
0KB
0KB
0KB
0KB
0KB
Eth1/2 c200-m2-10g2-002
0KB
0KB
0KB
1920KB 1920KB
Eth1/3 c200-m2-10g2-003
0KB
0KB
0KB
2304KB 2304KB
Eth1/4 c200-m2-10g2-004
0KB
0KB
0KB
2688KB 2688KB
Eth1/5 c200-m2-10g2-005
0KB
0KB
0KB
2304KB 2304KB
Eth1/6 c200-m2-10g2-006
0KB
0KB
0KB
2304KB 2304KB
Eth1/7 c200-m2-10g2-031
0KB
0KB
0KB
1920KB 2688KB
.

© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

21
© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

22
© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

23
© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

24
Buffer Usage

Shuffle

Replication

Reduce

Map

0

60

120

180

© 2011 Cisco and/or its affiliates. All rights reserved.

240

300

360

420

480

540

600

660

720

780

Cisco Confidential

25
github.com/datacenter

PTP Grandmaster
(OPTIONAL)

Push Data

Push Data

Push Data

Analyze

(Python Socket)

© 2011 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

26
27
Various Multitenant Environments

 Hadoop + HBASE

Need to understand
Traffic Patterns

 Job Based

Scheduling
Dependent

 Department Based

Permissions and
Scheduling
Dependent

28
Client

Client
Update

Read

Update

Map 1

Map 2

Map 3

Read

Region
Server

Map N

Shuffle

Region
Server

Read
Read

Reducer
1

Reducer
2

Reducer
3

Reducer
N

Major
Compaction

Major
Compaction

Output
Replication

HDFS

29
Hbase During Major Compaction
9000
8000

~45% for Read
Improvement

Latency (us)

7000
6000

Read/Update
Latency
Comparison of NonQoS vs. QoS Policy

5000
4000
3000
2000
1000
0

Time
UPDATE - Average Latency (us)

READ - Average Latency (us)

QoS - UPDATE - Average Latency (us)

QoS - READ - Average Latency (us)

Switch Buffer
Usage
With Network QoS
Policy to prioritize
Hbase Update/Read
Operations

30
Hbase + Hadoop Map Reduce
40000
35000

Latency (us)

30000

Read/Update
Latency
Comparison of NonQoS vs. QoS Policy

25000

~60% for Read
Improvement

20000
15000
10000
5000
0

Time
READ - Average Latency (us)

QoS - UPDATE - Average Latency (us)

QoS - READ - Average Latency (us)

1
70
139
208
277
346
415
484
553
622
691
760
829
898
967
1036
1105
1174
1243
1312
1381
1450
1519
1588
1657
1726
1795
1864
1933
2002
2071
2140
2209
2278
2347
2416
2485
2554
2623
2692
2761
2830
2899
2968
3037
3106
3175
3244
3313
3382
3451
3520
3589
3658
3727
3796
3865
3934
4003
4072
4141
4210
4279
4348
4417
4486
4555
4624
4693
4762
4831
4900
4969
5038
5107
5176
5245
5314
5383
5452
5521
5590
5659
5728
5797
5866
5935

Buffer Used

UPDATE - Average Latency (us)

Timeline
Hadoop TeraSort

Hbase

Switch Buffer
Usage
With Network QoS
Policy to prioritize
Hbase Update/Read
Operations
THANK YOU FOR LISTENING
Cisco.com Big Data
www.cisco.com/go/bigdata
Data Center Script Examples from
Presentation:
github.com/datacenter

Cisco Unified Data Center

UNIFIED
FABRIC

UNIFIED
COMPUTING

Highly Scalable, Secure
Network Fabric

Modular Stateless
Computing Elements

www.cisco.com/go/nexus

www.cisco.com/go/ucs

UNIFIED
MANAGEMENT
Automated
Management

Manages Enterprise
Workloads

http://www.cisco.com/go/wor
kloadautomation

More Related Content

PPTX
The Data Center and Hadoop
PDF
Data Center Network Trends - Lin Nease
PPTX
Webinar: Replication and Replica Sets
PPTX
Introduction to architecture exploration
PDF
Architecting a Scalable Hadoop Platform: Top 10 considerations for success
PPTX
VL2: A scalable and flexible Data Center Network
PPTX
Analyzing Hadoop Using Hadoop
PPTX
Next Generation Execution Engine for Apache Storm
The Data Center and Hadoop
Data Center Network Trends - Lin Nease
Webinar: Replication and Replica Sets
Introduction to architecture exploration
Architecting a Scalable Hadoop Platform: Top 10 considerations for success
VL2: A scalable and flexible Data Center Network
Analyzing Hadoop Using Hadoop
Next Generation Execution Engine for Apache Storm

What's hot (20)

PDF
Blue Waters and Resource Management - Now and in the Future
PDF
Performance Aware SDN, LSPE talk
PPTX
Data center network architectures v1.3
PPT
Mcserviceguard2
PPTX
Ipv6 deployment at the university of warwick - networkshop44
PDF
Keep your Hadoop cluster at its best!
PPTX
LLAP: Sub-Second Analytical Queries in Hive
PDF
Benchmark: Bananas vs Spark Streaming
PPTX
DevoFlow - Scaling Flow Management for High-Performance Networks
PPTX
Practice of large Hadoop cluster in China Mobile
PDF
Why is My Stream Processing Job Slow? with Xavier Leaute
PPTX
Network for the Large-scale Hadoop cluster at Yahoo! JAPAN
PDF
Hadoop past, present and future
PDF
Generic Resource Manager - László Vadkerti, András Kovács
PDF
SDN Traffic Engineering, A Natural Evolution
PPT
Network Application Performance
PPTX
Optimization of Continuous Queries in Federated Database and Stream Processin...
PPTX
Capital One's Next Generation Decision in less than 2 ms
PDF
DPDK Integration: A Product's Journey - Roger B. Melton
PPSX
Active Data Guard @CERN on UKOUG 2012
Blue Waters and Resource Management - Now and in the Future
Performance Aware SDN, LSPE talk
Data center network architectures v1.3
Mcserviceguard2
Ipv6 deployment at the university of warwick - networkshop44
Keep your Hadoop cluster at its best!
LLAP: Sub-Second Analytical Queries in Hive
Benchmark: Bananas vs Spark Streaming
DevoFlow - Scaling Flow Management for High-Performance Networks
Practice of large Hadoop cluster in China Mobile
Why is My Stream Processing Job Slow? with Xavier Leaute
Network for the Large-scale Hadoop cluster at Yahoo! JAPAN
Hadoop past, present and future
Generic Resource Manager - László Vadkerti, András Kovács
SDN Traffic Engineering, A Natural Evolution
Network Application Performance
Optimization of Continuous Queries in Federated Database and Stream Processin...
Capital One's Next Generation Decision in less than 2 ms
DPDK Integration: A Product's Journey - Roger B. Melton
Active Data Guard @CERN on UKOUG 2012
Ad

Viewers also liked (11)

PPTX
HA Hadoop -ApacheCon talk
PDF
Hadoop Summit San Jose 2014: Costing Your Big Data Operations
PDF
Hadoop Internals
PDF
Aioug big data and hadoop
PDF
Hadoop data management
ODP
Hadoop admin
PDF
HDFS User Reference
PPT
Hadoop architecture (Delhi Hadoop User Group Meetup 10 Sep 2011)
PPTX
HDFS Tiered Storage
PDF
Data Center Network Topologies
PPTX
HDFS Erasure Code Storage - Same Reliability at Better Storage Efficiency
HA Hadoop -ApacheCon talk
Hadoop Summit San Jose 2014: Costing Your Big Data Operations
Hadoop Internals
Aioug big data and hadoop
Hadoop data management
Hadoop admin
HDFS User Reference
Hadoop architecture (Delhi Hadoop User Group Meetup 10 Sep 2011)
HDFS Tiered Storage
Data Center Network Topologies
HDFS Erasure Code Storage - Same Reliability at Better Storage Efficiency
Ad

Similar to The Data Center and Hadoop (20)

PPTX
BigData Clusters Redefined
PDF
3. ami big data hadoop on ucs seminar may 2013
PPT
Dcna technology update
PPTX
Cisco storage networking protect scale-simplify_dec_2016
PDF
Deploying Applications in Today’s Network Infrastructure
PPT
transforming_datacenter_core_with_dce_cisco_nexus.ppt
PPTX
Cisco data center training for ibm
PDF
Presentation cloud, the whole offer
PDF
Cisco Connect 2018 Singapore - Next generation hyperconverged infrastructure
PDF
Data Centre Design for Canadian Small & Medium Sized Businesses
PDF
End-to-End Data Center Virtualization
PDF
vPC techonology for full ha from dc core to baremetel server.
PDF
hyperflex 4-0-deep-dive hyperconverged by cisco
PDF
Cisco Connect Toronto 2018 consuming public and private clouds
PPTX
Network visibility for efficient Openstack operations
PDF
Cisco Connect 2018 Malaysia - SDNNFV telco data center transformation
PDF
BRKINI-1679.pdf
PPTX
OpenStack Summit Portland April 2013 talk - Quantum and EC2
PDF
Cisco usNIC: how it works, how it is used in Open MPI
PDF
Cisco Connect Vancouver 2017 - Gain insight and programmability with Cisco DC...
BigData Clusters Redefined
3. ami big data hadoop on ucs seminar may 2013
Dcna technology update
Cisco storage networking protect scale-simplify_dec_2016
Deploying Applications in Today’s Network Infrastructure
transforming_datacenter_core_with_dce_cisco_nexus.ppt
Cisco data center training for ibm
Presentation cloud, the whole offer
Cisco Connect 2018 Singapore - Next generation hyperconverged infrastructure
Data Centre Design for Canadian Small & Medium Sized Businesses
End-to-End Data Center Virtualization
vPC techonology for full ha from dc core to baremetel server.
hyperflex 4-0-deep-dive hyperconverged by cisco
Cisco Connect Toronto 2018 consuming public and private clouds
Network visibility for efficient Openstack operations
Cisco Connect 2018 Malaysia - SDNNFV telco data center transformation
BRKINI-1679.pdf
OpenStack Summit Portland April 2013 talk - Quantum and EC2
Cisco usNIC: how it works, how it is used in Open MPI
Cisco Connect Vancouver 2017 - Gain insight and programmability with Cisco DC...

More from Michael Zhang (20)

PPTX
廣告系統在Docker/Mesos上的可靠性實踐
PDF
HKIX Upgrade to 100Gbps-Based Two-Tier Architecture
PDF
2014 GITC 帶上數據去創業 talkingdata—高铎
PDF
Fastsocket Linxiaofeng
PPTX
Spark sql meetup
PDF
2014 Hpocon 李志刚 1号店 - puppet在1号店的实践
PDF
2014 Hpocon 姚仁捷 唯品会 - data driven ops
PDF
2014 Hpocon 高驰涛 云智慧 - apm在高性能架构中的应用
PDF
2014 Hpocon 黄慧攀 upyun - 平台架构的服务监控
PDF
2014 Hpocon 吴磊 ucloud - 由点到面 提升公有云服务可用性
PDF
2014 Hpocon 周辉 大众点评 - 大众点评混合开发模式下的加速尝试
PDF
Cuda 6 performance_report
PDF
Hadoop Hardware @Twitter: Size does matter.
PDF
Q con shanghai2013-[ben lavender]-[long-distance relationships with robots]
PDF
Q con shanghai2013-[刘海锋]-[京东文件系统简介]
PDF
Q con shanghai2013-[韩军]-[超大型电商系统架构解密]
PDF
Q con shanghai2013-[jains krums]-[real-time-delivery-archiecture]
PDF
Q con shanghai2013-[黄舒泉]-[intel it openstack practice]
PDF
Q con shanghai2013-罗婷-performance methodology
PDF
Q con shanghai2013-赵永明-ats与cdn实践
廣告系統在Docker/Mesos上的可靠性實踐
HKIX Upgrade to 100Gbps-Based Two-Tier Architecture
2014 GITC 帶上數據去創業 talkingdata—高铎
Fastsocket Linxiaofeng
Spark sql meetup
2014 Hpocon 李志刚 1号店 - puppet在1号店的实践
2014 Hpocon 姚仁捷 唯品会 - data driven ops
2014 Hpocon 高驰涛 云智慧 - apm在高性能架构中的应用
2014 Hpocon 黄慧攀 upyun - 平台架构的服务监控
2014 Hpocon 吴磊 ucloud - 由点到面 提升公有云服务可用性
2014 Hpocon 周辉 大众点评 - 大众点评混合开发模式下的加速尝试
Cuda 6 performance_report
Hadoop Hardware @Twitter: Size does matter.
Q con shanghai2013-[ben lavender]-[long-distance relationships with robots]
Q con shanghai2013-[刘海锋]-[京东文件系统简介]
Q con shanghai2013-[韩军]-[超大型电商系统架构解密]
Q con shanghai2013-[jains krums]-[real-time-delivery-archiecture]
Q con shanghai2013-[黄舒泉]-[intel it openstack practice]
Q con shanghai2013-罗婷-performance methodology
Q con shanghai2013-赵永明-ats与cdn实践

Recently uploaded (20)

PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Encapsulation theory and applications.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
MYSQL Presentation for SQL database connectivity
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Approach and Philosophy of On baking technology
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPT
Teaching material agriculture food technology
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Empathic Computing: Creating Shared Understanding
PDF
Electronic commerce courselecture one. Pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Encapsulation_ Review paper, used for researhc scholars
Unlocking AI with Model Context Protocol (MCP)
Encapsulation theory and applications.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
MYSQL Presentation for SQL database connectivity
NewMind AI Weekly Chronicles - August'25 Week I
20250228 LYD VKU AI Blended-Learning.pptx
Spectroscopy.pptx food analysis technology
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Approach and Philosophy of On baking technology
Understanding_Digital_Forensics_Presentation.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?
Teaching material agriculture food technology
The AUB Centre for AI in Media Proposal.docx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Dropbox Q2 2025 Financial Results & Investor Presentation
Empathic Computing: Creating Shared Understanding
Electronic commerce courselecture one. Pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Encapsulation_ Review paper, used for researhc scholars

The Data Center and Hadoop

  • 1. The Data Center and Hadoop Jacob Rapp, Cisco jarapp@cisco.com
  • 2. Hadoop Considerations • Traffic Types, Job Patterns, Network Considerations, Compute Network Integration • Co-exist with current Data Center infrastructure • Open, Programmable and Application-Aware Networks Multi-tenancy • Remove the “Silo clusters” 2
  • 3. 3
  • 4. Reduce Ingress vs. Egress Data Set Analyze 1:0.3 The Time the reducers start is dependent on: Reduce Extract Transform Load (ETL) Ingress vs. Egress Data Set mapred.reduce.slowstart.co mpleted.maps It doesn’t change the amount of data sent to Reducers, but may change the timing to send that data 1:1 Reduce Explode Ingress vs. Egress Data Set 1:2 4
  • 5. Small Flows/Messaging (Admin Related, Heart-beats, Keep-alive, delay sensitive application messaging) Small – Medium Incast (Hadoop Shuffle) Large Flows (HDFS Ingest) Large Incast (Hadoop Replication) 5
  • 6. NameNode JobTracker ZooKeeper Many-to-Many Traffic Pattern Map 1 Map 2 Map 3 Map N Shuffle Reducer 1 Reducer 2 Reducer 3 Reducer N Output Replication HDFS 6
  • 7. Job Patterns have varying impact on network utilization Analyze Simulated with Shakespeare Wordcount Extract Transform Load (ETL) Simulated with Yahoo TeraSort Extract Transform Load (ETL) Simulated with Yahoo TeraSort with output replication
  • 8. 8
  • 9. Integration Considerations  Network Attributes  Architecture  Availability  Capacity, Scale & Oversubscription  Flexibility  Management & Visibility 9
  • 10. Generally 1G is being used largely due to the cost/performance trade-offs. Though 10GE can provide benefits depending on workload Single 1GE 100% Utilized Dual 1GE 75% Utilized 10GE 40% Utilized 10
  • 11. • No single point of failure from network view point. No impact on job completion time • NIC bonding configured at Linux – with LACP mode of bonding • Effective load-sharing of traffic flow on two NICs. • Recommended to change the hashing to src-dst-ip-port (both network and NIC bonding in Linux) for optimal load-sharing 11
  • 12. 1GE vs. 10GE Buffer Usage 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349 361 373 385 397 409 421 433 445 457 469 481 493 505 517 529 541 553 565 577 589 601 613 625 637 649 661 673 685 697 709 721 733 745 757 769 781 793 Cell Usage Job Completion Moving from 1GE to 10GE actually lowers the buffer requirement at the switching layer. 1G Buffer Used 10G Buffer Used 1G Map % 1G Reduce % 10G Map % 10G Reduce % By moving to 10GE, the data node has a wider pipe to receive data lessening the need for buffers on the network as the total aggregate transfer rate and amount of data does not increase substantially. This is due, in part, to limits of I/O and Compute capabilities 12
  • 13. Findings Goals • 10G and/or Dual attached server provides • Extensive Validation of Hadoop Workload • Reference Architecture Make it easy for Enterprise Demystify Network for Hadoop Deployment Integration with Enterprise with efficient choices of network topology/devices More Details From Hadoop Summit 2012 at: consistent job completion time & better buffer utilization • 10G provide reduce burst at the access layer • Dual Attached Sever is recommended design – 1G or 10G. 10G for future proofing • Rack failure has the biggest impact on job completion time • Does not require non-blocking network • Latency does not matter much in Hadoop workloads http://www.slideshare.net/Hadoop_Summit/ref-arch-validated-and-tested-approach-to-define-a-network-design http://youtu.be/YJODsK0T67A 13
  • 14. 14
  • 15. n3548-001# show interface brief -------------------------------------------------------------------------------Ethernet VLAN Type Mode Status Reason Speed Port Interface Ch # -------------------------------------------------------------------------------Eth1/1 1 eth access up none 10G(D) -Eth1/2 1 eth access up none 10G(D) -Eth1/3 1 eth access up none 10G(D) -Eth1/4 1 eth access up none 10G(D) -Eth1/5 1 eth access up none 10G(D) –. . Eth1/33 1 eth access up none 10G(D) -Eth1/34 1 eth access up none 10G(D) -Eth1/35 1 eth access down SFP not inserted 10G(D) -Eth1/36 1 eth access down SFP not inserted 10G(D) -Eth1/37 1 eth access down Administratively down 10G(D) – . © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 15
  • 16. n3548-001# show mac address-table dynamic Legend: * - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC age - seconds since first seen,+ - primary entry using vPC PeerLink MAC Addresses VLAN MAC Address Type age Secure NTFY Ports of the connected ---------+-----------------+--------+---------+------+----+----------------devices … and * 1 e8b7.484d.a208 dynamic 60570 F Eth1/31 the port they are F * 1 e8b7.484d.a20a dynamic 60560 F F Eth1/31 on… * 1 e8b7.484d.a73e dynamic 60560 F F Eth1/34 * 1 e8b7.484d.a740 dynamic 60560 F F Eth1/34 * 1 e8b7.484d.ad15 dynamic 60560 F F Eth1/28 * 1 e8b7.484d.ad17 dynamic 60560 F F Eth1/28 * 1 e8b7.484d.b3e9 dynamic 60570 F F Eth1/25 * 1 e8b7.484d.b3eb dynamic 60560 F F Eth1/25 . . © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 16
  • 17. n3548-001# portServerMap ======================================= Port Server FQDN --------------------------------------Eth1/1 c200-m2-10g2-001.cluster10g.com Eth1/2 c200-m2-10g2-002.cluster10g.com Eth1/3 c200-m2-10g2-003.cluster10g.com Eth1/4 c200-m2-10g2-004.cluster10g.com Eth1/5 c200-m2-10g2-005.cluster10g.com Eth1/6 c200-m2-10g2-006.cluster10g.com Eth1/7 c200-m2-10g2-031.cluster10g.com Eth1/8 c200-m2-10g2-008.cluster10g.com Eth1/9 c200-m2-10g2-009.cluster10g.com Eth1/11 c200-m2-10g2-011.cluster10g.com . . . © 2013 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 17
  • 18. n3548-001# trackerList =========================================== Port Server Server Port ------------------------------------------Eth1/2 c200-m2-10g2-002 50544 Eth1/3 c200-m2-10g2-003 41909 Eth1/4 c200-m2-10g2-004 36480 Eth1/5 c200-m2-10g2-005 38179 Eth1/6 c200-m2-10g2-006 51375 Eth1/7 c200-m2-10g2-031 41915 Eth1/8 c200-m2-10g2-008 50983 Eth1/9 c200-m2-10g2-009 37056 Eth1/11 c200-m2-10g2-011 35882 Eth1/12 c200-m2-10g2-012 44551 . . . © 2013 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 18
  • 19. n3548-001# bufferServerMap =================================================================== Port Server 1sec 5sec 60sec 5min 1hr ------------------------------------------------------------------Eth1/1 c200-m2-10g2-001 0KB 0KB 0KB 0KB 0KB Eth1/2 c200-m2-10g2-002 384KB 384KB 1536KB 2304KB 2304KB Eth1/3 c200-m2-10g2-003 384KB 384KB 1152KB 1536KB 1536KB Eth1/4 c200-m2-10g2-004 384KB 384KB 2304KB 2304KB 2304KB Eth1/5 c200-m2-10g2-005 384KB 384KB 768KB 1536KB 1536KB Eth1/6 c200-m2-10g2-006 384KB 2304KB 2304KB 2304KB 2304KB Eth1/7 c200-m2-10g2-031 384KB 384KB 3456KB 3840KB 3840KB Eth1/8 c200-m2-10g2-008 768KB 768KB 2688KB 2688KB 2688KB Eth1/9 c200-m2-10g2-009 384KB 384KB 2304KB 2304KB 2304KB Eth1/11 c200-m2-10g2-011 384KB 384KB 1920KB 1920KB 1920KB . . Eth1/1(c200-m2-10g2-001) . has 0 buffer usage because it’s the name node © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 19
  • 20. n3548-001# jobsBuffer Hadoop Job Info ... What jobs were running =================================================================== during peak buffer usage 1 jobs currently running JobId RunTime(secs) User Priority … and for how long were job_201306131423_0009 120 hadoop NORMAL they running =================================================================== Buffer Info - Per Port Port Server 1sec 5sec 60sec 5min 1hr ------------------------------------------------------------------Eth1/1 c200-m2-10g2-001 0KB 0KB 0KB 0KB 0KB Eth1/2 c200-m2-10g2-002 384KB 384KB 768KB 768KB 768KB Eth1/3 c200-m2-10g2-003 384KB 384KB 1152KB 1152KB 1152KB Eth1/4 c200-m2-10g2-004 384KB 1536KB 1536KB 1536KB 1536KB Eth1/5 c200-m2-10g2-005 384KB 768KB 1152KB 1152KB 1152KB . . © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 20
  • 21. n3548-001(config)# jobsBuffer Hadoop Job Info ... Historic look at =================================================================== the 0 jobs currently running buffer usage … JobId RunTime(secs) User Priority =================================================================== Buffer Info - Per Port Port Server 1sec 5sec 60sec 5min 1hr ------------------------------------------------------------------Eth1/1 c200-m2-10g2-001 0KB 0KB 0KB 0KB 0KB Eth1/2 c200-m2-10g2-002 0KB 0KB 0KB 1920KB 1920KB Eth1/3 c200-m2-10g2-003 0KB 0KB 0KB 2304KB 2304KB Eth1/4 c200-m2-10g2-004 0KB 0KB 0KB 2688KB 2688KB Eth1/5 c200-m2-10g2-005 0KB 0KB 0KB 2304KB 2304KB Eth1/6 c200-m2-10g2-006 0KB 0KB 0KB 2304KB 2304KB Eth1/7 c200-m2-10g2-031 0KB 0KB 0KB 1920KB 2688KB . © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 21
  • 22. © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 22
  • 23. © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 23
  • 24. © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 24
  • 25. Buffer Usage Shuffle Replication Reduce Map 0 60 120 180 © 2011 Cisco and/or its affiliates. All rights reserved. 240 300 360 420 480 540 600 660 720 780 Cisco Confidential 25
  • 26. github.com/datacenter PTP Grandmaster (OPTIONAL) Push Data Push Data Push Data Analyze (Python Socket) © 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 26
  • 27. 27
  • 28. Various Multitenant Environments  Hadoop + HBASE Need to understand Traffic Patterns  Job Based Scheduling Dependent  Department Based Permissions and Scheduling Dependent 28
  • 29. Client Client Update Read Update Map 1 Map 2 Map 3 Read Region Server Map N Shuffle Region Server Read Read Reducer 1 Reducer 2 Reducer 3 Reducer N Major Compaction Major Compaction Output Replication HDFS 29
  • 30. Hbase During Major Compaction 9000 8000 ~45% for Read Improvement Latency (us) 7000 6000 Read/Update Latency Comparison of NonQoS vs. QoS Policy 5000 4000 3000 2000 1000 0 Time UPDATE - Average Latency (us) READ - Average Latency (us) QoS - UPDATE - Average Latency (us) QoS - READ - Average Latency (us) Switch Buffer Usage With Network QoS Policy to prioritize Hbase Update/Read Operations 30
  • 31. Hbase + Hadoop Map Reduce 40000 35000 Latency (us) 30000 Read/Update Latency Comparison of NonQoS vs. QoS Policy 25000 ~60% for Read Improvement 20000 15000 10000 5000 0 Time READ - Average Latency (us) QoS - UPDATE - Average Latency (us) QoS - READ - Average Latency (us) 1 70 139 208 277 346 415 484 553 622 691 760 829 898 967 1036 1105 1174 1243 1312 1381 1450 1519 1588 1657 1726 1795 1864 1933 2002 2071 2140 2209 2278 2347 2416 2485 2554 2623 2692 2761 2830 2899 2968 3037 3106 3175 3244 3313 3382 3451 3520 3589 3658 3727 3796 3865 3934 4003 4072 4141 4210 4279 4348 4417 4486 4555 4624 4693 4762 4831 4900 4969 5038 5107 5176 5245 5314 5383 5452 5521 5590 5659 5728 5797 5866 5935 Buffer Used UPDATE - Average Latency (us) Timeline Hadoop TeraSort Hbase Switch Buffer Usage With Network QoS Policy to prioritize Hbase Update/Read Operations
  • 32. THANK YOU FOR LISTENING Cisco.com Big Data www.cisco.com/go/bigdata Data Center Script Examples from Presentation: github.com/datacenter Cisco Unified Data Center UNIFIED FABRIC UNIFIED COMPUTING Highly Scalable, Secure Network Fabric Modular Stateless Computing Elements www.cisco.com/go/nexus www.cisco.com/go/ucs UNIFIED MANAGEMENT Automated Management Manages Enterprise Workloads http://www.cisco.com/go/wor kloadautomation

Editor's Notes

  • #11: Generally 1G is being used largely due to the cost/performance trade-offs. Though 10GE can provide benefits depending on workloadReduced spike with 10G and smoother job completion timeMultiple 1G or 10G links can be bonded together to not only increase bandwidth, but increase resiliency.
  • #12: Talk about intensity of failure with smaller job vs bigger jobThe MAP job are executed parallel so unit time for each MAP tasks/node remains same and more less completes the job roughly at the same time. However during the failure, set of MAP task remains pending (since other nodes in the cluster are still completing their task) till ALL the node finishes the assigned tasks.Once all the node finishes their MAP task, the left over MAP task being reassigned by name node, the unit time it take to finish those sets of MAP task remain the same(linear) as the time it took to finish the other MAPs – its just happened to be NOT done in parallel thus it could double job completion time. This is the worst case scenario with Terasort, other workload may have variable completion time.