SlideShare a Scribd company logo
The Generation and Use of TLS Fingerprints
Blake Anderson, PhD; David McGrew, PhD; Keith Schomburg
Cisco
Reducing the Visibility Gap
?
VM
?
• TLS parameters offered in the ClientHello can
provide library/process attribution [1-6]
• Applications
• Network forensics
• Malware detection [2]
• Identifying obsolete/vulnerable software
• OS fingerprinting [3]
• Advantages
• No endpoint agent required
• Completely passive
TLS Fingerprinting Overview
Fingerprinting Goals
• Maximize discerning power by including all informative data
features
Efficacy
• Enable approximate matching where needed
Flexibility
• Accommodate missing data and new protocol features
Compatibility
• Fingerprint format is interpretable and forensically sound
Reversibility
• Fast and compact extraction and matching
Performance
• Problem: Current fingerprint databases are slow to update and lack real-
world, contextual data.
• Solution: Continuously and automatically fuse network and endpoint data.
Network and Endpoint Data Fusion
?
VM
?
Network Data
Endpoint Data
Long-
Term
Storage
• Cipher Suites
• Generalize GREASE cipher suites: 0x0a0a,...,0xfafa -> GREASE
• Extensions
• Generalize GREASE extension types/data
• 0x0a0a,...,0xfafa -> GREASE
• Remove session specific extension data
• server_name, padding, session_ticket
TLS Feature Extraction and Pre-Processing
Identify
Protocol
Parse
Packet
Extract
Data
Normalize
Data
Comparison with Previous Work
Database Size Automatically Updated GREASE Support Static Extension Data
Our Work ~1,500 Yes Yes supported_groups
ec_point_formats
status_request
signature_algorithms
application_layer_
protocol_negotiation
supported_versions
psk_key_exchange_modes
Kotzias et al. [4] ~1,684 No Discards Locality supported_groups
ec_point_formats
JA3 [5] 158 No Discards All Data supported_groups
ec_point_formats
FingerprinTLS [6] 409 No No supported_groups
ec_point_formats
signature_algorithms
TLS Fingerprint Database Schema
Metadata TLS Information Attribution
TLS Fingerprint Database Schema
Metadata Attribution
TLS Information
Metadata
TLS Fingerprint Database Schema
TLS Information Attribution
• Generated from 30M+ real-world TLS sessions
• 1,567 fingerprints
• 454 unique cipher suite vectors
• 1,092 unique cipher suite + extension type vectors
• 12,644 unique process hashes
• 2,411 unique process names
General Stats
Operating System Representation
Application Representation
Similarity Matrix
Firefox
Chrome
OpenSSL
Schannel
Secure Transport
Cisco Collab
Python
Java
• String alignment over TLS features
Approximate TLS Fingerprinting
True Label Inferred Label
Alignment
Fingerprint Matching Overview
Identify
TLS
Extract
FP Data
Find
Match
Find
Approximate
Match
False
True
FP
Database
Report
Match
Update Database with
Approximate Match
Data Plane
Control Plane
Performance (Unoptimized Python)
Fingerprint Prevalence
TLS Fingerprint Visibility
TLS Session Visibility
• Fingerprint database and relevant code has been open-sourced:
• https://github.com/cisco/joy
• Joy
• Packet parsing and fingerprint extraction
• Python Scripts
• Exact and approximate matching
• Generation of custom fingerprint database from Joy output
Implementation
• More data!
• iOS, Android, and Linux
• Incorporate other fingerprint databases
• Time window analysis
Next Steps
[1] https://github.com/cisco/joy
[2] Blake Anderson, Subharthi Paul, David McGrew; Deciphering Malware’s Use of TLS (without
Decryption); arxiv, 2016; Journal of Computer Virology and Hacking Techniques, 2017.
[3] Blake Anderson, David McGrew; OS Fingerprinting: New Techniques and a Study of Information Gain
and Obfuscation; IEEE CNS 2017, https://arxiv.org/abs/1706.08003
[4] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson, Narseo Vallina-Rodriguez,
Juan Caballero; Coming of Age: A Longitudinal Study of TLS Deployment; IMC, 2018
[5] John B. Althouse, Jeff Atkinson, Josh Atkins; JA3 – A Method for Profiling SSL/TLS Clients
[6] Lee Brotherston; FingerprinTLS
References
Thank You

More Related Content

PPTX
Total E(A)gression defcon
PDF
SSL and TLS Theory and Practice 3rd Edition Rolf Oppliger
PPTX
Advancing IoT Communication Security with TLS and DTLS v1.3
PDF
Performance Analysis of TLS Web Servers
PDF
How (un)secure is SSL/TLS?
ODP
Tls 13final13
PDF
DEF CON 27 - ORANGE TSAI and MEH CHANG - infiltrating corporate intranet like...
DOCX
Transport Layer Security
Total E(A)gression defcon
SSL and TLS Theory and Practice 3rd Edition Rolf Oppliger
Advancing IoT Communication Security with TLS and DTLS v1.3
Performance Analysis of TLS Web Servers
How (un)secure is SSL/TLS?
Tls 13final13
DEF CON 27 - ORANGE TSAI and MEH CHANG - infiltrating corporate intranet like...
Transport Layer Security

Similar to tHE GENERATION AND USE OF TLS FINGERPRINGTS (20)

PDF
[CLASS 2014] Palestra Técnica - Jonathan Knudsen
PDF
libcurl, seven SSL libraries and one SSH library
PPTX
ION Sri Lanka - TLS for Network Operators
PPTX
TCPLS presentation @ietf 109
PDF
Securing Data in Transit -
PDF
honeyTLS - Profiling and Clustering Internet-wide SSL/TLS Scans with JA3
PPTX
Security Vulnerabilities in Third Party Code - Fix All the Things!
PPSX
Bleeding secrets
PDF
CNIT 141: 13. TLS
PDF
TLS Optimization
PDF
Tlsoptimizationprint 120224194603-phpapp02
PDF
wolfSSL and TLS 1.3
PDF
Vulnerability-tolerant Transport Layer Security
PDF
Understanding Wireguard, TLS and Workload Identity
PDF
Automated Analysis of TLS 1.3
PPT
tls security fda fkj k kjkfjsdkl jkjfsdk.ppt
PDF
New Security Mechanisms for Network Time Synchronization Protocols
PPTX
Cours4.pptx
PDF
Ssl And Tls Theory And Practice 2nd Rolf Oppliger
PPTX
Crypto Performance on ARM Cortex-M Processors
[CLASS 2014] Palestra Técnica - Jonathan Knudsen
libcurl, seven SSL libraries and one SSH library
ION Sri Lanka - TLS for Network Operators
TCPLS presentation @ietf 109
Securing Data in Transit -
honeyTLS - Profiling and Clustering Internet-wide SSL/TLS Scans with JA3
Security Vulnerabilities in Third Party Code - Fix All the Things!
Bleeding secrets
CNIT 141: 13. TLS
TLS Optimization
Tlsoptimizationprint 120224194603-phpapp02
wolfSSL and TLS 1.3
Vulnerability-tolerant Transport Layer Security
Understanding Wireguard, TLS and Workload Identity
Automated Analysis of TLS 1.3
tls security fda fkj k kjkfjsdkl jkjfsdk.ppt
New Security Mechanisms for Network Time Synchronization Protocols
Cours4.pptx
Ssl And Tls Theory And Practice 2nd Rolf Oppliger
Crypto Performance on ARM Cortex-M Processors
Ad

Recently uploaded (20)

PPTX
1_Introduction to advance data techniques.pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
Foundation of Data Science unit number two notes
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
Lecture1 pattern recognition............
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
1_Introduction to advance data techniques.pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Introduction to Knowledge Engineering Part 1
Qualitative Qantitative and Mixed Methods.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Foundation of Data Science unit number two notes
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
Business Ppt On Nestle.pptx huunnnhhgfvu
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
ISS -ESG Data flows What is ESG and HowHow
Lecture1 pattern recognition............
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Miokarditis (Inflamasi pada Otot Jantung)
IB Computer Science - Internal Assessment.pptx
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Ad

tHE GENERATION AND USE OF TLS FINGERPRINGTS

  • 1. The Generation and Use of TLS Fingerprints Blake Anderson, PhD; David McGrew, PhD; Keith Schomburg Cisco
  • 3. • TLS parameters offered in the ClientHello can provide library/process attribution [1-6] • Applications • Network forensics • Malware detection [2] • Identifying obsolete/vulnerable software • OS fingerprinting [3] • Advantages • No endpoint agent required • Completely passive TLS Fingerprinting Overview
  • 4. Fingerprinting Goals • Maximize discerning power by including all informative data features Efficacy • Enable approximate matching where needed Flexibility • Accommodate missing data and new protocol features Compatibility • Fingerprint format is interpretable and forensically sound Reversibility • Fast and compact extraction and matching Performance
  • 5. • Problem: Current fingerprint databases are slow to update and lack real- world, contextual data. • Solution: Continuously and automatically fuse network and endpoint data. Network and Endpoint Data Fusion ? VM ? Network Data Endpoint Data Long- Term Storage
  • 6. • Cipher Suites • Generalize GREASE cipher suites: 0x0a0a,...,0xfafa -> GREASE • Extensions • Generalize GREASE extension types/data • 0x0a0a,...,0xfafa -> GREASE • Remove session specific extension data • server_name, padding, session_ticket TLS Feature Extraction and Pre-Processing Identify Protocol Parse Packet Extract Data Normalize Data
  • 7. Comparison with Previous Work Database Size Automatically Updated GREASE Support Static Extension Data Our Work ~1,500 Yes Yes supported_groups ec_point_formats status_request signature_algorithms application_layer_ protocol_negotiation supported_versions psk_key_exchange_modes Kotzias et al. [4] ~1,684 No Discards Locality supported_groups ec_point_formats JA3 [5] 158 No Discards All Data supported_groups ec_point_formats FingerprinTLS [6] 409 No No supported_groups ec_point_formats signature_algorithms
  • 8. TLS Fingerprint Database Schema Metadata TLS Information Attribution
  • 9. TLS Fingerprint Database Schema Metadata Attribution TLS Information
  • 10. Metadata TLS Fingerprint Database Schema TLS Information Attribution
  • 11. • Generated from 30M+ real-world TLS sessions • 1,567 fingerprints • 454 unique cipher suite vectors • 1,092 unique cipher suite + extension type vectors • 12,644 unique process hashes • 2,411 unique process names General Stats
  • 15. • String alignment over TLS features Approximate TLS Fingerprinting True Label Inferred Label Alignment
  • 16. Fingerprint Matching Overview Identify TLS Extract FP Data Find Match Find Approximate Match False True FP Database Report Match Update Database with Approximate Match Data Plane Control Plane
  • 21. • Fingerprint database and relevant code has been open-sourced: • https://github.com/cisco/joy • Joy • Packet parsing and fingerprint extraction • Python Scripts • Exact and approximate matching • Generation of custom fingerprint database from Joy output Implementation
  • 22. • More data! • iOS, Android, and Linux • Incorporate other fingerprint databases • Time window analysis Next Steps
  • 23. [1] https://github.com/cisco/joy [2] Blake Anderson, Subharthi Paul, David McGrew; Deciphering Malware’s Use of TLS (without Decryption); arxiv, 2016; Journal of Computer Virology and Hacking Techniques, 2017. [3] Blake Anderson, David McGrew; OS Fingerprinting: New Techniques and a Study of Information Gain and Obfuscation; IEEE CNS 2017, https://arxiv.org/abs/1706.08003 [4] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson, Narseo Vallina-Rodriguez, Juan Caballero; Coming of Age: A Longitudinal Study of TLS Deployment; IMC, 2018 [5] John B. Althouse, Jeff Atkinson, Josh Atkins; JA3 – A Method for Profiling SSL/TLS Clients [6] Lee Brotherston; FingerprinTLS References