SlideShare a Scribd company logo
Engr.Tehseen Ahsan 
Lecturer, Electrical Engineering Department 
EE-307 Electronic Systems Design 
HITEC University Taxila Cantt, Pakistan 
The Operational Amplifier (Part 1)
12-1 Introduction to Operational Amplifiers 
Thedevices,suchasdiodeandthetransistor,areseparatedevicesthatareindividuallypackagedandinterconnectedinacircuitwithotherdevicestoformacomplete,functionalunit-DiscreteComponents. 
Linearintegratedcircuits(ICs),wheremanytransistors,diodes, resistorsandcapacitorsarefabricatedonasingletinychipofsemiconductormaterial. 
Thismeansthatwewillbeconcernedwithwhatthecircuitdoesfromanexternalviewpointthanfromaninternal, component-levelviewpoint. 
2
12-1 Introduction to Operational Amplifiers Continue… 
EarlyoperationalAmplifiers(i.e,usedfor+,-,∫andd/dx). 
Earlyop-ampwereconstructedwithvaccumtubesandworkedwithhighvoltages. 
Today’sop-amparelinearICsthatuserelativelylowdcsupplyvoltagesandarereliableandinexpensive. 
3
12-1 Introduction to Operational Amplifiers Continue… 
SymbolandTerminals 
Thestandardop-ampsymbolisshowninfigure12-1(a). 
Ithastwoterminalsi.e,inverting(-)andnon-inverting(+). 
Ithasoneoutputterminal. 
Thetypicalop-ampoperateswithtwodcsupplyvoltages,one+veandtheother–veasshowninfigure12-2(b). 
Usuallythesedcvoltageterminalsareleftofftheschematicsymbolforsimplicitybutareunderstoodtobethere. 4
12-1 Introduction to Operational Amplifiers Continue… 
TheIdealOp-Amp 
Ithasinfinitegainandinfinitebandwidth. 
Ithasinfiniteinputimpedance(open)sothatitdoesnotloadthedrivingsource. 
Ithaszerooutputimpedance. 
Thesecharacteristicsareillustratedinfigure12-2(a).Theinputvoltage,Vin,appearsb/wthetwoterminals,andtheoutputvoltageisAvVin,asindicatedbytheinternalvoltagesourcesymbol. 
5
12-1 Introduction to Operational Amplifiers Continue… 
ThePracticalOp-Amp 
AnydevicehaslimitationsandICop-ampisnoexception. 
Op-Amphascertainlimitationsbutthetwomentionedbelowaremajorones. 
i.SlewRate(willbediscussedin12-2Section). 
ii.Outputcurrentisalsolimitedbyinternalrestrictionssuchaspowerdissipationandcomponentratings. 
6
12-1 Introduction to Operational Amplifiers Continue… 
InternalBlockDiagramofanOp-Amp 
Atypicalop-ampismadeupofthreetypesofamplifiercircuits. 
ADifferentialAmplifieri.e,itistheinputstagefortheop-amp.Itprovidestheamplificationofthedifferencevoltageb/wthetwoinputs. 
AVoltageAmplifier(s)i.e,itisthesecondstageofop-ampandisusuallyaclassAamplifierthatprovidesadditionalgain. 
APush-PullClassBAmplifieri.e,itistypicallyusedforoutputstage. 
7
12-1 Introduction to Operational Amplifiers Continue… 
TheDifferentialAmplifierInputStage 
Thedifferentialamplifierformstheinputstageofoperationalamplifiers. 
Thetermdifferencecomesfromtheamplifier’sabilitytoamplifythedifferenceoftwoinputsignalsappliedtoinputs. 
Onlythedifferenceinthetwosignalsisamplified;ifthereisnodifference,thentheoutputiszero. 
8
12-1 Introduction to Operational Amplifiers Continue… 
TheDifferentialAmplifierInputStageContinue… 
Thetransistors(Q1andQ2)andthecollectorresistors(RC1andRC2)arecarefullymatchedtohaveidenticalcharacteristics(Refertofigureinpreviousslide). 
NoticethatthetwotransistorsshareasingleRE. 
Letussupposebothbasesareconnectedtoground.Theemittervoltagewillbe-0.7V. 
Theemittercurrentsareequal(IE1=IE2). 
Thecollectorcurrentsarebothequalandareapproximatelyequaltotheemittercurrents. 
Sincecollectorcurrentsarethesame,thecollectorvoltagesarealsothesame. 
Thereisazerodifferenceintheinputvoltages(bothbasesareat0V).9
12-1 Introduction to Operational Amplifiers Continue… 
TheDifferentialAmplifierInputStageContinue… 
IfthebaseofQ1isdisconnectedfromgroundandconnectedtoasmallpositivevoltage,Q1willconductmorecurrentbecausethepositivevoltageonitsbasecausestheemittervoltagetoincreaseslightly. 
TheemittercurrentisnowdividedsothatmoreofitisinQ1andlessinQ2. 
AsaresultthecollectorvoltageofQ1willdecreaseandthecollectorvoltageofQ2willincrease,reflectingthedifferenceintheinputvoltages(oneis0Vandtheotheratasmallpositivevalue). 
Thisconditionisillustratedinfigurenextslide. 
10
12-1 Introduction to Operational Amplifiers Continue… 
TheDifferentialAmplifierInputStageContinue… 11
12-2 OP-AMP Input Modes and Parameters 
Thedifferentialamplifierexhibitsthreemodesofoperationbasedonthetypeofinputsignals.Thesemodesaresingle-ended,differentialandcommon.Sincethedifferentialamplifieristheinputstageoftheop- amp,theop-ampexhibitsthesamemodes. 12
12-2 OP-AMP Input Modes and Parameters Continue… 
Single-EndedMode 
Oneinputisgroundedandasignalvoltageisappliedonlytotheotherinputasshowninfigure12-4. 
Whenthesignalisappliedtotheinvertinginputasinpart(a), aninverted,amplifiedsignalvoltageappearsattheoutput. 
Whenthesignalisappliedtothenon-invertinginputasinpart(b),annon-inverted,amplifiedsignalvoltageappearsattheoutput. 13
12-2 OP-AMP Input Modes and Parameters Continue… 
DifferentialMode 
Twoopposite-polarity(out-of-phase)signalsareappliedtotheinputsasshowninfigure12-5. 
Thistypeofoperationisalsoreferredtoasdouble-ended. 
Theamplifieddifferencebetweenthetwoinputsappearsontheoutput. 14
12-2 OP-AMP Input Modes and Parameters Continue… 
CommonMode 
Twosignalvoltagesofthesamephase,frequencyandamplitudeareappliedtothetwoinputsasshownisfigure12-6. 
Thisresultsinazerooutputvoltage(asdifferenceis0V). 
Thisactioniscalledcommon-moderejection. 15
12-2 OP-AMP Input Modes and Parameters Continue… 
CommonModeContinue… 
It’simportanceliesinthesituationwhereanunwantedsignalappearscommonlyonbothop-ampinputs. 
Common-moderejectionmeansthatthisunwantedsignalwillnotappearontheoutputanddistortthedesiredsignal. 
CommonModeRejectionRatio 
Desiredsignalscanappearononlyoneinputorwithoppositepolaritiesonbothinputlines.Thesedesiredsignalsareamplifiedandappearontheoutput. 
Unwantedsignals(noise)appearingwiththesamepolarityonbothinputlinesareessentiallycancelledbytheop-ampanddon’tappearontheoutput.Themeasureofanamplifier’sabilitytorejectcommon-modesignalsisaparametercalledtheCMRR(Common-ModeRejectionRatio). 16
12-2 OP-AMP Input Modes and Parameters Continue… 
CommonModeRejectionRatioContinue... 
Ideally,anop-ampprovidesaveryhighgainfordesiredsignals(single-endedordifferential)andzerogainforcommon-modesignals. 
Howeverpracticalop-ampsdoexhibitaverysmallcommon- modegain(usuallymuchlessthan1),whileprovidingahighopen-loopvoltagegain(usuallyseveralthousands). 
Thehighertheopen-loopgainw.r.tthecommon-modegain, thebettertheperformanceofop-ampintermsofrejectionofcommon-modesignals. 
Thissuggests: 
17
12-2 OP-AMP Input Modes and Parameters Continue… 
CommonModeRejectionRatioContinue... 
ThehighertheCMRR,thebetter.AveryhighvalueofCMRRmeansthattheopen-loopgain,Aolishighandcommon-modegain,Acmislow. 
TheCMRRisoftenexpressesindecibels(dB)as 
Theopen-loopvoltagegainofanop-ampistheinternalvoltagegainofthedeviceandrepresentstheratiooftheoutputvoltagetotheinputvoltagewhentherearenoexternalcomponents(nofeedbackcircuit). 
Open-loopvoltagegaincanrangeupto200,000andisnotawelltoleratedparameter.Datasheetsoftenrefertotheopen- loopvoltagegainasthelarge-signalvoltagegain. 
18
19
12-2 OP-AMP Input Modes and Parameters Continue… 
InputOffsetVoltage 
Idealop-ampproduceszerovoltsoutforzerovoltsin. 
However,inpracticalop-ampasmalldcvoltage,VOUT(error), appearsattheoutputwhennodifferentialinputvoltageisapplied.Itsprimarycauseisaslightmismatchofthebase- emittervoltagesofthedifferentialamplifierinputstageofanop-amp. 
Inputoffsetvoltage,VOS,isthedifferentialdcvoltagerequiredbetweentheinputstoforcetheoutputtozerovolts. 
Typicalvaluesofinputoffsetvoltageareintherangeof2mVorless.Itis0Vinidealcase. 
Inputoffsetvoltagedriftisaparameterrelatedto,VOS,thatspecifieshowmuchchangeoccursintheinputoffsetvoltageforeachdegreechangeintemperature.20
12-2 OP-AMP Input Modes and Parameters Continue… 
InputBiasCurrent 
Inputterminalsofadifferentialamplifierarethetransistorbasesandtherefore,theinputcurrentsarethebasecurrents. 
Theinputbiascurrentisthedccurrentrequiredbytheinputsofanamplifiertoproperlyoperatethefirststage.Bydefinitiontheinputbiascurrentistheaverageofbothinputcurrentsasfollows: 21
12-2 OP-AMP Input Modes and Parameters Continue… 
InputImpedance 
Twobasicwaysofspecifyingtheinputimpedance 
1.TheDifferentialinputimpedanceisthetotalresistancebetweentheinvertingandnon-invertingterminalsasillustrated12-8(a)nextslide.Differentialimpedanceismeasuredbydeterminingthechangeinbiascurrentforagivenchangeindifferentialinputvoltage. 
2.Thecommon-modeinputimpedanceistheresistancebetweeneachinputandgroundandismeasuredbydeterminingthechangeinbiascurrentforagivenchangeincommon-modeinputvoltageshowninfigure12-8(b)nextslide. 
22
12-2 OP-AMP Input Modes and Parameters Continue… 
InputImpedanceContinue… 
23
12-2 OP-AMP Input Modes and Parameters Continue… 
InputOffsetCurrent 
Ideally,thetwoinputbiascurrentsareequalandthustheirdifferenceiszero. 
However,inapracticalop-amp,thebiascurrentsarenotexactlyequal. 
Theinputoffsetcurrent,IOSisthedifferenceoftheinputbiascurrentsexpressedasanabsolutevalue. 24
12-2 OP-AMP Input Modes and Parameters Continue… 
InputOffsetCurrent 
Theactualmagnitudesofoffsetcurrentareusuallyatleasttentimeslessthanthebiascurrent. 
Inmanyapplicationsoffsetcurrentcanbeneglected. 
25
12-2 OP-AMP Input Modes and Parameters Continue… 
OutputImpedance 
Theoutputimpedanceistheresistanceviewedfromtheoutputterminaloftheop-ampasshowninfigurebelow 
26
12-2 OP-AMP Input Modes and Parameters Continue… 
SlewRate 
Theslewrate(SR)ofanop-ampisthemaximumrateatwhichtheoutputvoltagecanchangeinresponsetoinputvoltage. 
WhentheSRistooslowfortheinput,distortionresults. 
Whenainputsinewaveisappliedtoavoltagefolloweritproducesatriangularoutputwaveform. 
Thetriangularwaveformresultsbecausetheop-ampsimplycannotmovefastenoughtofollowthesinewaveinput. 
Thishappensbecausevoltagechangeinthesecondstage( VoltageAmplifier(s))islimitedbythecharginganddischargingofcapacitor. 
Theslewrateisexpressedas:SR=ΔVO/Δt 
TheunitofSRisvoltspermicroseconds. 
27
28
12-3 Negative Feedback 
Negativefeedbackistheprocesswherebyaportionoftheoutputvoltageofanamplifierisreturnedtotheinputwithaphaseanglethatopposestheinputsignal. 
Negativefeedbackisillustratedinfigure12-14.Theinverting(-)inputeffectivelymakesthefeedbacksignal180˚outofphasewiththeinputsignal. 29
12-3 Negative Feedback 
WhyUseNegativeFeedback? 
Theinherentopen-loopvoltagegainofatypicalop-ampisveryhigh(usuallygreaterthan100,000).Therefore,anextremelysmallinputvoltagedrivestheop-ampintoitssaturatedoutputstates.Infact,eventheinputoffsetvoltageofanop-ampcandriveitintosaturation.Forexample,assumeVIN=1mVandAol=100,000.Then,Vout=VINAol=100V 
Sincetheoutputlevelofanop-ampcanneverreach100V,itisdrivendeepintosaturationandtheoutputislimitedtoitsmaximumoutputlevelsasillustratedinfigure12-15nextslideforbothapositiveandnegativeinputvoltageof1mV. 
30
12-3 Negative Feedback 
WhyUseNegativeFeedback?(continue…) 
Theusefulnessofanop-ampoperatedwithoutnegativefeedbackisseverelyrestrictedandisgenerallylimitedtocomparatorandotherapplications. 
Withnegativefeedback,theclosed-loopvoltagegain(Acl)canbereducedandcontrolledsothatop-ampcanfunctionasalinearamplifier. 
31
12-4 OP-AMPS With Negative Feedback 
Theextremelyhighopen-loopgainofanop-ampcreatesanunstablesituationbecauseasmallnoisevoltageontheinputcanbeamplifiedtoapointwheretheamplifierisdrivenoutofitslinearregion. 
Negativefeedbacktakesaportionoftheoutputandappliesitbackoutofphasewiththeinput,creatinganeffectivereductioningain. 
Thisclosed-loopgainisusuallymuchlessthantheopen-loopgain. 
32
12-4 OP-AMPS With Negative Feedback Continue… 
Closed-LoopVoltageGain,Acl 
Theclosed-loopgainisthevoltagegainofanop-ampwithexternalfeedback.Theamplifierconfigurationconsistsoftheop-ampandanexternalfeedbackcircuitthatconnectstheoutputtoinvertinginput. 
Theclosed-loopvoltagegainisdeterminedbytheexternalcomponentvaluesandcanbepreciselycontrolledbythem. 33
12-4 OP-AMPS With Negative Feedback Continue… 
Non-invertingAmplifier 
Anop-ampinaclosed-loopconfigurationasanon-invertingamplifierwithacontrolledamountofvoltagegainisshowninfigure12-16nextslide. 
Theinputsignalisappliedtothenon-inverting(+)input. 
Theoutputisappliedbacktotheinverting(-)inputthroughthefeedbackcircuit(closedloop)formedbytheinputresistorRiandthefeedbackresistorRf. 
ResistorsRiandRfformavoltage-dividercircuitwhichreducesVoutandconnectsthereducedvoltageVftotheinvertinginput. 
Thefeedbackvoltageisexpressedas34
12-4 OP-AMPS With Negative Feedback Continue… 
Non-invertingAmplifierContinue… 
ThedifferenceoftheinputvoltageVin,andthefeedbackvoltageVf,isthedifferentialinputtotheop-ampasshowninfigure12-17nextslide.Thisdifferentialvoltageisamplifiedbytheopen-loopvoltagegainoftheop-amp(Aol)andproducesanoutputvoltageexpressedas 
35
12-4 OP-AMPS With Negative Feedback Continue… 
Non-invertingAmplifierContinue… 
36
12-4 OP-AMPS With Negative Feedback Continue… 
Non-invertingAmplifierContinue… 37
12-4 OP-AMPS With Negative Feedback Continue… 
Non-invertingAmplifierContinue… 38
39
12-4 OP-AMPS With Negative Feedback Continue… 
VoltageFollower 
Itisaspecialcaseofthenon-invertingamplifierwherealloftheoutputvoltageisfedbacktotheinverting(-)inputbyastraightconnectionasshowninfigure12-19. 
Thestraightfeedbackconnectionhasavoltagegainof1. 
Theclosed-loopvoltagegainofanon-invertingamplifieris1/B. 
SinceB=1foravoltagefollowercase,theclosed-loopvoltagegainofthevoltagefollowerisAcl(VF)=1/1=1 
40
12-4 OP-AMPS With Negative Feedback Continue… 
InvertingAmplifier 
Anop-ampconnectedasaninvertingamplifierwithacontrolledamountofvoltagegainasshowninfigure12-20. 
TheinputsignalisappliedthroughaseriesinputresistorRitotheinverting(-)input. 
TheoutputisfedbackthroughRftothesameinput.Thenon- invertinginputisgrounded. 
41
12-4 OP-AMPS With Negative Feedback Continue… 
InvertingAmplifierContinue… 
Atthispoint,theidealop-ampparametersmentionedearlierareusefulinsimplifyingtheanalysisofthiscircuit. 
Particularlytheconceptofinfiniteinputimpedanceisofgreatvalue. 
Aninfiniteinputimpedanceimplieszerocurrentattheinvertinginput. 
Ifthereiszerocurrentthroughtheinputimpedance,thentheremustbenovoltagedropbetweentheinvertingandnon- invertingterminals. 
Thismeansthatthevoltageattheinverting(-)inputiszero. Thiszerovoltageattheinvertinginputterminalisreferredtoasvirtualground.Thisconditionisillustratedinfigure12-21(a) nextslide.42
12-4 OP-AMPS With Negative Feedback Continue… 
InvertingAmplifierContinue… 
Sincethereisnocurrentattheinvertinginput,thecurrentthroughRiandthecurrentthroughRfareequalasshowninfigure12-21(b).i.e,Iin=If43
12-4 OP-AMPS With Negative Feedback Continue… 
InvertingAmplifierContinue… 44
45

More Related Content

PPS
Operational Amplifier Part 1
PPTX
DIFFERENTIAL AMPLIFIER using MOSFET
PPT
Mosfet
PPTX
Power MOSFET
PPTX
Study of vco_Voltage controlled Oscillator
PDF
Comparator
PPTX
Different methods of pwm for inverter control
PPTX
Op amp-electronics
Operational Amplifier Part 1
DIFFERENTIAL AMPLIFIER using MOSFET
Mosfet
Power MOSFET
Study of vco_Voltage controlled Oscillator
Comparator
Different methods of pwm for inverter control
Op amp-electronics

What's hot (20)

PPSX
Presentation on Op-amp by Sourabh kumar
PDF
Rec101 unit iii operational amplifier
PPTX
PPTX
Silicon controlled rectifier ( SCR )
PDF
Negative feedback Amplifiers
PPTX
PPT
Fir and iir filter_design
PPTX
Phase locked loop
PDF
ANALOG TO DIGITAL CONVERTOR
PPTX
Architecture of 8051
PPTX
Dual Input Balanced Output diffrential amp by Ap
PPT
Schmitt trigger circuit
PPTX
Rectifiers and Filter Circuits
PPT
Operational amplifier
PPTX
Application of diode
PPTX
Ic voltage regulators
PPTX
Single phase full bridge inverter
PPTX
Lecture 2: Power Diodes
PDF
Power Electronics Chopper (dc – dc converter)
PPTX
Sample and hold circuit
Presentation on Op-amp by Sourabh kumar
Rec101 unit iii operational amplifier
Silicon controlled rectifier ( SCR )
Negative feedback Amplifiers
Fir and iir filter_design
Phase locked loop
ANALOG TO DIGITAL CONVERTOR
Architecture of 8051
Dual Input Balanced Output diffrential amp by Ap
Schmitt trigger circuit
Rectifiers and Filter Circuits
Operational amplifier
Application of diode
Ic voltage regulators
Single phase full bridge inverter
Lecture 2: Power Diodes
Power Electronics Chopper (dc – dc converter)
Sample and hold circuit
Ad

Viewers also liked (20)

PPTX
Operational amplifier
PPTX
Op amp basics
PPT
Operational Amplifier (OpAmp)
PPTX
Op amp(operational amplifier)
PPT
Sensory systems instrumentation
PPTX
Op amps explained
PPTX
Operational amplifiers
PPTX
OpAmps
PDF
Scientia Med Devices Cardiovascular Fall 08
PPT
Operational amplifiers first LIC lecture slides
PPT
Operational Amplifiers
PPT
Chapter 5 operational amplifier
PDF
The operational amplifier (part 2)
PDF
Op amp comparator
PPTX
Operational amplifiers
PPTX
Working of an amplifer
PPT
Aeav 311 lecture 25 26- inst.amp+noise
DOCX
Instrumentational Amplifier
PPTX
Pre amplifier desiging for phsiological
PPTX
APPLICATION OF DSP IN BIOMEDICAL ENGINEERING
Operational amplifier
Op amp basics
Operational Amplifier (OpAmp)
Op amp(operational amplifier)
Sensory systems instrumentation
Op amps explained
Operational amplifiers
OpAmps
Scientia Med Devices Cardiovascular Fall 08
Operational amplifiers first LIC lecture slides
Operational Amplifiers
Chapter 5 operational amplifier
The operational amplifier (part 2)
Op amp comparator
Operational amplifiers
Working of an amplifer
Aeav 311 lecture 25 26- inst.amp+noise
Instrumentational Amplifier
Pre amplifier desiging for phsiological
APPLICATION OF DSP IN BIOMEDICAL ENGINEERING
Ad

Similar to The operational amplifier (part 1) (20)

PDF
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
PDF
5. Lecture 5 - Operational Amplifier - Upload.pdf
PDF
Chapter1 analog electric op-amp and application
PPTX
Electrical signal processing and transmission
PPTX
Introduction to OpAmp and Its verification
PPTX
Analog Electronics.pptx
PPTX
Integrated Circuit Applications
PPTX
Operational amplifiers and oscillators notes
PPTX
Introduction to Operational Amplifier.pptx
PPTX
8 Macro Models of Amps in opamp and Op Amps.pptx
PPTX
Op amp
PPTX
FundamentalsElectricCircuits.pptx
PDF
Unit-I Characteristics of opamp
PDF
Opertional amplifier khiri elrmali libya
PPTX
Op-amp.pptx
PDF
Unit 5-Operational Amplifiers and Electronic Measurement Devices
PDF
Lesson # 9 - Signal conditioning and conversion.pdf
PDF
Signals, Sensors and Amplifiers and Applications.pdf
PPTX
OP-AMP(OPERATIONAL AMPLIFIER)BE
EC3451 LINEAR INTEGRATED CIRCUITS UNIT 1 .pdf
5. Lecture 5 - Operational Amplifier - Upload.pdf
Chapter1 analog electric op-amp and application
Electrical signal processing and transmission
Introduction to OpAmp and Its verification
Analog Electronics.pptx
Integrated Circuit Applications
Operational amplifiers and oscillators notes
Introduction to Operational Amplifier.pptx
8 Macro Models of Amps in opamp and Op Amps.pptx
Op amp
FundamentalsElectricCircuits.pptx
Unit-I Characteristics of opamp
Opertional amplifier khiri elrmali libya
Op-amp.pptx
Unit 5-Operational Amplifiers and Electronic Measurement Devices
Lesson # 9 - Signal conditioning and conversion.pdf
Signals, Sensors and Amplifiers and Applications.pdf
OP-AMP(OPERATIONAL AMPLIFIER)BE

Recently uploaded (20)

PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPT
introduction to datamining and warehousing
DOCX
573137875-Attendance-Management-System-original
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Artificial Intelligence
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPTX
Sustainable Sites - Green Building Construction
PDF
III.4.1.2_The_Space_Environment.p pdffdf
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
PPT on Performance Review to get promotions
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Geodesy 1.pptx...............................................
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
additive manufacturing of ss316l using mig welding
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
UNIT-1 - COAL BASED THERMAL POWER PLANTS
introduction to datamining and warehousing
573137875-Attendance-Management-System-original
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Categorization of Factors Affecting Classification Algorithms Selection
Artificial Intelligence
CYBER-CRIMES AND SECURITY A guide to understanding
R24 SURVEYING LAB MANUAL for civil enggi
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
Sustainable Sites - Green Building Construction
III.4.1.2_The_Space_Environment.p pdffdf
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPT on Performance Review to get promotions
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Geodesy 1.pptx...............................................
Safety Seminar civil to be ensured for safe working.
additive manufacturing of ss316l using mig welding

The operational amplifier (part 1)

  • 1. Engr.Tehseen Ahsan Lecturer, Electrical Engineering Department EE-307 Electronic Systems Design HITEC University Taxila Cantt, Pakistan The Operational Amplifier (Part 1)
  • 2. 12-1 Introduction to Operational Amplifiers Thedevices,suchasdiodeandthetransistor,areseparatedevicesthatareindividuallypackagedandinterconnectedinacircuitwithotherdevicestoformacomplete,functionalunit-DiscreteComponents. Linearintegratedcircuits(ICs),wheremanytransistors,diodes, resistorsandcapacitorsarefabricatedonasingletinychipofsemiconductormaterial. Thismeansthatwewillbeconcernedwithwhatthecircuitdoesfromanexternalviewpointthanfromaninternal, component-levelviewpoint. 2
  • 3. 12-1 Introduction to Operational Amplifiers Continue… EarlyoperationalAmplifiers(i.e,usedfor+,-,∫andd/dx). Earlyop-ampwereconstructedwithvaccumtubesandworkedwithhighvoltages. Today’sop-amparelinearICsthatuserelativelylowdcsupplyvoltagesandarereliableandinexpensive. 3
  • 4. 12-1 Introduction to Operational Amplifiers Continue… SymbolandTerminals Thestandardop-ampsymbolisshowninfigure12-1(a). Ithastwoterminalsi.e,inverting(-)andnon-inverting(+). Ithasoneoutputterminal. Thetypicalop-ampoperateswithtwodcsupplyvoltages,one+veandtheother–veasshowninfigure12-2(b). Usuallythesedcvoltageterminalsareleftofftheschematicsymbolforsimplicitybutareunderstoodtobethere. 4
  • 5. 12-1 Introduction to Operational Amplifiers Continue… TheIdealOp-Amp Ithasinfinitegainandinfinitebandwidth. Ithasinfiniteinputimpedance(open)sothatitdoesnotloadthedrivingsource. Ithaszerooutputimpedance. Thesecharacteristicsareillustratedinfigure12-2(a).Theinputvoltage,Vin,appearsb/wthetwoterminals,andtheoutputvoltageisAvVin,asindicatedbytheinternalvoltagesourcesymbol. 5
  • 6. 12-1 Introduction to Operational Amplifiers Continue… ThePracticalOp-Amp AnydevicehaslimitationsandICop-ampisnoexception. Op-Amphascertainlimitationsbutthetwomentionedbelowaremajorones. i.SlewRate(willbediscussedin12-2Section). ii.Outputcurrentisalsolimitedbyinternalrestrictionssuchaspowerdissipationandcomponentratings. 6
  • 7. 12-1 Introduction to Operational Amplifiers Continue… InternalBlockDiagramofanOp-Amp Atypicalop-ampismadeupofthreetypesofamplifiercircuits. ADifferentialAmplifieri.e,itistheinputstagefortheop-amp.Itprovidestheamplificationofthedifferencevoltageb/wthetwoinputs. AVoltageAmplifier(s)i.e,itisthesecondstageofop-ampandisusuallyaclassAamplifierthatprovidesadditionalgain. APush-PullClassBAmplifieri.e,itistypicallyusedforoutputstage. 7
  • 8. 12-1 Introduction to Operational Amplifiers Continue… TheDifferentialAmplifierInputStage Thedifferentialamplifierformstheinputstageofoperationalamplifiers. Thetermdifferencecomesfromtheamplifier’sabilitytoamplifythedifferenceoftwoinputsignalsappliedtoinputs. Onlythedifferenceinthetwosignalsisamplified;ifthereisnodifference,thentheoutputiszero. 8
  • 9. 12-1 Introduction to Operational Amplifiers Continue… TheDifferentialAmplifierInputStageContinue… Thetransistors(Q1andQ2)andthecollectorresistors(RC1andRC2)arecarefullymatchedtohaveidenticalcharacteristics(Refertofigureinpreviousslide). NoticethatthetwotransistorsshareasingleRE. Letussupposebothbasesareconnectedtoground.Theemittervoltagewillbe-0.7V. Theemittercurrentsareequal(IE1=IE2). Thecollectorcurrentsarebothequalandareapproximatelyequaltotheemittercurrents. Sincecollectorcurrentsarethesame,thecollectorvoltagesarealsothesame. Thereisazerodifferenceintheinputvoltages(bothbasesareat0V).9
  • 10. 12-1 Introduction to Operational Amplifiers Continue… TheDifferentialAmplifierInputStageContinue… IfthebaseofQ1isdisconnectedfromgroundandconnectedtoasmallpositivevoltage,Q1willconductmorecurrentbecausethepositivevoltageonitsbasecausestheemittervoltagetoincreaseslightly. TheemittercurrentisnowdividedsothatmoreofitisinQ1andlessinQ2. AsaresultthecollectorvoltageofQ1willdecreaseandthecollectorvoltageofQ2willincrease,reflectingthedifferenceintheinputvoltages(oneis0Vandtheotheratasmallpositivevalue). Thisconditionisillustratedinfigurenextslide. 10
  • 11. 12-1 Introduction to Operational Amplifiers Continue… TheDifferentialAmplifierInputStageContinue… 11
  • 12. 12-2 OP-AMP Input Modes and Parameters Thedifferentialamplifierexhibitsthreemodesofoperationbasedonthetypeofinputsignals.Thesemodesaresingle-ended,differentialandcommon.Sincethedifferentialamplifieristheinputstageoftheop- amp,theop-ampexhibitsthesamemodes. 12
  • 13. 12-2 OP-AMP Input Modes and Parameters Continue… Single-EndedMode Oneinputisgroundedandasignalvoltageisappliedonlytotheotherinputasshowninfigure12-4. Whenthesignalisappliedtotheinvertinginputasinpart(a), aninverted,amplifiedsignalvoltageappearsattheoutput. Whenthesignalisappliedtothenon-invertinginputasinpart(b),annon-inverted,amplifiedsignalvoltageappearsattheoutput. 13
  • 14. 12-2 OP-AMP Input Modes and Parameters Continue… DifferentialMode Twoopposite-polarity(out-of-phase)signalsareappliedtotheinputsasshowninfigure12-5. Thistypeofoperationisalsoreferredtoasdouble-ended. Theamplifieddifferencebetweenthetwoinputsappearsontheoutput. 14
  • 15. 12-2 OP-AMP Input Modes and Parameters Continue… CommonMode Twosignalvoltagesofthesamephase,frequencyandamplitudeareappliedtothetwoinputsasshownisfigure12-6. Thisresultsinazerooutputvoltage(asdifferenceis0V). Thisactioniscalledcommon-moderejection. 15
  • 16. 12-2 OP-AMP Input Modes and Parameters Continue… CommonModeContinue… It’simportanceliesinthesituationwhereanunwantedsignalappearscommonlyonbothop-ampinputs. Common-moderejectionmeansthatthisunwantedsignalwillnotappearontheoutputanddistortthedesiredsignal. CommonModeRejectionRatio Desiredsignalscanappearononlyoneinputorwithoppositepolaritiesonbothinputlines.Thesedesiredsignalsareamplifiedandappearontheoutput. Unwantedsignals(noise)appearingwiththesamepolarityonbothinputlinesareessentiallycancelledbytheop-ampanddon’tappearontheoutput.Themeasureofanamplifier’sabilitytorejectcommon-modesignalsisaparametercalledtheCMRR(Common-ModeRejectionRatio). 16
  • 17. 12-2 OP-AMP Input Modes and Parameters Continue… CommonModeRejectionRatioContinue... Ideally,anop-ampprovidesaveryhighgainfordesiredsignals(single-endedordifferential)andzerogainforcommon-modesignals. Howeverpracticalop-ampsdoexhibitaverysmallcommon- modegain(usuallymuchlessthan1),whileprovidingahighopen-loopvoltagegain(usuallyseveralthousands). Thehighertheopen-loopgainw.r.tthecommon-modegain, thebettertheperformanceofop-ampintermsofrejectionofcommon-modesignals. Thissuggests: 17
  • 18. 12-2 OP-AMP Input Modes and Parameters Continue… CommonModeRejectionRatioContinue... ThehighertheCMRR,thebetter.AveryhighvalueofCMRRmeansthattheopen-loopgain,Aolishighandcommon-modegain,Acmislow. TheCMRRisoftenexpressesindecibels(dB)as Theopen-loopvoltagegainofanop-ampistheinternalvoltagegainofthedeviceandrepresentstheratiooftheoutputvoltagetotheinputvoltagewhentherearenoexternalcomponents(nofeedbackcircuit). Open-loopvoltagegaincanrangeupto200,000andisnotawelltoleratedparameter.Datasheetsoftenrefertotheopen- loopvoltagegainasthelarge-signalvoltagegain. 18
  • 19. 19
  • 20. 12-2 OP-AMP Input Modes and Parameters Continue… InputOffsetVoltage Idealop-ampproduceszerovoltsoutforzerovoltsin. However,inpracticalop-ampasmalldcvoltage,VOUT(error), appearsattheoutputwhennodifferentialinputvoltageisapplied.Itsprimarycauseisaslightmismatchofthebase- emittervoltagesofthedifferentialamplifierinputstageofanop-amp. Inputoffsetvoltage,VOS,isthedifferentialdcvoltagerequiredbetweentheinputstoforcetheoutputtozerovolts. Typicalvaluesofinputoffsetvoltageareintherangeof2mVorless.Itis0Vinidealcase. Inputoffsetvoltagedriftisaparameterrelatedto,VOS,thatspecifieshowmuchchangeoccursintheinputoffsetvoltageforeachdegreechangeintemperature.20
  • 21. 12-2 OP-AMP Input Modes and Parameters Continue… InputBiasCurrent Inputterminalsofadifferentialamplifierarethetransistorbasesandtherefore,theinputcurrentsarethebasecurrents. Theinputbiascurrentisthedccurrentrequiredbytheinputsofanamplifiertoproperlyoperatethefirststage.Bydefinitiontheinputbiascurrentistheaverageofbothinputcurrentsasfollows: 21
  • 22. 12-2 OP-AMP Input Modes and Parameters Continue… InputImpedance Twobasicwaysofspecifyingtheinputimpedance 1.TheDifferentialinputimpedanceisthetotalresistancebetweentheinvertingandnon-invertingterminalsasillustrated12-8(a)nextslide.Differentialimpedanceismeasuredbydeterminingthechangeinbiascurrentforagivenchangeindifferentialinputvoltage. 2.Thecommon-modeinputimpedanceistheresistancebetweeneachinputandgroundandismeasuredbydeterminingthechangeinbiascurrentforagivenchangeincommon-modeinputvoltageshowninfigure12-8(b)nextslide. 22
  • 23. 12-2 OP-AMP Input Modes and Parameters Continue… InputImpedanceContinue… 23
  • 24. 12-2 OP-AMP Input Modes and Parameters Continue… InputOffsetCurrent Ideally,thetwoinputbiascurrentsareequalandthustheirdifferenceiszero. However,inapracticalop-amp,thebiascurrentsarenotexactlyequal. Theinputoffsetcurrent,IOSisthedifferenceoftheinputbiascurrentsexpressedasanabsolutevalue. 24
  • 25. 12-2 OP-AMP Input Modes and Parameters Continue… InputOffsetCurrent Theactualmagnitudesofoffsetcurrentareusuallyatleasttentimeslessthanthebiascurrent. Inmanyapplicationsoffsetcurrentcanbeneglected. 25
  • 26. 12-2 OP-AMP Input Modes and Parameters Continue… OutputImpedance Theoutputimpedanceistheresistanceviewedfromtheoutputterminaloftheop-ampasshowninfigurebelow 26
  • 27. 12-2 OP-AMP Input Modes and Parameters Continue… SlewRate Theslewrate(SR)ofanop-ampisthemaximumrateatwhichtheoutputvoltagecanchangeinresponsetoinputvoltage. WhentheSRistooslowfortheinput,distortionresults. Whenainputsinewaveisappliedtoavoltagefolloweritproducesatriangularoutputwaveform. Thetriangularwaveformresultsbecausetheop-ampsimplycannotmovefastenoughtofollowthesinewaveinput. Thishappensbecausevoltagechangeinthesecondstage( VoltageAmplifier(s))islimitedbythecharginganddischargingofcapacitor. Theslewrateisexpressedas:SR=ΔVO/Δt TheunitofSRisvoltspermicroseconds. 27
  • 28. 28
  • 29. 12-3 Negative Feedback Negativefeedbackistheprocesswherebyaportionoftheoutputvoltageofanamplifierisreturnedtotheinputwithaphaseanglethatopposestheinputsignal. Negativefeedbackisillustratedinfigure12-14.Theinverting(-)inputeffectivelymakesthefeedbacksignal180˚outofphasewiththeinputsignal. 29
  • 30. 12-3 Negative Feedback WhyUseNegativeFeedback? Theinherentopen-loopvoltagegainofatypicalop-ampisveryhigh(usuallygreaterthan100,000).Therefore,anextremelysmallinputvoltagedrivestheop-ampintoitssaturatedoutputstates.Infact,eventheinputoffsetvoltageofanop-ampcandriveitintosaturation.Forexample,assumeVIN=1mVandAol=100,000.Then,Vout=VINAol=100V Sincetheoutputlevelofanop-ampcanneverreach100V,itisdrivendeepintosaturationandtheoutputislimitedtoitsmaximumoutputlevelsasillustratedinfigure12-15nextslideforbothapositiveandnegativeinputvoltageof1mV. 30
  • 31. 12-3 Negative Feedback WhyUseNegativeFeedback?(continue…) Theusefulnessofanop-ampoperatedwithoutnegativefeedbackisseverelyrestrictedandisgenerallylimitedtocomparatorandotherapplications. Withnegativefeedback,theclosed-loopvoltagegain(Acl)canbereducedandcontrolledsothatop-ampcanfunctionasalinearamplifier. 31
  • 32. 12-4 OP-AMPS With Negative Feedback Theextremelyhighopen-loopgainofanop-ampcreatesanunstablesituationbecauseasmallnoisevoltageontheinputcanbeamplifiedtoapointwheretheamplifierisdrivenoutofitslinearregion. Negativefeedbacktakesaportionoftheoutputandappliesitbackoutofphasewiththeinput,creatinganeffectivereductioningain. Thisclosed-loopgainisusuallymuchlessthantheopen-loopgain. 32
  • 33. 12-4 OP-AMPS With Negative Feedback Continue… Closed-LoopVoltageGain,Acl Theclosed-loopgainisthevoltagegainofanop-ampwithexternalfeedback.Theamplifierconfigurationconsistsoftheop-ampandanexternalfeedbackcircuitthatconnectstheoutputtoinvertinginput. Theclosed-loopvoltagegainisdeterminedbytheexternalcomponentvaluesandcanbepreciselycontrolledbythem. 33
  • 34. 12-4 OP-AMPS With Negative Feedback Continue… Non-invertingAmplifier Anop-ampinaclosed-loopconfigurationasanon-invertingamplifierwithacontrolledamountofvoltagegainisshowninfigure12-16nextslide. Theinputsignalisappliedtothenon-inverting(+)input. Theoutputisappliedbacktotheinverting(-)inputthroughthefeedbackcircuit(closedloop)formedbytheinputresistorRiandthefeedbackresistorRf. ResistorsRiandRfformavoltage-dividercircuitwhichreducesVoutandconnectsthereducedvoltageVftotheinvertinginput. Thefeedbackvoltageisexpressedas34
  • 35. 12-4 OP-AMPS With Negative Feedback Continue… Non-invertingAmplifierContinue… ThedifferenceoftheinputvoltageVin,andthefeedbackvoltageVf,isthedifferentialinputtotheop-ampasshowninfigure12-17nextslide.Thisdifferentialvoltageisamplifiedbytheopen-loopvoltagegainoftheop-amp(Aol)andproducesanoutputvoltageexpressedas 35
  • 36. 12-4 OP-AMPS With Negative Feedback Continue… Non-invertingAmplifierContinue… 36
  • 37. 12-4 OP-AMPS With Negative Feedback Continue… Non-invertingAmplifierContinue… 37
  • 38. 12-4 OP-AMPS With Negative Feedback Continue… Non-invertingAmplifierContinue… 38
  • 39. 39
  • 40. 12-4 OP-AMPS With Negative Feedback Continue… VoltageFollower Itisaspecialcaseofthenon-invertingamplifierwherealloftheoutputvoltageisfedbacktotheinverting(-)inputbyastraightconnectionasshowninfigure12-19. Thestraightfeedbackconnectionhasavoltagegainof1. Theclosed-loopvoltagegainofanon-invertingamplifieris1/B. SinceB=1foravoltagefollowercase,theclosed-loopvoltagegainofthevoltagefollowerisAcl(VF)=1/1=1 40
  • 41. 12-4 OP-AMPS With Negative Feedback Continue… InvertingAmplifier Anop-ampconnectedasaninvertingamplifierwithacontrolledamountofvoltagegainasshowninfigure12-20. TheinputsignalisappliedthroughaseriesinputresistorRitotheinverting(-)input. TheoutputisfedbackthroughRftothesameinput.Thenon- invertinginputisgrounded. 41
  • 42. 12-4 OP-AMPS With Negative Feedback Continue… InvertingAmplifierContinue… Atthispoint,theidealop-ampparametersmentionedearlierareusefulinsimplifyingtheanalysisofthiscircuit. Particularlytheconceptofinfiniteinputimpedanceisofgreatvalue. Aninfiniteinputimpedanceimplieszerocurrentattheinvertinginput. Ifthereiszerocurrentthroughtheinputimpedance,thentheremustbenovoltagedropbetweentheinvertingandnon- invertingterminals. Thismeansthatthevoltageattheinverting(-)inputiszero. Thiszerovoltageattheinvertinginputterminalisreferredtoasvirtualground.Thisconditionisillustratedinfigure12-21(a) nextslide.42
  • 43. 12-4 OP-AMPS With Negative Feedback Continue… InvertingAmplifierContinue… Sincethereisnocurrentattheinvertinginput,thecurrentthroughRiandthecurrentthroughRfareequalasshowninfigure12-21(b).i.e,Iin=If43
  • 44. 12-4 OP-AMPS With Negative Feedback Continue… InvertingAmplifierContinue… 44
  • 45. 45