SlideShare a Scribd company logo
© 2021 Health Catalyst
The Future of Data:
High-Value Data is the Next Big Thing
TJ Elbert, SVP & GM Data
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010010101010101010101010101010
10101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101
10101010101010101010101010101010101010101
1010101010101010101010101010101010101
10101010101010101010101010101010101
01010101010101010101010101010101
101010101010101010101010101010
0101010101010101010101010101
1010101010101010101010101
10101010101010101010101
101010101010101010101
101010101010101010
010101010101010
1010101010101
1010101010
01010101
10101
010
0
The Future of Data
Moving From Data to High-Value Data
Agenda
• What have we learned?
• Where are we going?
• Our vision for data
• How will we do it?
• Delivering high-value data
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010010101010101010101010101010
10101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101
10101010101010101010101010101010101010101
1010101010101010101010101010101010101
10101010101010101010101010101010101
01010101010101010101010101010101
101010101010101010101010101010
0101010101010101010101010101
1010101010101010101010101
10101010101010101010101
101010101010101010101
101010101010101010
010101010101010
1010101010101
1010101010
01010101
10101
010
0
What have we learned?
Just In Time Is No Longer Good Enough
Access to the right data at the right time is an issue for healthcare. Over the last eighteen months
Covid-19 has increased visibility to the issue of high-value data for decision making.
• Data acquisition takes too long
• A lack of common definitions makes sharing insights a challenge
• Integrating data is a challenge outside of a common data model
• Poor data quality impacts the readiness of data
The data challenges are not limited to the response to Covid-19, and are surfaced in several other
use cases
• Population health and the shift from fee-for-service to value-based care
• Moving from inpatient focused analytics to the inclusion of outpatient insights
• Increasing merger and acquisition activity in the industry
Improve Data Acquisition
Static data provides some reporting value, but to unlock high-value data it needs to be
readily available .
• Changing care models necessitating a variety of data sources
• Growing security concerns from granting access across systems
• Complex reporting needs bogging down a system
• Integrating data through report creation creating redundant work
6
Static data to fast acquisition
Breaking Down Data Silos
Siloed data that has been collocated in a single system provides some insight, but to unlock
high-value data it needs to be integrated
• Limited view of the patient or member through a single system
• A single patient may come across as multiple patients when viewing siloed systems
• Layering in labor, revenue cycle, supply chain data, etc. can provide additional value
• A lack of a common data model can make report creation a challenge across similar
source systems
7
Siloed data to integrated data
Improve User Trust In Data
Data that has been collocated into a single system and integrated can provide a great
starting point, but to unlock high-value data you need to ensure the overall quality
• Data that is not fit for purpose provides little value
• Generated reports, insights, and metrics will get little traction without trust in the
underlying data
• Transparency into the transformation and quality process is a must to promote trust
8
Untrusted data to a single source of truth
Poll Question
9
Poll Question
10
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010010101010101010101010101010
10101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101
10101010101010101010101010101010101010101
1010101010101010101010101010101010101
10101010101010101010101010101010101
01010101010101010101010101010101
101010101010101010101010101010
0101010101010101010101010101
1010101010101010101010101
10101010101010101010101
101010101010101010101
101010101010101010
010101010101010
1010101010101
1010101010
01010101
10101
010
0
Where are we going?
© Health Catalyst. Confidential and proprietary.
Our Starting Point: Success in Healthcare
Payment Volume Expansion Labor
Supply
Chain
Population
Health
Patient
Safety
Clinical
Operations
Other
You have increasingly critical business issues to address.
The most successful organizations focus on revenue, cost, and quality.
The biggest wins are integrated and interdependent.
Data and analytics are foundational capabilities for these wins.
Increase Revenue Decrease Cost Improve Quality
© Health Catalyst. Confidential and proprietary.
Important Assumptions Driving Our Key Product Directions
13
Healthcare Data
In the new digital era, data is your most important,
mission-critical asset to enable healthcare success
Data volume, sources, and uses are growing quickly.
• Population health, M&A, affiliates, multi-EMR
• Need to improve our data ingestion and processing
Successful organizations focus on “high value” data
• Integrated data unlocks your highest value use cases
• Reusable and transparent data multiplies value
• Aggregated data enables benchmarking value
• Application data is highly valuable and should be reusable
• Data quality is the foundational to “trust” your data
• Combining data dimensions produces exponential value
Application success will be driven more by data than features.
The winning data platform must support all these use cases.
• Data volume, high-value data, data-driven applications
Healthcare Analytics
For critical business issues, analytics is your most
important skill set to convert your data into insights
Effective healthcare analytics are still too difficult.
• Too time and people-intensive
• Too SQL focused, not enough analytics focused
• Limited available of healthcare domain analytic experts
• Difficult to integrate into existing workflows
• Difficult to train (costly, slow)
• Too easy to misinterpret and get wrong answers
• Can’t keep up with data growth
• Net: Analytics is difficult to productize and scale
AI gives us a unique opportunity to:
• Productize analytics & data science capabilities
• Get better answers more consistently
• Scale advanced analytics across your organization
• Answer a broader set of business-critical issues
Our Product Strategy
14
Market-leading innovation in healthcare data and analytics
In Our Data & Analytics Platform
• A modern, enterprise-wide platform is foundational to enable data and analytics success
• The market is recognizing this with multiple platform models
• We believe we have the winning model
• Open – supports the broad variety of standard and custom use cases (data, analytics, applications)
• Modern, performant, scalable – supports high-growth, high-value data, and analytics needs
• Healthcare-specific – supports the complexities of healthcare
• Trusted – confidence demonstrated in over 270 case studies
In Our Applications
• Our applications will address the most important revenue, cost, quality use cases
• Our applications will lead by integrating the best data and analytics
• Application success will be correlated to the strength of the underlying data and analytics
healthcare data and analytics
• The average hospital has affiliated
provides using 16 different EHR vendors
• The average health system has affiliated
provides using 18 different EHR vendors
15
Sullivan, Tom. “Why EHR data interoperability is such a mess in 3 charts.” healthcareitnews.com, HIMSS, 05/16/2018,
https://www.healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-charts
Data Acquisition
Reusable Data
16
Reusable Data
17
Healthcare Data Expertise
18
FHIR and Interoperability Standards
Expanded DOS Marts provide the foundation for true analytic and transactional interoperability
of data via an expanded data model and deep commitment to scalable terminology normalization
• First phase supports CPCDS regulations that go into place July 1
• The next phase of DOS FHIR enhancements will add support for USCDI elements
− Allergies and Intolerances
− Assessment and Plan of
Treatment
− Care Team Members
− Clinical Notes
− Goals
− Health Concerns
− Immunizations
− Laboratory
− Medications
− Patient Demographics
− Problems
− Procedures
− Provenance
− Smoking Status
− Unique Device Identifiers
− Vital Signs
U.S. Core Data for Interoperability (USCDI) Common Payer Consumer Data Set (CPCDS)
− Patient
− Organization
− Practitioner
− Coverage
− Pharmacy
− EOB Inpatient
− EOB Outpatient
− EOB Professional/Non-clinical
Current Data Model
20
Expanded and Enhanced Data Model
21
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010010101010101010101010101010
10101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101
10101010101010101010101010101010101010101
1010101010101010101010101010101010101
10101010101010101010101010101010101
01010101010101010101010101010101
101010101010101010101010101010
0101010101010101010101010101
1010101010101010101010101
10101010101010101010101
101010101010101010101
101010101010101010
010101010101010
1010101010101
1010101010
01010101
10101
010
0
How will we do it?
Standard Process: Acquisition
• Data acquisition starts at the source and ends when Health Catalyst delivers integrated,
reusable, scalable data asset
• Health Catalyst has a growing library of 350 data source connectors and data quality
checks for its healthcare data model
• Health Catalyst stood up a data specific business unit in early 2021
• Consolidated all functions of the data pipeline into a single team
• Data acquisition includes a variety of different strategies
• Direct database connections
• Flat file ingestion
• Streaming data ingestion
• HIE data ingestion
23
Standard Process: Standardization
• Terminology standardization uses a common code set to
create standard reference content
• Applies standard sets and attributes (ICD, CPT, MS-
DRG, etc.)
• Allows for the grouping of codes (Health Catalyst
Clinical Improvement Hierarchy, Value Sets)
• Makes interoperability, standardization, and
governance easier to achieve
• Leverages publicly available and standard content
classification
• Develops data standards that create consistency in the
data set
• Health Catalyst has developed additional Terminology
tooling to aid in value set creation
• Automated terminology mapping/Map Manager
• Value Set Builder
24
Standard Process: Integration
• The integration of data allows the blending of data from multiple sources of a similar
grain and type
• Empowers identity resolution (Master Data Management)
– Use deterministic matching to merge, cleanse, and standardize data to create a
more comprehensive view of a patient or provider
• Increases the breadth and depth of insight that can be generated
• Allows for more automated measure creation across numerous programs
25
Standard Process: Data Quality Framework
• Data quality is key to fostering a sense of trust in your organization’s data and analytic
insights
• Missing or incorrect data can:
• Remain hidden until your team has headed in the wrong direction
• Take weeks or months to track down the source and fix
• Consume resources and delay progress
• Destroy trust in your organization’s analytic insights
26
Standard Process: Data Quality Framework
HEALTH CATALYST leverages an adaptive library of assessments to validate and monitor data
quality; provides expert services
Data Knowledge Adaptive Assessment Library: Data quality checks that codify data knowledge, surface
hidden issues or quality changes, and avoid repeat issues.
Data Quality Deployment Pipeline: Remotely deploy the Adaptive Assessment Library
to position checks throughout each client’s data pipeline.
Monitoring Active Monitoring: Data quality monitoring results are centralized and enable Health
Catalyst teams to validate and monitor data quality and provide robust support.
Expert Services Data Quality Services: Our Data Quality team provides consulting and training on
best practices; helps define, build, and govern data quality checks; and provides custom
services.
CLIENTS can build their own data quality program in DOS
Review Data Profiles Atlas: Review standard data profiles in the Atlas Data Catalog.
Define and Organize
Data Quality Checks
SAM Designer: Define and organize custom data quality checks that output to a standard
data model, allowing results to be surfaced in Atlas and Operations Console.
Review Reporting
.
Atlas and Operations Console: Assess and monitor results of custom and standard data
quality checks over time in the Data Quality Assessment worklist.
Standard Process: Data Quality Framework
Standard Process: Data Quality Framework
Value Driven Expert Data Collections
• Expert Data Collections
• Combination of our expert healthcare data model with a suite of curated
data content, such as value sets, populations, and metrics.
• Tuned to a variety of healthcare solutions to help you build a sustainable
data management system for the future needs of healthcare.
30
Value Driven Expert Data Collections
• Expert Data Collections
• Data management strategies to support a rapidly shifting future
• Compounded value from integrated data
• Solution to challenges of acquiring, integrating, or sharing high quality, timely data
• Need to spend less time managing data complexity and get more time to
manage data insights
31
Health Catalyst Expert Data Collections™ Naming
Healthcare Foundations
Collection Population Health Collections
1. Source Mart ingestion
o Clinical
o Billing
o NPI registry
2. Health Catalyst EMPI
3. Terminology Mapping
o Person attributes
o Provider attributes
o Encounter attributes
4. DOS Marts Model
o Person (episode of care elements)
o Provider
o Person/Provider relationships
o Organizations and locations
o Encounter
o Diagnosis (admit & discharge)
o Procedure
o Lab results
o Medications
o Immunizations
o Allergies
o Charges
5. Core KPI data
o Length of stay
o Inpatient days
o Readmissions
o Total charges
o Total payment
o Volume metrics
6. Data Quality and Performance Optimization
• 100+ Data Quality Checks
7. Data and Model Maintenance & Updates
Stratify Collection Financials Collection Care Management Collection
1. Value Sets
o CMS Chronic Condition Warehouse
2. DOS Marts Model
o DOS Risk
o Contract Enrollment
3. Claims and Clinical Integration
4. Chronic Condition Populations
• Asthma
• Alzheimer’s Disease and Related Dementia
• Arthritis (Osteoarthritis and Rheumatoid)
• Atrial Fibrillation
• Autism Spectrum Disorders
• Cancer (Breast, Colorectal, Lung, and Prostate)
• Chronic Kidney Disease
• Chronic Obstructive Pulmonary Disease
• Coronary Artery Disease (CAD)
• Dementia; Cognitive Decline
• Depression
• Diabetes
• Hepatitis (Chronic Viral B & C)
• Heart Failure (CHF)
• HIV/AIDS
• Hyperlipidemia (High cholesterol)
• Hypertension (High blood pressure)
• Ischemic Heart Disease
• Osteoporosis
• Schizophrenia and Other Psychotic Disorders
• Stroke
• Comorbidity Population: anyone with two or
more of the chronic conditions
5. Risk Models
o LACE
o Charlson-Deyo
o Elixhauser
6. Pre-built templates
7. Data and Model Maintenance & Updates
1. Source Mart ingestion
o Payer claims
2. DOS Marts Model
o Payer claims
§ Claim header
§ Claim line
§ Claim diagnosis
§ Claim procedure
§ Member
3. Core KPI data
• Member months
• PMPM
• Readmissions
• Inpatient utilization
• ED utilization
• E/M utilization
• High-cost services/imaging
• Radiology utilization
• Lab/pathology utilization
• Post-acute care utilization
4. Benchmark data
• Touchstone data
• Third-party data
5. Data Quality and Performance Optimization
6. Data and Model Maintenance & updates
1. Source Mart Ingestion
• Care Mgt data source(s)
2. DOS Marts Model
• Care Managers
• Care Team relationships
• Care Mgt problems
• Care Mgt assessments
• Care Mgt goals
• Care Mgt programs
• Care Mgt interventions
3. Care Mgt KPI data
• Patients per care mgr
• Duration
• Enrollment days
• Number of patients enrolled
• Attrition rate
• Enrollment rate
• Dropout rate
• Graduation rate
4. Data and Model Maintenance & updates
Regulatory Quality
Collection
Ambulatory Quality Collection
1. ECQMs
• 22 certified (subset)
2. HEDIS Measures
• 40 certified (subset)
3. MIPS Measures
• 100+ (subset)
4. Data Marts Models
• DOS Measures
• Contract Enrollment
5. Data and Model Maintenance & Update
6. Tailored data services
• TBD
8. Tailored data services (applies to all)
o Core data model extensions
o Additional data models
o Additional sources
o Custom metrics
o 3rd party data integration
o 3rd
party application integration (i.e.
ACG grouper)
o Real-time data
o External updates
Value Driven Expert Data Collections
• Expert Data Collections Benefits
• Reusable content foundation across a diverse set of data
• Improve the ability to acquire, integrate, and share high-value data
• Provides an optimized data model
• Manage data as a strategic asset
• Significantly improve time to deliver insights
33
Value Driven Expert Data Collections
• What is new with the DOS Mart healthcare data model
• Improve time to value
– Data products that focus on expert data collections
– Data quality framework integrated into the acquisition process
• Support for regulatory quality reporting
– Expanded ambulatory content
– Augmented intelligence for terminology mapping
• Increased data integration and scale
– Parallel loading, expanded content
– DOS Marts on the Snowflake data cloud
• Interoperability Standards
– FHIR (Cures Act)
34
High-Value Data
• High-value data requires timely acquisition, standard applied definitions, a flexible model
to integrate, and wrapped in a robust data quality program
• To bring high-value data to Health Catalyst clients, we are bringing innovation into our
approach, organization, and data model
• New tooling, an updated engagement strategy, and targeted data acquisition strategies
will move our clients from data to high-value data
35
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010101010101010101010101010101010101010101
101010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010101010101010101
10101010101010101010101010101010010101010101010101010101010
10101010101010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010101010101
1010101010101010101010101010101010101010101010101010
0101010101010101010101010101010101010101010101010
01010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101010
010101010101010101010101010101010101010101
10101010101010101010101010101010101010101
1010101010101010101010101010101010101
10101010101010101010101010101010101
01010101010101010101010101010101
101010101010101010101010101010
0101010101010101010101010101
1010101010101010101010101
10101010101010101010101
101010101010101010101
101010101010101010
010101010101010
1010101010101
1010101010
01010101
10101
010
0
Questions?

More Related Content

PPTX
Why a Build-Your-Own Healthcare Data Platform Will Fall Short and What to Do ...
PPTX
How to Drive ROI from Your Healthcare Projects: Practical Tools, Templates, a...
PPTX
Choosing an Analytics Solution in Healthcare
PPTX
20 Years in Healthcare Analytics & Data Warehousing: What did we learn? What'...
PPTX
Insights2020 COVID-19 Ep. 3
PPTX
The Power and Promise of Unstructured Patient Data
PPTX
Demystifying Healthcare Data Governance
PPTX
Part 2 - 20 Years in Healthcare Analytics & Data Warehousing: What did we lea...
Why a Build-Your-Own Healthcare Data Platform Will Fall Short and What to Do ...
How to Drive ROI from Your Healthcare Projects: Practical Tools, Templates, a...
Choosing an Analytics Solution in Healthcare
20 Years in Healthcare Analytics & Data Warehousing: What did we learn? What'...
Insights2020 COVID-19 Ep. 3
The Power and Promise of Unstructured Patient Data
Demystifying Healthcare Data Governance
Part 2 - 20 Years in Healthcare Analytics & Data Warehousing: What did we lea...

What's hot (20)

PPTX
A Health Catalyst Overview: Learn How a Data First Strategy Can Drive Increas...
PDF
Chronic care management_success_story1.3
PDF
Healthcare Analytics Adoption Model
PPTX
Cloud-Based Open-Platform Data Solutions: The Best Way to Meet Today’s Growin...
PPTX
The Role of Data Lakes in Healthcare
PPTX
Deliver Data to Decision Makers: Two Important Strategies for Success
PPTX
Jump Start Analytics in Your HIE (webinar)
PDF
A Reference Architecture for Digital Health: The Health Catalyst Data Operati...
PPTX
Late Binding in Data Warehouses
PDF
Introducing Healthfinch by Health Catalyst: Charlie for Refill Management: Im...
PDF
Alteryx Investor Presentation 080217
PPTX
Clinical Data Repository vs. A Data Warehouse - Which Do You Need?
PPTX
Big data analytics in healthcare
PDF
The Health Catalyst Data Operating System (DOS™): Lessons Learned and Plans ...
PPTX
Data Science for Healthcare: What Today’s Leaders Must Know
PDF
What the ONC's Proposed Rule on Information Blocking Means for Your Work
PPTX
The Philosophy, Psychology, and Technology of Data in Healthcare
PPTX
Big Data in Healthcare Made Simple: Where It Stands Today and Where It’s Going
PDF
Network, Technology, and Data: Missing Pieces of the Puzzle for Clinical Tria...
PPTX
Demystifying Healthcare Data Governance
A Health Catalyst Overview: Learn How a Data First Strategy Can Drive Increas...
Chronic care management_success_story1.3
Healthcare Analytics Adoption Model
Cloud-Based Open-Platform Data Solutions: The Best Way to Meet Today’s Growin...
The Role of Data Lakes in Healthcare
Deliver Data to Decision Makers: Two Important Strategies for Success
Jump Start Analytics in Your HIE (webinar)
A Reference Architecture for Digital Health: The Health Catalyst Data Operati...
Late Binding in Data Warehouses
Introducing Healthfinch by Health Catalyst: Charlie for Refill Management: Im...
Alteryx Investor Presentation 080217
Clinical Data Repository vs. A Data Warehouse - Which Do You Need?
Big data analytics in healthcare
The Health Catalyst Data Operating System (DOS™): Lessons Learned and Plans ...
Data Science for Healthcare: What Today’s Leaders Must Know
What the ONC's Proposed Rule on Information Blocking Means for Your Work
The Philosophy, Psychology, and Technology of Data in Healthcare
Big Data in Healthcare Made Simple: Where It Stands Today and Where It’s Going
Network, Technology, and Data: Missing Pieces of the Puzzle for Clinical Tria...
Demystifying Healthcare Data Governance
Ad

Similar to The Future of Data: High-Value Data is the Next Big Thing (20)

PDF
Pro bono OR webinar - Making sense of data
PDF
Revenue opportunities in the management of healthcare data deluge
PPTX
From Near to Maturity - Presentation to European Data Forum
PDF
8 common brick walls that slow down not-for-profits
PDF
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
PDF
Big Data Tools PowerPoint Presentation Slides
PPTX
Final Presentation
PPTX
Keeping the Pulse of Your Data: Why You Need Data Observability to Improve D...
PDF
Hcd wp-2012-better dataleadstobetteranalytics
PDF
Hcd wp-2012-howan enterprisedatawarehousecanmake
PDF
TPR Data strategy 2025 (1).pdf Data strategy
PPTX
Telecommunications Challenges and Opportunities in a Changing World
PPTX
Case study
PPTX
Unprecedented Patient-Visit Care Continuity: Introducing Health Catalyst Embe...
PPTX
"Disruptive" Technology in Healthcare Implications for the Workforce & HR Pro...
PPTX
Defining and Applying Data Governance in Today’s Business Environment
PPTX
How to Run Analytics for More Actionable, Timely Insights: A Healthcare Data ...
PDF
2022 and Beyond: Navigating the Road Ahead in Healthcare: Don’t Worry, It Won...
PDF
Session 4 Ben Caldecott
PPTX
Moving Data Science from an Event to A Program: Considerations in Creating Su...
Pro bono OR webinar - Making sense of data
Revenue opportunities in the management of healthcare data deluge
From Near to Maturity - Presentation to European Data Forum
8 common brick walls that slow down not-for-profits
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Big Data Tools PowerPoint Presentation Slides
Final Presentation
Keeping the Pulse of Your Data: Why You Need Data Observability to Improve D...
Hcd wp-2012-better dataleadstobetteranalytics
Hcd wp-2012-howan enterprisedatawarehousecanmake
TPR Data strategy 2025 (1).pdf Data strategy
Telecommunications Challenges and Opportunities in a Changing World
Case study
Unprecedented Patient-Visit Care Continuity: Introducing Health Catalyst Embe...
"Disruptive" Technology in Healthcare Implications for the Workforce & HR Pro...
Defining and Applying Data Governance in Today’s Business Environment
How to Run Analytics for More Actionable, Timely Insights: A Healthcare Data ...
2022 and Beyond: Navigating the Road Ahead in Healthcare: Don’t Worry, It Won...
Session 4 Ben Caldecott
Moving Data Science from an Event to A Program: Considerations in Creating Su...
Ad

More from Health Catalyst (20)

PDF
2025 CPT Updates - Professional Evaluation & Management (E/M) and Medicine Ch...
PPTX
2025 CPT Updates - Professional Evaluation & Management (E/M) and Medicine Ch...
PPTX
2025 CPT® Code Updates ( HIM Focused )
PPTX
2025 CPT® Code Updates ( CDM Focused )
PPTX
What’s Next for the OPPS: A Look at the 2025 Final Rule
PPTX
Unlocking Data for Growth: Harnessing Insights for Strategic Decisions
PPTX
How the PFS Final Rule Will Impact Your MSSP ACO Quality Reporting and Savings
PPTX
2025 Medicare Physician Fee Schedule (MPFS) Final Rule Updates
PPTX
What’s Next for the OPPS: A Look at the 2025 Final Rule
PPTX
Elevate Your Charge Capture: Harnessing Technology for Streamlined Data Colle...
PPTX
Looking Forward: The Evolution of Cancer Registry
PPTX
Addressing Key Challenges in Ambulatory Settings.pptx
PPTX
Leveraging Automated Data Flows, AI, and Analytics for Chart Abstraction
PPTX
Vitalware Insight into the 2025 ICD-10 PCS Updates
PPTX
Vitalware-Insight-Into-the-2025-ICD10-CM-Updates.pptx
PPTX
Embedded Refills: Improving Workflow Efficiency and Optimizing the Medication...
PPTX
A Data and Analytics Ecosystem, Purpose-Built for Healthcare
PPTX
Health Catalyst AI Becker's Webinar.pptx
PPTX
Empowering ACOs: Leveraging Quality Management Tools for MIPS and Beyond
PPTX
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...
2025 CPT Updates - Professional Evaluation & Management (E/M) and Medicine Ch...
2025 CPT Updates - Professional Evaluation & Management (E/M) and Medicine Ch...
2025 CPT® Code Updates ( HIM Focused )
2025 CPT® Code Updates ( CDM Focused )
What’s Next for the OPPS: A Look at the 2025 Final Rule
Unlocking Data for Growth: Harnessing Insights for Strategic Decisions
How the PFS Final Rule Will Impact Your MSSP ACO Quality Reporting and Savings
2025 Medicare Physician Fee Schedule (MPFS) Final Rule Updates
What’s Next for the OPPS: A Look at the 2025 Final Rule
Elevate Your Charge Capture: Harnessing Technology for Streamlined Data Colle...
Looking Forward: The Evolution of Cancer Registry
Addressing Key Challenges in Ambulatory Settings.pptx
Leveraging Automated Data Flows, AI, and Analytics for Chart Abstraction
Vitalware Insight into the 2025 ICD-10 PCS Updates
Vitalware-Insight-Into-the-2025-ICD10-CM-Updates.pptx
Embedded Refills: Improving Workflow Efficiency and Optimizing the Medication...
A Data and Analytics Ecosystem, Purpose-Built for Healthcare
Health Catalyst AI Becker's Webinar.pptx
Empowering ACOs: Leveraging Quality Management Tools for MIPS and Beyond
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...

Recently uploaded (20)

PPT
KULIAH UG WANITA Prof Endang 121110 (1).ppt
PPTX
3. Adherance Complianace.pptx pharmacy pci
PPTX
General Pharmacology by Nandini Ratne, Nagpur College of Pharmacy, Hingna Roa...
PPTX
NUTRITIONAL PROBLEMS, CHANGES NEEDED TO PREVENT MALNUTRITION
PDF
Priorities Critical Care Nursing 7th Edition by Urden Stacy Lough Test Bank.pdf
PPTX
Infection prevention and control for medical students
PPTX
Care Facilities Alcatel lucenst Presales
PPTX
COMMUNICATION SKILSS IN NURSING PRACTICE
PPTX
Nancy Caroline Emergency Paramedic Chapter 11
PPTX
HEMODYNAMICS - I DERANGEMENTS OF BODY FLUIDS.pptx
PDF
Dr. Jasvant Modi - Passionate About Philanthropy
PDF
_OB Finals 24.pdf notes for pregnant women
PDF
NUTRITION THROUGHOUT THE LIFE CYCLE CHILDHOOD -AGEING
PPTX
unit1-introduction of nursing education..
PDF
Assessment of Complications in Patients Maltreated with Fixed Self Cure Acryl...
PPTX
Nursing Care Aspects for High Risk newborn.pptx
PPTX
DeployedMedicineMedical EquipmentTCCC.pptx
PPTX
Rheumatic heart diseases with Type 2 Diabetes Mellitus
PPTX
Nancy Caroline Emergency Paramedic Chapter 8
PPTX
Newer Technologies in medical field.pptx
KULIAH UG WANITA Prof Endang 121110 (1).ppt
3. Adherance Complianace.pptx pharmacy pci
General Pharmacology by Nandini Ratne, Nagpur College of Pharmacy, Hingna Roa...
NUTRITIONAL PROBLEMS, CHANGES NEEDED TO PREVENT MALNUTRITION
Priorities Critical Care Nursing 7th Edition by Urden Stacy Lough Test Bank.pdf
Infection prevention and control for medical students
Care Facilities Alcatel lucenst Presales
COMMUNICATION SKILSS IN NURSING PRACTICE
Nancy Caroline Emergency Paramedic Chapter 11
HEMODYNAMICS - I DERANGEMENTS OF BODY FLUIDS.pptx
Dr. Jasvant Modi - Passionate About Philanthropy
_OB Finals 24.pdf notes for pregnant women
NUTRITION THROUGHOUT THE LIFE CYCLE CHILDHOOD -AGEING
unit1-introduction of nursing education..
Assessment of Complications in Patients Maltreated with Fixed Self Cure Acryl...
Nursing Care Aspects for High Risk newborn.pptx
DeployedMedicineMedical EquipmentTCCC.pptx
Rheumatic heart diseases with Type 2 Diabetes Mellitus
Nancy Caroline Emergency Paramedic Chapter 8
Newer Technologies in medical field.pptx

The Future of Data: High-Value Data is the Next Big Thing