IOSR Journal of Dental and Medical Sciences (IOSR-JDMS)
e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 14, Issue 12 Ver. I (Dec. 2015), PP 19-24
www.iosrjournals.org
DOI: 10.9790/0853-141211924 www.iosrjournals.org 19 | Page
The occurrence of AmpC β-lactamase and ESBL producing
Gram-negative bacteria by a simple and convenient screening
method and its suitability in routine use
Snehlata Singh, Dr. Abhineet Mehrotra
(Department of Microbiology, Mayo Institute Of Medical Sciences, Safedabad Barabanki, India),
Asst.Professor(Department of Microbiology, Career Institute of Medical Sciences and Hospital, Lucknow,
India)
Abstract:
Background: All clinical samples (e.g. Pus, urine, sputum, blood, tracheal aspirate, peritoneal fluid, catheter
tip, ET tip tracheostomy aspirate) etc are sent for culture and antibiotic sensitivity in a clinical microbiology
laboratory to achieve etiological diagnosis.
Aims: The study was done to detect the AmpC β-lactamase and ESBL producing gram negative bacteria from
different clinical samples. This study included AmpC disc screening test and found out that the modified three
dimensional tests using whole cell growth gives clearer result.
Setting and Design: A 6-month prospective analytical study was done in a tertiary care hospital.
Materials and Methods: A total of 141 sample, non-enteric Gram-negative clinical isolates obtained from
different clinical samples (e.g. Pus, urine, sputum, blood, tracheal aspirate, peritoneal fluid, catheter tip, ET tip
tracheostomy aspirate, etc) The organism included E.coli , Pseudomonas spp , Klebsiella pneomoniae ,
Klebsiela spp , Acinetobacter spp , Proteus spp ,Citrobacter spp , and Enterobacter spp . Antimicrobial
susceptibility of the strains were put according to CLSI guidelines, for ESBL and AmpC enzyme detection
source of the discs were HiMedia 19
Result: Among all the strains out of 141 isolates were tested 47 are AmpC producer and 94 are AmpC non-
producer. Maximal incidence of AmpC producers was found among E. coli (20) followed by Klebsiella
pneumonia (10). Isolates were tested for ESBL detection and 91 (64.53%) were found to be ESBL producer and
50 (35.46%) were ESBL non-producer. E. coli was the highest occurrence of ESBL producer (45.07%),
followed by Klebsiella pneumonia (29.57%).
Conclusion: Modified three dimensional test using whole cell growth in peptone water is well comparable to
the modified 3 dimensional test using cell extract method and is better than AmpC disc screening assay at the
same time is very cost effective and simple assay to be used for routine reporting of AmpC β-lactamase.
I. Introduction
The first bacterial enzyme reported to destroy penicillin was the AmpC β-lactamase of Escherichia coli
(1)
. Mutation with stepwise-enhanced resistance were termed as ampA and ampB (2,3)
. A mutation in an ampA
strain that resulted in reduced resistance was then designated as ampC. In the Ambler structural classification of
β-lactamases(4)
, AmpC enzyme belong to class C, while in the functional classification scheme of Bush et al. (5)
,
they were designated to group 1.
They are active on penicillins but even more active on cephalosporins and can hydrolyze cephmycins
such as cefoxitin and cefotetan; oxyiminocephalosporins such as ceftazidime, cefotaxime, and ceftriaxone; and
monobactams such as aztreonam but at slow rate (6)
. Inhibitor of class A enzyme such as clavulanic acid,
sulbactams, and tazobactam have much less effect on AmpC β-lactamase, although some are inhibited by
tazobactam and sulbactam(7,8,9)
. AmpC β-lactamase are poorly inhibited by p-chloromercuribenzoate and not at
all by EDTA. Cloxacillin, oxacillin, and aztreonam are good inhibitors (5)
.
The predominant mechanism for resistant to β-lactam antibiotics in gram-negative bacteria is the
synthesis of β-lactamase. To meet this challenge, β-lactamase with greater β-lactamase stability, including
cephalosporins, carbapenems, and monobactams, were introduced in the 1980s.
There is presently no CLSI or other approved criteria for AmpC β-lactamase detection (11)
, however
various workers have detected AmpC enzyme by three dimensional assay using cell extract, and AmpC disc
screening assay etc. The true rate of occurrence of AmpC β-lactamases in different organisms, including
members of Enterobacteriacae, remains unknown Coudron et al.(12)
used the standard disc diffusion breakpoint
for cefoxitin (zone diameter <18mm) to screen isolates, and used a three dimensional extract test as a
confirmatory test for isolates that harbour AmpC β-lactamases. The disc diffusion test was found to be non
specific and there is always a search for newer methods and the aim to make existing methods more user-
The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple …..
DOI: 10.9790/0853-141211924 www.iosrjournals.org 20 | Page
friendly to detect these enzymes for use in routine diagnostic laboratories. The main aim is to pass on the benefit
to the ultimate beneficiary, the patient, as quickly as possible and, obviously, at lowest possible cost(13)
.
The present study was designed to determine the occurrence of β-lactamases from Barabanki region. In
present study used whole cell growth in place of cell extract. The three dimensional test being made more user
friendly to be applied as a phenotypic screening method for the detection of AmpC-harbouring Gram negative
isolates.
II. Material And Method
A total of 141 sample, non-enteric Gram-negative clinical isolates obtained from different clinical
samples (e.g. Pus, urine, sputum, blood, tracheal aspirate, peritoneal fluid, catheter tip, ET tip tracheostomy
aspirate, etc) in clinical bacteriology laboratory Department of Microbiology Mayo Medical College and
Hospital, during June 2014 to January 2015 were included in this study.
The organism included E.coli (51 isolates), Pseudomonas spp (32 isolates), Klebsiella pneomoniae (23 isolates),
Klebsiela spp (18 isolates), Acinetobacter spp (10 isolates), Proteus spp (5 isolates),Citrobacter spp (one
isolate), and Enterobacter spp (one isolate).
The isolates were identified by standard microbiological techniques used in the laboratory.
Antimicrobial susceptibility of the strains were put according to CLSI guidelines, source of the discs were
HiMedia (19)
a. ESBL Detection
Irrespective of their antimicrobial susceptibility profile all isolate of E.coli and Klebsiella spp and
Proteus spp were tested for ESBL production using Ceftazidime (30µg) discs and Ceftazidime / Clavulanic acid
(30/10 µg) discs were used as, recommended by CLSI Guideline. Eschericia coli ATCC 25922 was included in
the study for ensuring quality control. Klebsiella pneumoniae 700603 ATCC were used as an ESBL Positive
control. Increase in zone diameter of ≥5 mm for Ceftazidime/Clavulanic acid versus its zone when tested alone
was a positive test for ESBL producer.
b. AmpC enzyme Detection : three-dimensional extract test
AmpC enzyme production was detected by a modified three-dimensional extract test
Fresh overnight growth from Mueller-Hinton agar was transferred in peptone water and incubated it for 2-4
hours at 37ºC.
Lawn culture of E. coli ATCC 25922 were prepared on Mueller-Hinton Agar plate and Cefoxitin (30 µg) disc
were placed on the plate.
Linear slits (3cm) were cut using a sterile lancet 3mm away from the periphery of Cefoxitin disc.
Small circular wells were made on the slits at 5mm distance, inside the outer edge of the slit, by stabbing the cut
end of micropipette tip.
The wells were loaded slowly with peptone water growth in 10 µL increments until the well was filled to the
top, taking care to not overflow.
The plates were kept upright for 5-10 minutes until the solution dried, and the plates were incubated at 37ºC.
overnight.
The isolates showing clear distortion of zone of inhibition of cefoxitin disc were taken as AmpC producers. The
isolate with no distortion were taken as AmpC non-producers.
III. Result
a. ESBL Profile
Among all the strains tested out of 141 isolates were tested for ESBL detection and 91 (64.53%) were found to
be ESBL producer and 50 (35.46%) were ESBL non-producer. E. coli was the highest occurrence of ESBL
producer (45.07%), followed by Klebsiella pneumoniae (29.57%).
ISOLATES
ESBL POSITIVE
N (%)
ESBL NEGATIVE
N (%)
E. col 42(46.15) 20(21.97)
Klebsiella pneumonia 25(16.48) 15(16.48)
Klebsiella spp. (other than K. pneumoniae) 20(21.97) 10(10.98)
Proteus mirabilis 2(2.19) 3(3.29)
Proteus spp. (other than P. mirabilis) 2(2.19) 2(2.19)
The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple …..
DOI: 10.9790/0853-141211924 www.iosrjournals.org 21 | Page
b. AmpC β-lactamase Profile
Among all the strains out of 141 isolates were tested 47 are AmpC producer and 94 are AmpC non-producer.
Maximal incidence of AmpC producers was found among E. coli (20) followed by Klebsiella pneumoniae (10).
ISOLATE
n = 141
AmpC producer
n = 47
AmpC
non-producer
n = 94
Total
E. coli 20 42 62
Klebsiella pneumonia 10 25 35
Klebsiella spp. 52 20 25
Pseudomonas spp. 5 2 7
Acinetobacter spp. 3 1 4
Proteus spp. 2 4 6
Citrobacter spp. 1 0 1
Enterobacter spp. 1 0 1
c. AmpC negative ESBL profile
A total of 94 AmpC non producer were tested for ESBL production and out of them 64 (68.08%) were found to
be ESBL producer while 30 (31.91%) were ESBL non producer.
IIssoollaattee
nn == 9944
AAmmppCC nneeggaattiivvee EESSBBLL ppoossiittiivvee
nn == 6644 ((6688..0088%%))
AAmmppCC nneeggaattiivvee EESSBBLL nneeggaattiivvee
nn == 3300 ((3311..9911%%))
EE.. CCoollii 2255 ((2266..5599%%)) 1155 ((1155..9955%%))
KKlleebbssiieellllaa ppnneeuummoonniiaaee 1155 ((1155..9955%%)) 1100 ((1100..6633%%))
KKlleebbssiieellllaa sspppp.. 1122 ((1122..7766%%)) 33 ((33..1199%%))
PPrrootteeuuss sspppp 88 ((88..5511%%)) 22 ((22..1122%%))
The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple …..
DOI: 10.9790/0853-141211924 www.iosrjournals.org 22 | Page
d. Ward wise distribution
WWAARRDD // OOPPDD // IICCUU
NN == 114411
AAmmppCC PPOOSSIITTIIVVEE
nn == 4477 ((%%))
AAmmppCC NNEEGGAATTIIVVEE
nn == 9944 ((%%))
IICCUU 1155 ((3311..9911%%)) 2200 ((2211..2277%%))
WWAARRDD 2277 ((5577..4444%%)) 4433 ((4455..7744%%))
OOPPDD 55 ((1100..6633%%)) 3311 ((3322..9977%%))
e. Sample wise distribution
SSAAMMPPLLEE
nn == 114411 ((%%))
AAmmppCC ppoossiittiivvee
nn == 4477 ((3333..3333%%))
AAmmppCC nneeggaattiivvee
nn == 9944 ((6666..6666%%))
PPUUSS 2200 4400
UURRIINNEE 1133 3344
BBLLOOOODD 33 66
SSPPUUTTUUMM 22 44
PPEERRIITTOONNEEAALL FFLLUUIIDD 11 00
TTRRAACCHHEEAALL AASSPPIIRRAATTEE 66 22
EETT TTUUBBEE 11 33
CCAATTHHEETTEERR TTIIPP 11 33
VVAAGGIINNAALL SSAAWWBB 00 22
The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple …..
DOI: 10.9790/0853-141211924 www.iosrjournals.org 23 | Page
f. Antibiotic Sensitivity Profile
IV. Keywords:
Ak- Amikacin, Cef- Ceftazidime, Cef- Cefixime, Ctx- Ceftriaxone, Cip- Ciprofloxacin, Cpz- Cefoperazone, Cot-
Co-Tromoxazole, Dox- Doxicycline , Gati- Gatifloxacin, Gen- Gentamicin, Imi- Imipenem, Levo- Levofloxacin,
Mrp- Meropenem, Nit- Nitrofurantoin, , Pip- Pipercillin
V. DISCUSSION
AmpC and ESBL producing strains all over the world , it is necessary to know the prevalence of these
strains in hospitals.The occurrence of AmpC beta lactamase (33.33) in our isolate to be quite high. Also high
occorrence of ESBL (64.53%) is seen in our hospital. Maximal incidence of AmpC producers was found among
E. coli (20) followed by Klebsiella pneumoniae (10). Maximal incidence of ESBL producers was found among
E. coli (42) followed by Klebsiella pneumoniae (25). The highest incidence was found in the sample Pus 20
(42.55%), then in Urine 13 (27.65%), followed by Tracheal aspirate 6 (12.76%), then in blood 3 (6.3%). The
highest resistance rate was found in cephalosporins like Ceftazidime, Ceftriaxone, & CO-Trimoxazole (100%).
The lowest resistance rate was found in Imipenem 16.39% followed by Meropenem 36.68%. Highest
incidence was found in patient those who was admitted in ward i.e, 27(57.44%) followed by ICUs 15(31.91%),
then in OPD 5(10.63%). Out of all AmpC negative strains 94were tested for ESBL detection and from them 64
(68.08%) were ESBL positive and 30 (31.91%)were ESBL negative.
Among the ICUs the highest rate was found in SICU, followed by NICU and MICU.
VI. Conclusion
Various researchers have tried the three dimensional test as well as AmpC disc test for screening of
AmpC β lactamases but till date no satisfactory technique has been found for routine use. This study included
AmpC disc screening test and found out that the modified three dimensional test using whole cell growth gives
clearer result. Modified three dimensional test using whole cell growth in peptone water is well comparable to
the modified 3 dimensional test using cell extract method and is better than AmpC disc screening assay at the
same time is very cost effective and simple assay to be used for routine reporting of AmpC β-lactamase.
Total
(N=141) Imi Mrp Cef Pip Cef Ctx Cip Levo Gati Doxi Gen Amk Cpz Nit Cot
Resistant 15.38 36.58 100 55.81 100 100 90 61.9 55.82 82.92 91.89 64.7 68 66 100
Sensitive 84.61 63.42 0 44.19 0 0 10 38.1 44.18 17.08 8.1 34.3 32 34 0
The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple …..
DOI: 10.9790/0853-141211924 www.iosrjournals.org 24 | Page
References
[1]. Abraham, E. P., and E. Chain. 1940. an enzyme of bacteria able to destroy penicillin. Nature 146:837.
[2]. Eriksson-Grenberg, K. G. 1968. Resistance of Escherichia coli to penicillins. II. An improve mapping of the AmpA gene. Genet.
Res. 12:147-156.
[3]. Eriksson-Grenberg, K. G., H. G. Boman, J. A. Jansson, and B. C. Herold. 2006. Resistance of Escherichia coli to penicillins. I.
Genetic study of some ampicillin-resistant mutants. J. Bacteriol. 90:54-62.
[4]. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B. 289:321-331.
[5]. Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with
molecular structure. Antimicrob. Agents Chemother. 39:1211-1233
[6]. Galleni, M., and J. M. Frere. 1988. A survey of the kinetic parameters of class C β-lactamases. Cephalosporins and other β-
lactam compounds. Biochem. J. 255:123-129.
[7]. Bush, K., C. Macalintal, B. A. Rasumussen, V. J. Lee, and Y. Yang. 1993. Kinetic interactions of tazobactam with β-lactamases
from all major structural classes. Antimicrib. Agents Chemother. 37:851-858.
[8]. Kazmierczak, A., X. Cordin., J. M. Duez, E. Siebor, A. Pechinot, and J. Sirot. 1990. Differences between clavulanic acid
sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J. Int. Med. Res. 18(Suppl. 4):67D-77D.
[9]. Monnaie, D., and J. M. Frere. 1993. Interaction of clavulanate with class C β-lactamases. FEBS Lett. 334:269-271.
[10]. Alain Philippon., Guillaume Arlet., George A. Jacoby. 2002. Plasmid-determined AmpC-Type β-lactamases. Antimicrob. Agents
Chemother. 46:1-11.
[11]. Doi, Y., and D. L. Paterson. 2007. Detection of plasmid-mediated class C β-lactamases. Int. J. Infect. Dis. 11:191-197.
[12]. Coudron, P. E., Moland, E. S. and Thomson, K. S. 2000. Occurrence and detection of AmpC β-lactamases among Escherichia
coli, Klebsiella pneumoniae, and Proteus mirabillis isolate at a Veterans Medical Center. J. of Clinical Microbiol. 38:1791-1796.
[13]. Manchanda, V. and Singh, N. P. 2003. Occurrence and detection of AmpC β-lactamases among Gram-negative isolates using a
modified three-dimensional test. J of Antimicrob. Chemother. 51:415-418.
[14]. J. D. D. Pitout, P. G. Le, K. L. Moore, D. L. Church and D. B. Gregson. 2010. Detection of AmpC β-lactamases among
Escherichia coli, Klebsiella spp., Salmonella spp. and Proteus mirabilis in a regional clinical microbiology laboratory. Clin.
Microbiol. Infect.16:165-170.
[15]. Upadhyay at. el. 2010. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing
AmpC beta-lactamase enzyme. J Infect Dev Ctries. 4(4):239-242.
[16]. Hemlata, M. Padma, T.M. Vinodh and A.S. Arunkumar. 2007. Detection of AmpC beta lactamases production in Escherichia
coli and Klebsiella by an inhibitor based method. Indian J Med. Res. 126:220-223.
[17]. Rand KH, Turner B, Seifert H, Hansen C, Jhonson JA, and Zimmer A. 2011. Clinical laboratory detection of AmpC β-
lactamase: does it affect patient outcome?. Am. J. Clin. Pathol. 135(4):572-576.
[18]. Perez-Perez F J and Hanson ND. 2002. Detection of plasmid mediated AmpC beta-lactamase genes in clinical isolates by using
multiplex PCR. J. Clin. Microbiol. 40(6):2153-2162.
[19]. Polsfuss, S., Bloemberg, G. V., Giger, J., Meyer, V., Bottger, E. C. and Hombach, M. 2011. A practical approach for reliable
detection of AmpC beta-lactamse producing Enterobacteriaceae. J. Clin. Micribiol. 49(8):2798-2803.
[20]. Rajni E, Rawat U, Malhotra VL, Mehta G. 2008. Occurrence and detection of AmpC beta lactamases among clinical isolates of
E. coli and K. pneumoniae causing UTI. J. Commun. Dis. 40(1):21-25.
[21]. S. Ananthan and A Subha. 2005. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and
Eschrrichia coli. Indian J. Med. Microbiol. 23(1):20-23.
[22]. S Singhal, T Mathur, S Khan, DJ Upadhyay, S Chugh, R Gaind, A Ratttan. 2005. Evaluation of methods for AmpC beta-
lactamase in Gram negative clinical isolates from tertiary care hospitals. Indian J. Med. Microbiol. 23:120-124.
[23]. Steven M. Opal and Aurora Pop-Vicas. Molecular mechanisms of Antibiotic Resistance in Bacteria. Mandell, Douglas and
Bennett’s Principles and Practice of Infectious Diseases 7th
ed. Mandell, G. L., Bennett, J. E., Dolin, R.(editors). Churchill
Livingstone, 2010.
[24]. George A. Jacoby. 2009. AmpC β-lactamases. Clin. Microbiol. Reviews. 22(1):161-182.

More Related Content

PDF
ajcmi-02-03-29691 edited by SC
PDF
J World's Poult Res 5(2) 21-28, 2015
PPTX
Scientific report article presentation
PPT
Evaluating Hepatocyte-derived mESCs
PDF
ijep-03-22531-1
PDF
Poster benito SIDiLV BVD/BDV
PPT
ajcmi-02-03-29691 edited by SC
J World's Poult Res 5(2) 21-28, 2015
Scientific report article presentation
Evaluating Hepatocyte-derived mESCs
ijep-03-22531-1
Poster benito SIDiLV BVD/BDV

What's hot (19)

PDF
Univ bacteriav PCR Primer
PDF
Gene expression profiling in apoptotic mcf 7 cells infected with newcastle di...
PDF
Microbiological quality of fresh sausage 1
PPTX
Biosurfect againt Cancer
PDF
Salmonella
PDF
Saad et al
PDF
MRSL: Methicillin Resistant Staphylococcus lugdunensis
PPTX
Thesis presentation - Yaeli Etstein
PDF
Sl mri mousticide report
PDF
Real time pcr assay for rapid detection and quantification of campylobacter j...
DOCX
Research Proposal
PDF
Detection of stx gene of e
PPT
PATHOGENICITY AND ANTIBIOTIC SENSITIVITY OF ESCHERICHIA COLI ISOLATED FROM SU...
DOCX
Measuring parameters of Bovine Enterovirus infection
PPTX
Dr. Sid Thakur - Antimicrobial Resistance: Do We Know Everything?
PDF
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
PDF
Journal of Bacteriology and Mycology
PDF
Comparative Study of the Prevalence and Antibiogram of Bacterial Isolates fro...
Univ bacteriav PCR Primer
Gene expression profiling in apoptotic mcf 7 cells infected with newcastle di...
Microbiological quality of fresh sausage 1
Biosurfect againt Cancer
Salmonella
Saad et al
MRSL: Methicillin Resistant Staphylococcus lugdunensis
Thesis presentation - Yaeli Etstein
Sl mri mousticide report
Real time pcr assay for rapid detection and quantification of campylobacter j...
Research Proposal
Detection of stx gene of e
PATHOGENICITY AND ANTIBIOTIC SENSITIVITY OF ESCHERICHIA COLI ISOLATED FROM SU...
Measuring parameters of Bovine Enterovirus infection
Dr. Sid Thakur - Antimicrobial Resistance: Do We Know Everything?
Rapid Identification Robinsoniella Peoriensis Specific 16S Primers 2016 White...
Journal of Bacteriology and Mycology
Comparative Study of the Prevalence and Antibiogram of Bacterial Isolates fro...
Ad

Similar to The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple and convenient screening method and its suitability in routine use (20)

PDF
Molecular detection of extended spectrum beta- lactamases in clinical isolate...
PDF
PREVALENCE AND ANTIMICROBIAL SUSCEPTIBILITY OF ESBL IN SOKOTO PDF
PDF
Characterization of Multidrug
PDF
Epidemiology and molecular typing of klebsiella pneumonia with the extended s...
PPTX
Comparación métodos detección carbapenemasas.pptx
PDF
Antibiotic Susceptibility Pattern of Pyogenic Bacterial Isolates in Sputum.
PPTX
Nuhu et al_Poster NAPA2016 correction and observation
PDF
Susceptibility profiles of Enterobacteriaceae to temocillin, piperacillin-taz...
PPT
Recent Changes in Gram negative Resistance - Dr Steve Jenkins - November 2010...
PPTX
Tpibaru8
PPT
ESBL: From petri dish to patient
PDF
Ijaret 06 10_008
PDF
A study of antibiotic resistance of Extended-Spectrum Beta-Lactamases produci...
PDF
PAPER1
PDF
Evaluation of Automated COBAS AMPLICOR PCR System for Detection of Several In...
PDF
Current Antibiotic Resistance Trends of Uropathogens from Outpatients in a Ni...
PDF
Identification of antibiotic resistance genes in Klebsiella pneumoniae isolat...
PPTX
Rosenbloom_PosterAntibiotics
Molecular detection of extended spectrum beta- lactamases in clinical isolate...
PREVALENCE AND ANTIMICROBIAL SUSCEPTIBILITY OF ESBL IN SOKOTO PDF
Characterization of Multidrug
Epidemiology and molecular typing of klebsiella pneumonia with the extended s...
Comparación métodos detección carbapenemasas.pptx
Antibiotic Susceptibility Pattern of Pyogenic Bacterial Isolates in Sputum.
Nuhu et al_Poster NAPA2016 correction and observation
Susceptibility profiles of Enterobacteriaceae to temocillin, piperacillin-taz...
Recent Changes in Gram negative Resistance - Dr Steve Jenkins - November 2010...
Tpibaru8
ESBL: From petri dish to patient
Ijaret 06 10_008
A study of antibiotic resistance of Extended-Spectrum Beta-Lactamases produci...
PAPER1
Evaluation of Automated COBAS AMPLICOR PCR System for Detection of Several In...
Current Antibiotic Resistance Trends of Uropathogens from Outpatients in a Ni...
Identification of antibiotic resistance genes in Klebsiella pneumoniae isolat...
Rosenbloom_PosterAntibiotics
Ad

More from iosrjce (20)

PDF
An Examination of Effectuation Dimension as Financing Practice of Small and M...
PDF
Does Goods and Services Tax (GST) Leads to Indian Economic Development?
PDF
Childhood Factors that influence success in later life
PDF
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
PDF
Customer’s Acceptance of Internet Banking in Dubai
PDF
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
PDF
Consumer Perspectives on Brand Preference: A Choice Based Model Approach
PDF
Student`S Approach towards Social Network Sites
PDF
Broadcast Management in Nigeria: The systems approach as an imperative
PDF
A Study on Retailer’s Perception on Soya Products with Special Reference to T...
PDF
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
PDF
Consumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
PDF
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
PDF
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
PDF
Media Innovations and its Impact on Brand awareness & Consideration
PDF
Customer experience in supermarkets and hypermarkets – A comparative study
PDF
Social Media and Small Businesses: A Combinational Strategic Approach under t...
PDF
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
PDF
Implementation of Quality Management principles at Zimbabwe Open University (...
PDF
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...
An Examination of Effectuation Dimension as Financing Practice of Small and M...
Does Goods and Services Tax (GST) Leads to Indian Economic Development?
Childhood Factors that influence success in later life
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
Customer’s Acceptance of Internet Banking in Dubai
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
Consumer Perspectives on Brand Preference: A Choice Based Model Approach
Student`S Approach towards Social Network Sites
Broadcast Management in Nigeria: The systems approach as an imperative
A Study on Retailer’s Perception on Soya Products with Special Reference to T...
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
Consumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
Media Innovations and its Impact on Brand awareness & Consideration
Customer experience in supermarkets and hypermarkets – A comparative study
Social Media and Small Businesses: A Combinational Strategic Approach under t...
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
Implementation of Quality Management principles at Zimbabwe Open University (...
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...

Recently uploaded (20)

PDF
04 dr. Rahajeng - dr.rahajeng-KOGI XIX 2025-ed1.pdf
PPTX
NUCLEAR-MEDICINE-Copy.pptxbabaabahahahaahha
PPTX
SHOCK- lectures on types of shock ,and complications w
PPTX
Vaccines and immunization including cold chain , Open vial policy.pptx
PPTX
4. Abdominal Trauma 2020.jiuiwhewh2udwepptx
PPTX
Post Op complications in general surgery
PPT
Blood and blood products and their uses .ppt
PPT
Infections Member of Royal College of Physicians.ppt
PPTX
Critical Issues in Periodontal Research- An overview
PPTX
abgs and brain death dr js chinganga.pptx
PPTX
Vesico ureteric reflux.. Introduction and clinical management
PDF
B C German Homoeopathy Medicineby Dr Brij Mohan Prasad
PPTX
HYPERSENSITIVITY REACTIONS - Pathophysiology Notes for Second Year Pharm D St...
PPTX
Approach to chest pain, SOB, palpitation and prolonged fever
PDF
Forensic Psychology and Its Impact on the Legal System.pdf
DOCX
PEADIATRICS NOTES.docx lecture notes for medical students
PPTX
Physiology of Thyroid Hormones.pptx
PPT
Dermatology for member of royalcollege.ppt
PPTX
Neoplasia III.pptxjhghgjhfj fjfhgfgdfdfsrbvhv
PDF
Nursing manual for conscious sedation.pdf
04 dr. Rahajeng - dr.rahajeng-KOGI XIX 2025-ed1.pdf
NUCLEAR-MEDICINE-Copy.pptxbabaabahahahaahha
SHOCK- lectures on types of shock ,and complications w
Vaccines and immunization including cold chain , Open vial policy.pptx
4. Abdominal Trauma 2020.jiuiwhewh2udwepptx
Post Op complications in general surgery
Blood and blood products and their uses .ppt
Infections Member of Royal College of Physicians.ppt
Critical Issues in Periodontal Research- An overview
abgs and brain death dr js chinganga.pptx
Vesico ureteric reflux.. Introduction and clinical management
B C German Homoeopathy Medicineby Dr Brij Mohan Prasad
HYPERSENSITIVITY REACTIONS - Pathophysiology Notes for Second Year Pharm D St...
Approach to chest pain, SOB, palpitation and prolonged fever
Forensic Psychology and Its Impact on the Legal System.pdf
PEADIATRICS NOTES.docx lecture notes for medical students
Physiology of Thyroid Hormones.pptx
Dermatology for member of royalcollege.ppt
Neoplasia III.pptxjhghgjhfj fjfhgfgdfdfsrbvhv
Nursing manual for conscious sedation.pdf

The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple and convenient screening method and its suitability in routine use

  • 1. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 14, Issue 12 Ver. I (Dec. 2015), PP 19-24 www.iosrjournals.org DOI: 10.9790/0853-141211924 www.iosrjournals.org 19 | Page The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple and convenient screening method and its suitability in routine use Snehlata Singh, Dr. Abhineet Mehrotra (Department of Microbiology, Mayo Institute Of Medical Sciences, Safedabad Barabanki, India), Asst.Professor(Department of Microbiology, Career Institute of Medical Sciences and Hospital, Lucknow, India) Abstract: Background: All clinical samples (e.g. Pus, urine, sputum, blood, tracheal aspirate, peritoneal fluid, catheter tip, ET tip tracheostomy aspirate) etc are sent for culture and antibiotic sensitivity in a clinical microbiology laboratory to achieve etiological diagnosis. Aims: The study was done to detect the AmpC β-lactamase and ESBL producing gram negative bacteria from different clinical samples. This study included AmpC disc screening test and found out that the modified three dimensional tests using whole cell growth gives clearer result. Setting and Design: A 6-month prospective analytical study was done in a tertiary care hospital. Materials and Methods: A total of 141 sample, non-enteric Gram-negative clinical isolates obtained from different clinical samples (e.g. Pus, urine, sputum, blood, tracheal aspirate, peritoneal fluid, catheter tip, ET tip tracheostomy aspirate, etc) The organism included E.coli , Pseudomonas spp , Klebsiella pneomoniae , Klebsiela spp , Acinetobacter spp , Proteus spp ,Citrobacter spp , and Enterobacter spp . Antimicrobial susceptibility of the strains were put according to CLSI guidelines, for ESBL and AmpC enzyme detection source of the discs were HiMedia 19 Result: Among all the strains out of 141 isolates were tested 47 are AmpC producer and 94 are AmpC non- producer. Maximal incidence of AmpC producers was found among E. coli (20) followed by Klebsiella pneumonia (10). Isolates were tested for ESBL detection and 91 (64.53%) were found to be ESBL producer and 50 (35.46%) were ESBL non-producer. E. coli was the highest occurrence of ESBL producer (45.07%), followed by Klebsiella pneumonia (29.57%). Conclusion: Modified three dimensional test using whole cell growth in peptone water is well comparable to the modified 3 dimensional test using cell extract method and is better than AmpC disc screening assay at the same time is very cost effective and simple assay to be used for routine reporting of AmpC β-lactamase. I. Introduction The first bacterial enzyme reported to destroy penicillin was the AmpC β-lactamase of Escherichia coli (1) . Mutation with stepwise-enhanced resistance were termed as ampA and ampB (2,3) . A mutation in an ampA strain that resulted in reduced resistance was then designated as ampC. In the Ambler structural classification of β-lactamases(4) , AmpC enzyme belong to class C, while in the functional classification scheme of Bush et al. (5) , they were designated to group 1. They are active on penicillins but even more active on cephalosporins and can hydrolyze cephmycins such as cefoxitin and cefotetan; oxyiminocephalosporins such as ceftazidime, cefotaxime, and ceftriaxone; and monobactams such as aztreonam but at slow rate (6) . Inhibitor of class A enzyme such as clavulanic acid, sulbactams, and tazobactam have much less effect on AmpC β-lactamase, although some are inhibited by tazobactam and sulbactam(7,8,9) . AmpC β-lactamase are poorly inhibited by p-chloromercuribenzoate and not at all by EDTA. Cloxacillin, oxacillin, and aztreonam are good inhibitors (5) . The predominant mechanism for resistant to β-lactam antibiotics in gram-negative bacteria is the synthesis of β-lactamase. To meet this challenge, β-lactamase with greater β-lactamase stability, including cephalosporins, carbapenems, and monobactams, were introduced in the 1980s. There is presently no CLSI or other approved criteria for AmpC β-lactamase detection (11) , however various workers have detected AmpC enzyme by three dimensional assay using cell extract, and AmpC disc screening assay etc. The true rate of occurrence of AmpC β-lactamases in different organisms, including members of Enterobacteriacae, remains unknown Coudron et al.(12) used the standard disc diffusion breakpoint for cefoxitin (zone diameter <18mm) to screen isolates, and used a three dimensional extract test as a confirmatory test for isolates that harbour AmpC β-lactamases. The disc diffusion test was found to be non specific and there is always a search for newer methods and the aim to make existing methods more user-
  • 2. The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple ….. DOI: 10.9790/0853-141211924 www.iosrjournals.org 20 | Page friendly to detect these enzymes for use in routine diagnostic laboratories. The main aim is to pass on the benefit to the ultimate beneficiary, the patient, as quickly as possible and, obviously, at lowest possible cost(13) . The present study was designed to determine the occurrence of β-lactamases from Barabanki region. In present study used whole cell growth in place of cell extract. The three dimensional test being made more user friendly to be applied as a phenotypic screening method for the detection of AmpC-harbouring Gram negative isolates. II. Material And Method A total of 141 sample, non-enteric Gram-negative clinical isolates obtained from different clinical samples (e.g. Pus, urine, sputum, blood, tracheal aspirate, peritoneal fluid, catheter tip, ET tip tracheostomy aspirate, etc) in clinical bacteriology laboratory Department of Microbiology Mayo Medical College and Hospital, during June 2014 to January 2015 were included in this study. The organism included E.coli (51 isolates), Pseudomonas spp (32 isolates), Klebsiella pneomoniae (23 isolates), Klebsiela spp (18 isolates), Acinetobacter spp (10 isolates), Proteus spp (5 isolates),Citrobacter spp (one isolate), and Enterobacter spp (one isolate). The isolates were identified by standard microbiological techniques used in the laboratory. Antimicrobial susceptibility of the strains were put according to CLSI guidelines, source of the discs were HiMedia (19) a. ESBL Detection Irrespective of their antimicrobial susceptibility profile all isolate of E.coli and Klebsiella spp and Proteus spp were tested for ESBL production using Ceftazidime (30µg) discs and Ceftazidime / Clavulanic acid (30/10 µg) discs were used as, recommended by CLSI Guideline. Eschericia coli ATCC 25922 was included in the study for ensuring quality control. Klebsiella pneumoniae 700603 ATCC were used as an ESBL Positive control. Increase in zone diameter of ≥5 mm for Ceftazidime/Clavulanic acid versus its zone when tested alone was a positive test for ESBL producer. b. AmpC enzyme Detection : three-dimensional extract test AmpC enzyme production was detected by a modified three-dimensional extract test Fresh overnight growth from Mueller-Hinton agar was transferred in peptone water and incubated it for 2-4 hours at 37ºC. Lawn culture of E. coli ATCC 25922 were prepared on Mueller-Hinton Agar plate and Cefoxitin (30 µg) disc were placed on the plate. Linear slits (3cm) were cut using a sterile lancet 3mm away from the periphery of Cefoxitin disc. Small circular wells were made on the slits at 5mm distance, inside the outer edge of the slit, by stabbing the cut end of micropipette tip. The wells were loaded slowly with peptone water growth in 10 µL increments until the well was filled to the top, taking care to not overflow. The plates were kept upright for 5-10 minutes until the solution dried, and the plates were incubated at 37ºC. overnight. The isolates showing clear distortion of zone of inhibition of cefoxitin disc were taken as AmpC producers. The isolate with no distortion were taken as AmpC non-producers. III. Result a. ESBL Profile Among all the strains tested out of 141 isolates were tested for ESBL detection and 91 (64.53%) were found to be ESBL producer and 50 (35.46%) were ESBL non-producer. E. coli was the highest occurrence of ESBL producer (45.07%), followed by Klebsiella pneumoniae (29.57%). ISOLATES ESBL POSITIVE N (%) ESBL NEGATIVE N (%) E. col 42(46.15) 20(21.97) Klebsiella pneumonia 25(16.48) 15(16.48) Klebsiella spp. (other than K. pneumoniae) 20(21.97) 10(10.98) Proteus mirabilis 2(2.19) 3(3.29) Proteus spp. (other than P. mirabilis) 2(2.19) 2(2.19)
  • 3. The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple ….. DOI: 10.9790/0853-141211924 www.iosrjournals.org 21 | Page b. AmpC β-lactamase Profile Among all the strains out of 141 isolates were tested 47 are AmpC producer and 94 are AmpC non-producer. Maximal incidence of AmpC producers was found among E. coli (20) followed by Klebsiella pneumoniae (10). ISOLATE n = 141 AmpC producer n = 47 AmpC non-producer n = 94 Total E. coli 20 42 62 Klebsiella pneumonia 10 25 35 Klebsiella spp. 52 20 25 Pseudomonas spp. 5 2 7 Acinetobacter spp. 3 1 4 Proteus spp. 2 4 6 Citrobacter spp. 1 0 1 Enterobacter spp. 1 0 1 c. AmpC negative ESBL profile A total of 94 AmpC non producer were tested for ESBL production and out of them 64 (68.08%) were found to be ESBL producer while 30 (31.91%) were ESBL non producer. IIssoollaattee nn == 9944 AAmmppCC nneeggaattiivvee EESSBBLL ppoossiittiivvee nn == 6644 ((6688..0088%%)) AAmmppCC nneeggaattiivvee EESSBBLL nneeggaattiivvee nn == 3300 ((3311..9911%%)) EE.. CCoollii 2255 ((2266..5599%%)) 1155 ((1155..9955%%)) KKlleebbssiieellllaa ppnneeuummoonniiaaee 1155 ((1155..9955%%)) 1100 ((1100..6633%%)) KKlleebbssiieellllaa sspppp.. 1122 ((1122..7766%%)) 33 ((33..1199%%)) PPrrootteeuuss sspppp 88 ((88..5511%%)) 22 ((22..1122%%))
  • 4. The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple ….. DOI: 10.9790/0853-141211924 www.iosrjournals.org 22 | Page d. Ward wise distribution WWAARRDD // OOPPDD // IICCUU NN == 114411 AAmmppCC PPOOSSIITTIIVVEE nn == 4477 ((%%)) AAmmppCC NNEEGGAATTIIVVEE nn == 9944 ((%%)) IICCUU 1155 ((3311..9911%%)) 2200 ((2211..2277%%)) WWAARRDD 2277 ((5577..4444%%)) 4433 ((4455..7744%%)) OOPPDD 55 ((1100..6633%%)) 3311 ((3322..9977%%)) e. Sample wise distribution SSAAMMPPLLEE nn == 114411 ((%%)) AAmmppCC ppoossiittiivvee nn == 4477 ((3333..3333%%)) AAmmppCC nneeggaattiivvee nn == 9944 ((6666..6666%%)) PPUUSS 2200 4400 UURRIINNEE 1133 3344 BBLLOOOODD 33 66 SSPPUUTTUUMM 22 44 PPEERRIITTOONNEEAALL FFLLUUIIDD 11 00 TTRRAACCHHEEAALL AASSPPIIRRAATTEE 66 22 EETT TTUUBBEE 11 33 CCAATTHHEETTEERR TTIIPP 11 33 VVAAGGIINNAALL SSAAWWBB 00 22
  • 5. The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple ….. DOI: 10.9790/0853-141211924 www.iosrjournals.org 23 | Page f. Antibiotic Sensitivity Profile IV. Keywords: Ak- Amikacin, Cef- Ceftazidime, Cef- Cefixime, Ctx- Ceftriaxone, Cip- Ciprofloxacin, Cpz- Cefoperazone, Cot- Co-Tromoxazole, Dox- Doxicycline , Gati- Gatifloxacin, Gen- Gentamicin, Imi- Imipenem, Levo- Levofloxacin, Mrp- Meropenem, Nit- Nitrofurantoin, , Pip- Pipercillin V. DISCUSSION AmpC and ESBL producing strains all over the world , it is necessary to know the prevalence of these strains in hospitals.The occurrence of AmpC beta lactamase (33.33) in our isolate to be quite high. Also high occorrence of ESBL (64.53%) is seen in our hospital. Maximal incidence of AmpC producers was found among E. coli (20) followed by Klebsiella pneumoniae (10). Maximal incidence of ESBL producers was found among E. coli (42) followed by Klebsiella pneumoniae (25). The highest incidence was found in the sample Pus 20 (42.55%), then in Urine 13 (27.65%), followed by Tracheal aspirate 6 (12.76%), then in blood 3 (6.3%). The highest resistance rate was found in cephalosporins like Ceftazidime, Ceftriaxone, & CO-Trimoxazole (100%). The lowest resistance rate was found in Imipenem 16.39% followed by Meropenem 36.68%. Highest incidence was found in patient those who was admitted in ward i.e, 27(57.44%) followed by ICUs 15(31.91%), then in OPD 5(10.63%). Out of all AmpC negative strains 94were tested for ESBL detection and from them 64 (68.08%) were ESBL positive and 30 (31.91%)were ESBL negative. Among the ICUs the highest rate was found in SICU, followed by NICU and MICU. VI. Conclusion Various researchers have tried the three dimensional test as well as AmpC disc test for screening of AmpC β lactamases but till date no satisfactory technique has been found for routine use. This study included AmpC disc screening test and found out that the modified three dimensional test using whole cell growth gives clearer result. Modified three dimensional test using whole cell growth in peptone water is well comparable to the modified 3 dimensional test using cell extract method and is better than AmpC disc screening assay at the same time is very cost effective and simple assay to be used for routine reporting of AmpC β-lactamase. Total (N=141) Imi Mrp Cef Pip Cef Ctx Cip Levo Gati Doxi Gen Amk Cpz Nit Cot Resistant 15.38 36.58 100 55.81 100 100 90 61.9 55.82 82.92 91.89 64.7 68 66 100 Sensitive 84.61 63.42 0 44.19 0 0 10 38.1 44.18 17.08 8.1 34.3 32 34 0
  • 6. The occurrence of AmpC β-lactamase and ESBL producing Gram-negative bacteria by a simple ….. DOI: 10.9790/0853-141211924 www.iosrjournals.org 24 | Page References [1]. Abraham, E. P., and E. Chain. 1940. an enzyme of bacteria able to destroy penicillin. Nature 146:837. [2]. Eriksson-Grenberg, K. G. 1968. Resistance of Escherichia coli to penicillins. II. An improve mapping of the AmpA gene. Genet. Res. 12:147-156. [3]. Eriksson-Grenberg, K. G., H. G. Boman, J. A. Jansson, and B. C. Herold. 2006. Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bacteriol. 90:54-62. [4]. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B. 289:321-331. [5]. Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211-1233 [6]. Galleni, M., and J. M. Frere. 1988. A survey of the kinetic parameters of class C β-lactamases. Cephalosporins and other β- lactam compounds. Biochem. J. 255:123-129. [7]. Bush, K., C. Macalintal, B. A. Rasumussen, V. J. Lee, and Y. Yang. 1993. Kinetic interactions of tazobactam with β-lactamases from all major structural classes. Antimicrib. Agents Chemother. 37:851-858. [8]. Kazmierczak, A., X. Cordin., J. M. Duez, E. Siebor, A. Pechinot, and J. Sirot. 1990. Differences between clavulanic acid sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J. Int. Med. Res. 18(Suppl. 4):67D-77D. [9]. Monnaie, D., and J. M. Frere. 1993. Interaction of clavulanate with class C β-lactamases. FEBS Lett. 334:269-271. [10]. Alain Philippon., Guillaume Arlet., George A. Jacoby. 2002. Plasmid-determined AmpC-Type β-lactamases. Antimicrob. Agents Chemother. 46:1-11. [11]. Doi, Y., and D. L. Paterson. 2007. Detection of plasmid-mediated class C β-lactamases. Int. J. Infect. Dis. 11:191-197. [12]. Coudron, P. E., Moland, E. S. and Thomson, K. S. 2000. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabillis isolate at a Veterans Medical Center. J. of Clinical Microbiol. 38:1791-1796. [13]. Manchanda, V. and Singh, N. P. 2003. Occurrence and detection of AmpC β-lactamases among Gram-negative isolates using a modified three-dimensional test. J of Antimicrob. Chemother. 51:415-418. [14]. J. D. D. Pitout, P. G. Le, K. L. Moore, D. L. Church and D. B. Gregson. 2010. Detection of AmpC β-lactamases among Escherichia coli, Klebsiella spp., Salmonella spp. and Proteus mirabilis in a regional clinical microbiology laboratory. Clin. Microbiol. Infect.16:165-170. [15]. Upadhyay at. el. 2010. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries. 4(4):239-242. [16]. Hemlata, M. Padma, T.M. Vinodh and A.S. Arunkumar. 2007. Detection of AmpC beta lactamases production in Escherichia coli and Klebsiella by an inhibitor based method. Indian J Med. Res. 126:220-223. [17]. Rand KH, Turner B, Seifert H, Hansen C, Jhonson JA, and Zimmer A. 2011. Clinical laboratory detection of AmpC β- lactamase: does it affect patient outcome?. Am. J. Clin. Pathol. 135(4):572-576. [18]. Perez-Perez F J and Hanson ND. 2002. Detection of plasmid mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40(6):2153-2162. [19]. Polsfuss, S., Bloemberg, G. V., Giger, J., Meyer, V., Bottger, E. C. and Hombach, M. 2011. A practical approach for reliable detection of AmpC beta-lactamse producing Enterobacteriaceae. J. Clin. Micribiol. 49(8):2798-2803. [20]. Rajni E, Rawat U, Malhotra VL, Mehta G. 2008. Occurrence and detection of AmpC beta lactamases among clinical isolates of E. coli and K. pneumoniae causing UTI. J. Commun. Dis. 40(1):21-25. [21]. S. Ananthan and A Subha. 2005. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Eschrrichia coli. Indian J. Med. Microbiol. 23(1):20-23. [22]. S Singhal, T Mathur, S Khan, DJ Upadhyay, S Chugh, R Gaind, A Ratttan. 2005. Evaluation of methods for AmpC beta- lactamase in Gram negative clinical isolates from tertiary care hospitals. Indian J. Med. Microbiol. 23:120-124. [23]. Steven M. Opal and Aurora Pop-Vicas. Molecular mechanisms of Antibiotic Resistance in Bacteria. Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases 7th ed. Mandell, G. L., Bennett, J. E., Dolin, R.(editors). Churchill Livingstone, 2010. [24]. George A. Jacoby. 2009. AmpC β-lactamases. Clin. Microbiol. Reviews. 22(1):161-182.