Adaptive and TOU Pricing Schemes 
for Smart Technology Integration 
ORDECSYS 
Christopher Andrey 
2014 
An overview of the results
ORDECSYS 
»The TOU Project - An overview 
Aim of the project: 
Assess the influence of smart grid technologies 
(decentralised storage and demand-response) on the 
long-term planning of a regional energy system 
Funded by: Consortium: 
(Forschungsprogramm Energie - Wirtschaft - Gesellschaft) 
ORDECSYYS
{ Higher energy efficiency 
More renewables 
2050** Factor 
PV 320 GWh 11.4 TWh x35 
Wind 88 GWh 4 TWh x45 
ORDECSYS 
»The TOU Project - An overview 
+ 
2012 
Production* 
Swiss Target 
* Statistique suisse de l’électricité 2013, SFOE ** Presentation by Pascal Previdoli, SFOE 
+ 
Nuclear Phase-Out GHG Emission Reduction 
In particular, the Swiss Energy 
Strategy 2050 massively relies on 
investments in intermittent 
renewables
ORDECSYS 
»The TOU Project - An overview 
One of the bottlenecks for a wide-spread 
penetration of renewables is their 
intermittent production pattern. 
Solar 
Wind 
Source : http://www.transparency.eex.com/
Leitstudie 2009 national ohne zusätzliche Verbraucher – 
ORDECSYS 
»The TOU Project - An overview 
Seite 8 
Leitstudie 2009 national ohne zusätzliche Verbraucher – 
2050 (meteorologisches Basisjahr 2007) 
(meteorologisches Basisjahr 2007) 
Demand-Response 
German load curve in 2050 
Dr. Kurt Rohrig, Fraunhofer-Institut, Kassel 
PV 
Hydro 
Biomass 
Geothermal 
Wind 
Others 
Storage
ORDECSYS 
»The TOU Project - An overview 
Both storage and demand-response may be achieved through 
time-dependent financial incentives. 
Load reduction vs LMP in PJM (USA) 
greentechmedia.com (peak ~ 160 GW)
! 
! 
ORDECSYS 
»The TOU Project - An overview 
Measure of the attractiveness of demand-response 
and decentralised storage in electric vehicles 10 
Scenario 1 Scenario 2 Scenario 3 
Appliance Dishwasher Dryer Fr e e z e r 
Control Method Own Computer Manual Network Operator 
Delay 6 hours 10 min 2 hours 
Yearly Incentive 50 CHF 10 CHF 0 CHF 
! Choice X 
Table 2: Demand-Response Evaluation - Example {Table:DR-Ex} 
2.5 Storage in Electric Vehicles 
1.0 
The aim of the third and final part of the survey is to understand under which cir-cumstances 
respondents would agree to put their electric car at the disp osal of the 
0.8 
batteries as temporary storage 
use the cars’ that the latter 0.6 
could incentives, of 
network operator so estimating the role of financial interested in to 
are units. In particular, we guaranteed autonomy after participating the electric 
ownership model of the battery, 0.4 
of to be connected to the the duration the car has the minimum such a service, and of network per day. 
The respondents have again been introduced to the subject via a short home-made 
factual animation, embedded in the survey environment by LINK. Clicking on Figure 
2 will open the animation on YouTube. In this case to o, the resp ondents were asked 
(i) to imagine themselves living in 2030 and (ii) to imagine owning an electric car. 
scenario s) = 
prob(exp 
P 
l2levels(s) 
wl 
P 
t2scenarios 
exp 
P 
k2levels(t) 
wk 
-5 0 5 10 
through conjoint analysis techniques 
0.2 
16 
Quite surprisingly, the amount of time by which the consumption is shifted has 
almost no influence on the probability of a given scenario. 
3.2.4 Yearly Incentive 
Figure 8: Part-worths of the yearly incentive attribute. Source: Annex D. {DR-U4} 
Finally, the impact of yearly incentive on the choices reveals that o↵ering only a 
modest amount of 20 CHF per year seems to dramatically increases the probability of 
adoption. 
3.3 Storage in Electric Vehicles 
The methodology adopted in the second part of the survey has allowed us to measure 
the part-worths of each of the levels of the attributes. Let us consider each of the 
attributes in turn:
ORDECSYS 
»The TOU Project - An overview 
Sample: 
A total of 1045 respondents from 
‣ Canton of Geneva (373) 
‣ Canton of Vaud (367) 
‣ Cantons of Neuchâtel, Fribourg, Jura (305) 
Ages ranging from 15 to 74 
Online survey (internet users) 
Survey rolled out between Nov. 4th and Nov. 18th, 2013 
Introduction to the ES2050, DR and storage in two short animations
Simulations obtained using a randomised first choice model. Acceptance here means the probability of adopting the given scenario rather than choosing “None”. 
ORDECSYS 
»The TOU Project - An overview 
Conjoint Simulations 
Lave-vaisselle 1/2 
80.1 
% 
100% 
90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 
0% 
Acceptance 
Appareil Lave-vaisselle 
Contrôle Par votre 
Amplitude de 
déplacement 10 minutes 
Impact sur la 
facture annuelle CHF 0 
N = 1048 respondence 
ordinateur 
13 | 10.02.2014 | TOU Pricing Ordecsys 
100% 
90% 
80% 
70% 
60% 
50% 
73.7% 80.1% 76.7% 
100% 
80% 
60% 
40% 
20% 
0% 
Contrôle 
40% 
30% 
20% 
10% 
Manuel Par votre ordinateur Par votre distributeur 
Appareil Lave-vaisselle 
d’électricité 
Contrôle Par votre 
ordinateur 
Amplitude de 
déplacement 10 minutes 
Impact sur la 
facture annuelle CHF 0 
80.1% 79.6% 79.3% 78.5% 81.2% 
100% 
80% 
60% 
40% 
20% 
0% 
Amplitude de déplacement 
N = 1048 respondence 
10 minutes 30 minutes 1 heure 2 heures 6 heures 
21 
Conjoint Simulations 
Lave-vaisselle 2/2 
14 | 10.02.2014 | TOU Pricing Ordecsys 
80.1% 84.2% 85.1% 86.8% 
100% 
80% 
60% 
40% 
20% 
0% 
Impact sur la facture annuelle 
CHF 0 CHF 10 CHF 20 CHF 50 
80.1 
% 
0% 
Acceptance 
Figure 14: Utilities of the yearly incentive attribute. Source: Annex E. {DR-S2} 
Another interesting simulation is the one related to the flexibility of dryers’ use. The 
scenario Dryer, Own Computer, 10 minutes, CHF 0 has a rather low acceptance of 
72.7% as shown on the LHS of Figure 15. Remember that the dryer had the lowest 
utility, see Figure 5. However, o↵ering 50 CHF per year can increase the acceptance 
by almost 10 percentage points, as can be noticed on the RHS of Figure 15. 
Conjoint Simulations 
Sèche-linge 2/2 
72.7 
% 
100% 
90% 
80% 
Results: 
‣ ~80% acceptance 
‣ low sensitivity to the 
implementation details
ORDECSYS 
»The TOU Project - An overview 
22 
4.2 Storage in Electric Vehicles 
Conjoint Simulations 
Propriété du ménage 1/2 
Autonomie garantie 400 kilomètres 
Durée de la mise à 
disposition par jour 1 heure 
Gains annuels 100 
N = 1048 respondence 
83.8 
% 
100% 
Generally speaking, the acceptance of temporary storage in electric cars is very well 
accepted as can be seen on the simulations presented in Figure 16 and 17. 
100% 
90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 
0% 
Propriété de la 
batterie 
83.8 
% 
Autonomie garantie 400 kilomètres 
Durée de la mise à 
disposition par jour 1 heure 
Gains annuels 100 
Conjoint Simulations 
N = 1048 respondence 
Propriété du ménage 2/2 
Propriété du 
ménage 
32 | 10.02.2014 | TOU Pricing Ordecsys 
100% 
80% 
60% 
40% 
20% 
100% 
80% 
60% 
40% 
20% 
40% 
20% 
90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
10% 
0% 
Acceptance 
N = 1048 respondence 
100% 
80% 
60% 
40% 
20% 
Simulations obtained using a randomised first choice model. Acceptance here means the probability of adopting the given scenario rather than choosing “None”. 
Acceptance 
80.3% 80.9% 83.2% 83.8% 
0% 
Autonomie garantie 
100 kilomètres 150 kilomètres 250 kilomètres 400 kilomètres 
83.8% 83.5% 83.7% 82.4% 
0% 
Mise à disposition par jour 
1 heure 2 heures 6 heures 12 heures 
Figure 16: Utilities of the yearly incentive attribute. Source: Annex E. {EV-S1} 
83.8 
% 
100% 
90% 
80% 
32 | 10.02.2014 | TOU Pricing Ordecsys 
0% 
1 heure 2 heures 6 heures 12 heures 
Conjoint Simulations 
Figure 16: Utilities of the yearly incentive attribute. Source: Annex E. {EV-Propriété du ménage 2/2 
33 | 10.02.2014 | TOU Pricing Ordecsys 
83.8% 86.4% 87.8% 
0% 
Gains annuels 
Propriété de la CHF 100 CHF 300 CHF 700 
batterie 
Propriété du 
ménage 
Autonomie garantie 400 kilomètres 
Durée de la mise à 
disposition par jour 1 heure 
Gains annuels 100 
Figure 17: Utilities of the yearly incentive attribute. Source: Annex E. {EV-All combinations of levels give rise to acceptabilities that are in the 80% range. 
Rue du Gothard 5 – Chˆene-Bourg – Switzerland Tel. +41 22 940 30 20 – www.ordecsys.com 
Results: 
‣ ~84% acceptance 
‣ low sensitivity to the 
implementation details
ORDECSYS 
»The TOU Project - An overview 
ETEM-SG is a long-term energy planning (LTEP) model: 
‣ used to assess the impact of regional energy/climate policies 
‣ represents the entire energy system of a region 
‣ embeds a detailed representation of 
‣ technologies (investment costs, O&M costs, efficiency, etc.) 
‣ demands for energy services in all sectors (residential, industry, etc.) 
‣ dynamics of the demands
ORDECSYS 
»The TOU Project - An overview 
Comparaison simulation - courbes de charges réelles 
Résidentiel collectif - Printemps 
80 
4000 
Period 1 Period i Period N 
typically 1 to 5 years 
Calibration Investment i 
70 
60 
50 
40 
30 
20 
10 
0 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Horizon: typically 10 to 50 years 
3500 
3000 
2500 
2000 
1500 
1000 
500 
0 
Autre électroménag 
Clim 
Chauff appoint 
Chauff principa 
Veilles 
Plaques de cuisson 
Fours micro-ondes 
Fours traditionnel 
E.C.S. 
Informatique 
Congél 
Combinés 
Réfrig 
Eclairage 
Sèche-linge 
Lave-vaisselle 
Lave-linge 
Téléviseur 
Total réel coll 
568 
LES BOUDINES;28/05/2002 
862 
AVANCHET PARC RTE DE MEYRIN; 12/07/2002 
675 
LIGNON EST; printemps 2002 
Détente-SIG-c_zone_hab.xls 
demand allocation 
(dynamics) 
General time-structure
EV Imported 
biomass 
ORDECSYS 
»The TOU Project - An overview 
General structure 
CHP 
Electricity 
Heat 
CO2 
Transport 
demand 
Large-scale flow problem
minimise total cost 
flow conservation 
technology description 
activity bounded by capacity 
other constraints (e.g. CO2) 
ORDECSYS 
Annexes 
»The TOU Project - An overview 
Modèle déterministe 
General mathematical structure 
X = flows, C = capacity increase, I = imports, E = exports 
i,j = commodity index, t = time index, k = technology index 
Soit i et j les indices des commodités, k l’indice des technologies et t l’indice des périodes, la 
formulation mathématique simplifiée du modèle ETEM s’écrit: 
min f(X,C, I,E) (1a) 
Iit + 
X 
k 
Xout 
ikt = Eit + 
X 
k 
Xin 
ikt + dit, 8i 8t (1b) 
X 
j 
!ijktXin 
jkt = Xout 
ikt , 8i 8k 8t (1c) 
X 
i 
Xout 
ikt  ↵kt#kt(ckt + 
X 
lt 
Ckl), 8k 8t (1d) 
gm(X,C, I,E)  0, 8m (1e) 
avec X = (Xin,Xout), les variables représentant les flots de commodités entrant et sortant 
des technologies, C les variables d’investissement dans les capacités de technologies et I et E 
les variables d’import et d’export. La fonction objectif f(X,C, I,E) représente l’ensemble des 
coûts et profits annualisés fixes et variables associés aux technologies et à leur utilisation, aux
ORDECSYS 
»The TOU Project - An overview 
{ Current energy 
system 
(capacities) 
Evolution of useful demands 
and of imported energy prices 
(drivers) 
Catalogue of existing 
and future technologies 
ETEMSmartGrid 
Sources of uncertainties 
‣ Capacity expansion (technology portfolio) 
‣ Activities (operation) 
‣ GHG and pollutants emissions 
‣ Imports and exports 
‣ Marginal costs (electricity, GHG, etc.) 
1 
2 
3 
4
ORDECSYS 
»The TOU Project - An overview 
Cantons of Vaud & Geneva 
2005-2050 
Inputs 
1. Current energy system 
Hydro VD 
Hydro GE 
PV 
Cheneviers 
Tridel 
Pierre de Plan 
Chatillon 
Veytaux 
0.9" 
0.8" 
0.7" 
0.6" 
0.5" 
0.4" 
0.3" 
0.2" 
0.1" 
0" 
""""""WN"" """"""WP1""""""""WM""""""""WP2"" """"""SN"" """"""SP1"" """"""SM"" """"""SP2"" """"""IN"" """"""IP1"" """"""IM"" """"""IP2"" 
Electricity production 2005 Load curve 2005 
Transport 
Heat & Warm Water 
Industry 
Residential Electricity 
Food/Textile/ 
Paper 
Chemistry/ 
Metallurgy 
Machines 
Construction 
Tertiary 
Others 
Industry consumption by sector 2005
ORDECSYS 
»The TOU Project - An overview 
Cantons of Vaud & Geneva 
2005-2050 
Inputs 
2. Evolution of useful demands and 
of imported energy prices 
Future growth rate, SECO Population increase, OFS
ORDECSYS 
»The TOU Project - An overview 
Cantons of Vaud & Geneva 
2005-2050 
Inputs 
3. Catalogue of existing and future technologies 
Investment cost : 1500 MCHF/GW 
O&M costs : 40 MCHF/GW/year 
Lifetime : 30 years 
Emissions : 0 tCO2/PJ 
Upper-bound : Suisse.Eole
ORDECSYS 
»The TOU Project - An overview 
Results
10 
9.5 
9 
8.5 
8 
7.5 
7 
6.5 
6 
5.5 
5 
12:00 16:00 20:00 0:00 4:00 8:00 12:00 
Fig. 5. Simulation results with δ = 0.007. Although the tracking parameter 
does not satisfy the conditions of Theorem 3.2, convergence still occurs. 
10 
9.5 
9 
8.5 
8 
7.5 
7 
6.5 
6 
5.5 
ORDECSYS 
»8 
7.5 
The 7 
TOU Project - An overview 
6.5 
6 
5.5 
5 
12:00 16:00 20:00 0:00 4:00 8:00 12:00 
August 15 − 16, 2007 
Normalized power Fig. 5. Simulation results with δ = 0.007. Although the tracking parameter 
does not satisfy the conditions of Theorem 3.2, convergence still occurs. 
10 
9.5 
9 
Normalized power (kW) Fig. 6. Simulation results with δ = 0.003. At this point the tracking 
8.5 
8 
7.5 
7 
6.5 
6 
5.5 
5 
12:00 16:00 20:00 0:00 4:00 8:00 12:00 
August 15 − 16, 2007 
parameter is small enough that the negotiation process does not converge. 
PEVs charge for less time than others. As a consequence, 
total demand ramps down at the beginning of the charging 
interval, and ramps up at the end. 
8 
7.5 
7 
6.5 
6 
5.5 
5 
12:00 16:00 20:00 0:00 4:00 8:00 12:00 
August 15 − 16, 2007 
Normalized power Fig. 7. Converged Nash equilibrium for a heterogeneous population of 
PEVs with δ = 0.015. 
APPENDIX 
The proof of Theorem 3.3 proceeds by considering, with-out 
loss of generality, adjacent time instants t and s = t+1. 
Local charging controls (!unt 
, !unt 
+1), that are optimal with 
Normalized power (kW) 
respect to u and xnt 
, can be decomposed as !unt 
= bn,∗−an,∗ 
and !unt 
+1 = bn,∗ + an,∗ respectively. It is possible to show 
that 
an,∗ = arginf 
an∈Sbn,∗ 
"# 
an − 
1 
2 
(ut+1 − ut) 
+ 
1 
4δ 
$ 
p(dt+1 + ut+1) − p(dt + ut) 
%&2' 
with Sbn,∗ ! {an;−bn,∗ ≤ an ≤ bn,∗}. 
Relationship (11a) can be established by contradiction. 
If (11a) were not true, then it can be shown that an,∗ < 
12 
August 15 − 16, 2007 
(ut+1 − ut), implying that !unt 
+1 − !unt 
< ut+1 − ut for all 
n, and hence that 
avg(!u 
t+1) − avg(!u 
t) < ut+1 − ut 
where !u 
10 
9.5 
≡ 
( 
!un; 1 ≤ n < ∞ 
) 
. This, however, conflicts with 
the fact that 9 
{un;!n < ∞} is a Nash equilibrium with respect 
to u, see Theorem 2.1. Hence a contradiction. 
kW) 
12:00 5 
Normalized power (kW) 
Fig. 7. PEVs with The proof loss Demand response can flatten the load curve through iterative 
negotiation processes (modelled via mean field games) 
Ma, Callaway & Hiskens, 2007
ORDECSYS 
»The TOU Project - An overview 
Global models of TOU pricing reveals how to price 
electricity based on measured elasticities 
Supply Demand
ORDECSYS 
»The TOU Project - An overview 
0.6" 
0.5" 
0.4" 
0.3" 
0.2" 
0.1" 
0" 
2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" 
NEP" 
NEP"-"CO2" 
NEP"+"DR" 
NEP"+"V2G" 
NEP"+"DR"+"V2G" 
0.7" 
0.6" 
0.5" 
0.4" 
0.3" 
0.2" 
0.1" 
0" 
2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" 
NEP" 
NEP"."CO2" 
NEP"+"DR" 
NEP"+"V2G" 
NEP"+"DR"+"V2G" 
Photovoltaics 
Wind turbines 
Demand response tends to delay 
investments in renewables by allowing 
demand to better match existing 
production facilities’ constraints.
ORDECSYS 
»The TOU Project - An overview 
0.6" 
0.5" 
0.4" 
0.3" 
0.2" 
0.1" 
0" 
2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" 
NEP" 
NEP"-"CO2" 
NEP"+"DR" 
NEP"+"V2G" 
NEP"+"DR"+"V2G" 
0.7" 
0.6" 
0.5" 
0.4" 
0.3" 
0.2" 
0.1" 
0" 
2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" 
NEP" 
NEP"."CO2" 
NEP"+"DR" 
NEP"+"V2G" 
NEP"+"DR"+"V2G" 
Photovoltaics 
Wind turbines 
Demand response tends to delay 
investments in renewables by allowing 
demand to better match existing 
production facilities’ constraints. 
However, when combining DR with 
V2G possibilities*, investments in 
intermittent renewables are 
encouraged. 
*Dual use of electric vehicles batteries: Vehicle to Grid.
ORDECSYS 
»The TOU Project - An overview 
24# 
22# 
20# 
18# 
16# 
14# 
12# 
2010# 2015# 2020# 2025# 2030# 2035# 2040# 2045# 2050# 
NEP# 
NEP#-#CO2# 
NEP#+#DR# 
NEP#+#V2G# 
NEP#+#DR#+#V2G# 
Demand response tends decrease 
the need for imports, by allowing assets 
to be more efficiently managed.
ORDECSYS 
»The TOU Project - An overview 
24# 
22# 
20# 
18# 
16# 
14# 
12# 
2010# 2015# 2020# 2025# 2030# 2035# 2040# 2045# 2050# 
NEP# 
NEP#-#CO2# 
NEP#+#DR# 
NEP#+#V2G# 
NEP#+#DR#+#V2G# 
Demand response tends decrease 
the need for imports, by allowing assets 
to be more efficiently managed. 
However, when combined with V2G 
possibilities, imports raise due to the 
electricity demand stemming from 
electric vehicles.
ORDECSYS 
»The TOU Project - An overview 
0.3" 
0.25" 
0.2" 
0.15" 
0.1" 
0.05" 
0" 
Demand-response allows the energy system to 
dynamically adapt to changing weather conditions 
Scenario based on 2011's weather data 
WN! WP1! WM! WP2! SN! SP1! SM! SP2! IN! IP1! IM! IP2!
ORDECSYS 
»The TOU Project - An overview 
0.3" 
0.25" 
0.2" 
0.15" 
0.1" 
0.05" 
0" 
Demand-response allows the energy system to 
dynamically adapt to changing weather conditions 
Scenario based on 2012’s weather data 
WN! WP1! WM! WP2! SN! SP1! SM! SP2! IN! IP1! IM! IP2!
ORDECSYS 
»The TOU Project - An overview 
0.3" 
0.25" 
0.2" 
0.15" 
0.1" 
0.05" 
0" 
Demand-response allows the energy system to 
dynamically adapt to changing weather conditions 
Scenario based on 2013’s weather data 
WN! WP1! WM! WP2! SN! SP1! SM! SP2! IN! IP1! IM! IP2!
1. The effects of demand-response and storage can be assessed through ETEMSmartGrid 
2. Suisse-Romande’s households have a positive view of EVs and of DR mechanisms 
3. EVs and DR can be exploited for a faster integration of renewables 
4. Stochastic weather scenarios’ impact on DR and renewables has been studied 
ORDECSYS 
»The TOU Project - An overview 
Conclusions 
Perspectives 
1. Integration of electricity network contraints, e.g. to define zonal pricing schemes (in progress) 
2. Load shedding 
3. Evaluation of the repercussion of an energy/climate policy on the value chain
Thanks! 
christopher.andrey@ordecsys.com 
ORDECSYS 
Christopher Andrey 
2014

More Related Content

PDF
SCOE: Society's Cost of Electricity: How society should decide on the optimal...
PDF
Renewable Asset Risk Management
PDF
Costs and data management for EVs
PDF
Quantitive Approaches and venues for Energy Trading & Risk Management
PDF
Res evolution italy_gse
PDF
Gowipes18 new trends in modern shopfloor
PDF
Ongoing Macro-Stand Alone and CGE modelling approaches at UCL Energy Institute
PDF
SATIMGE-2020
SCOE: Society's Cost of Electricity: How society should decide on the optimal...
Renewable Asset Risk Management
Costs and data management for EVs
Quantitive Approaches and venues for Energy Trading & Risk Management
Res evolution italy_gse
Gowipes18 new trends in modern shopfloor
Ongoing Macro-Stand Alone and CGE modelling approaches at UCL Energy Institute
SATIMGE-2020

Recently uploaded (20)

PPT
LEC Synthetic Biology and its application.ppt
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PPTX
limit test definition and all limit tests
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PPTX
gene cloning powerpoint for general biology 2
PPTX
Introcution to Microbes Burton's Biology for the Health
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PDF
Science Form five needed shit SCIENEce so
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PPT
Presentation of a Romanian Institutee 2.
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PDF
S2 SOIL BY TR. OKION.pdf based on the new lower secondary curriculum
PPTX
BODY FLUIDS AND CIRCULATION class 11 .pptx
PPT
Mutation in dna of bacteria and repairss
PPTX
perinatal infections 2-171220190027.pptx
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PDF
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
PDF
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
PPTX
endocrine - management of adrenal incidentaloma.pptx
LEC Synthetic Biology and its application.ppt
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
limit test definition and all limit tests
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
gene cloning powerpoint for general biology 2
Introcution to Microbes Burton's Biology for the Health
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
Science Form five needed shit SCIENEce so
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Presentation of a Romanian Institutee 2.
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
S2 SOIL BY TR. OKION.pdf based on the new lower secondary curriculum
BODY FLUIDS AND CIRCULATION class 11 .pptx
Mutation in dna of bacteria and repairss
perinatal infections 2-171220190027.pptx
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
endocrine - management of adrenal incidentaloma.pptx
Ad
Ad

The TOU project - Test 1

  • 1. Adaptive and TOU Pricing Schemes for Smart Technology Integration ORDECSYS Christopher Andrey 2014 An overview of the results
  • 2. ORDECSYS »The TOU Project - An overview Aim of the project: Assess the influence of smart grid technologies (decentralised storage and demand-response) on the long-term planning of a regional energy system Funded by: Consortium: (Forschungsprogramm Energie - Wirtschaft - Gesellschaft) ORDECSYYS
  • 3. { Higher energy efficiency More renewables 2050** Factor PV 320 GWh 11.4 TWh x35 Wind 88 GWh 4 TWh x45 ORDECSYS »The TOU Project - An overview + 2012 Production* Swiss Target * Statistique suisse de l’électricité 2013, SFOE ** Presentation by Pascal Previdoli, SFOE + Nuclear Phase-Out GHG Emission Reduction In particular, the Swiss Energy Strategy 2050 massively relies on investments in intermittent renewables
  • 4. ORDECSYS »The TOU Project - An overview One of the bottlenecks for a wide-spread penetration of renewables is their intermittent production pattern. Solar Wind Source : http://www.transparency.eex.com/
  • 5. Leitstudie 2009 national ohne zusätzliche Verbraucher – ORDECSYS »The TOU Project - An overview Seite 8 Leitstudie 2009 national ohne zusätzliche Verbraucher – 2050 (meteorologisches Basisjahr 2007) (meteorologisches Basisjahr 2007) Demand-Response German load curve in 2050 Dr. Kurt Rohrig, Fraunhofer-Institut, Kassel PV Hydro Biomass Geothermal Wind Others Storage
  • 6. ORDECSYS »The TOU Project - An overview Both storage and demand-response may be achieved through time-dependent financial incentives. Load reduction vs LMP in PJM (USA) greentechmedia.com (peak ~ 160 GW)
  • 7. ! ! ORDECSYS »The TOU Project - An overview Measure of the attractiveness of demand-response and decentralised storage in electric vehicles 10 Scenario 1 Scenario 2 Scenario 3 Appliance Dishwasher Dryer Fr e e z e r Control Method Own Computer Manual Network Operator Delay 6 hours 10 min 2 hours Yearly Incentive 50 CHF 10 CHF 0 CHF ! Choice X Table 2: Demand-Response Evaluation - Example {Table:DR-Ex} 2.5 Storage in Electric Vehicles 1.0 The aim of the third and final part of the survey is to understand under which cir-cumstances respondents would agree to put their electric car at the disp osal of the 0.8 batteries as temporary storage use the cars’ that the latter 0.6 could incentives, of network operator so estimating the role of financial interested in to are units. In particular, we guaranteed autonomy after participating the electric ownership model of the battery, 0.4 of to be connected to the the duration the car has the minimum such a service, and of network per day. The respondents have again been introduced to the subject via a short home-made factual animation, embedded in the survey environment by LINK. Clicking on Figure 2 will open the animation on YouTube. In this case to o, the resp ondents were asked (i) to imagine themselves living in 2030 and (ii) to imagine owning an electric car. scenario s) = prob(exp P l2levels(s) wl P t2scenarios exp P k2levels(t) wk -5 0 5 10 through conjoint analysis techniques 0.2 16 Quite surprisingly, the amount of time by which the consumption is shifted has almost no influence on the probability of a given scenario. 3.2.4 Yearly Incentive Figure 8: Part-worths of the yearly incentive attribute. Source: Annex D. {DR-U4} Finally, the impact of yearly incentive on the choices reveals that o↵ering only a modest amount of 20 CHF per year seems to dramatically increases the probability of adoption. 3.3 Storage in Electric Vehicles The methodology adopted in the second part of the survey has allowed us to measure the part-worths of each of the levels of the attributes. Let us consider each of the attributes in turn:
  • 8. ORDECSYS »The TOU Project - An overview Sample: A total of 1045 respondents from ‣ Canton of Geneva (373) ‣ Canton of Vaud (367) ‣ Cantons of Neuchâtel, Fribourg, Jura (305) Ages ranging from 15 to 74 Online survey (internet users) Survey rolled out between Nov. 4th and Nov. 18th, 2013 Introduction to the ES2050, DR and storage in two short animations
  • 9. Simulations obtained using a randomised first choice model. Acceptance here means the probability of adopting the given scenario rather than choosing “None”. ORDECSYS »The TOU Project - An overview Conjoint Simulations Lave-vaisselle 1/2 80.1 % 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Acceptance Appareil Lave-vaisselle Contrôle Par votre Amplitude de déplacement 10 minutes Impact sur la facture annuelle CHF 0 N = 1048 respondence ordinateur 13 | 10.02.2014 | TOU Pricing Ordecsys 100% 90% 80% 70% 60% 50% 73.7% 80.1% 76.7% 100% 80% 60% 40% 20% 0% Contrôle 40% 30% 20% 10% Manuel Par votre ordinateur Par votre distributeur Appareil Lave-vaisselle d’électricité Contrôle Par votre ordinateur Amplitude de déplacement 10 minutes Impact sur la facture annuelle CHF 0 80.1% 79.6% 79.3% 78.5% 81.2% 100% 80% 60% 40% 20% 0% Amplitude de déplacement N = 1048 respondence 10 minutes 30 minutes 1 heure 2 heures 6 heures 21 Conjoint Simulations Lave-vaisselle 2/2 14 | 10.02.2014 | TOU Pricing Ordecsys 80.1% 84.2% 85.1% 86.8% 100% 80% 60% 40% 20% 0% Impact sur la facture annuelle CHF 0 CHF 10 CHF 20 CHF 50 80.1 % 0% Acceptance Figure 14: Utilities of the yearly incentive attribute. Source: Annex E. {DR-S2} Another interesting simulation is the one related to the flexibility of dryers’ use. The scenario Dryer, Own Computer, 10 minutes, CHF 0 has a rather low acceptance of 72.7% as shown on the LHS of Figure 15. Remember that the dryer had the lowest utility, see Figure 5. However, o↵ering 50 CHF per year can increase the acceptance by almost 10 percentage points, as can be noticed on the RHS of Figure 15. Conjoint Simulations Sèche-linge 2/2 72.7 % 100% 90% 80% Results: ‣ ~80% acceptance ‣ low sensitivity to the implementation details
  • 10. ORDECSYS »The TOU Project - An overview 22 4.2 Storage in Electric Vehicles Conjoint Simulations Propriété du ménage 1/2 Autonomie garantie 400 kilomètres Durée de la mise à disposition par jour 1 heure Gains annuels 100 N = 1048 respondence 83.8 % 100% Generally speaking, the acceptance of temporary storage in electric cars is very well accepted as can be seen on the simulations presented in Figure 16 and 17. 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Propriété de la batterie 83.8 % Autonomie garantie 400 kilomètres Durée de la mise à disposition par jour 1 heure Gains annuels 100 Conjoint Simulations N = 1048 respondence Propriété du ménage 2/2 Propriété du ménage 32 | 10.02.2014 | TOU Pricing Ordecsys 100% 80% 60% 40% 20% 100% 80% 60% 40% 20% 40% 20% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Acceptance N = 1048 respondence 100% 80% 60% 40% 20% Simulations obtained using a randomised first choice model. Acceptance here means the probability of adopting the given scenario rather than choosing “None”. Acceptance 80.3% 80.9% 83.2% 83.8% 0% Autonomie garantie 100 kilomètres 150 kilomètres 250 kilomètres 400 kilomètres 83.8% 83.5% 83.7% 82.4% 0% Mise à disposition par jour 1 heure 2 heures 6 heures 12 heures Figure 16: Utilities of the yearly incentive attribute. Source: Annex E. {EV-S1} 83.8 % 100% 90% 80% 32 | 10.02.2014 | TOU Pricing Ordecsys 0% 1 heure 2 heures 6 heures 12 heures Conjoint Simulations Figure 16: Utilities of the yearly incentive attribute. Source: Annex E. {EV-Propriété du ménage 2/2 33 | 10.02.2014 | TOU Pricing Ordecsys 83.8% 86.4% 87.8% 0% Gains annuels Propriété de la CHF 100 CHF 300 CHF 700 batterie Propriété du ménage Autonomie garantie 400 kilomètres Durée de la mise à disposition par jour 1 heure Gains annuels 100 Figure 17: Utilities of the yearly incentive attribute. Source: Annex E. {EV-All combinations of levels give rise to acceptabilities that are in the 80% range. Rue du Gothard 5 – Chˆene-Bourg – Switzerland Tel. +41 22 940 30 20 – www.ordecsys.com Results: ‣ ~84% acceptance ‣ low sensitivity to the implementation details
  • 11. ORDECSYS »The TOU Project - An overview ETEM-SG is a long-term energy planning (LTEP) model: ‣ used to assess the impact of regional energy/climate policies ‣ represents the entire energy system of a region ‣ embeds a detailed representation of ‣ technologies (investment costs, O&M costs, efficiency, etc.) ‣ demands for energy services in all sectors (residential, industry, etc.) ‣ dynamics of the demands
  • 12. ORDECSYS »The TOU Project - An overview Comparaison simulation - courbes de charges réelles Résidentiel collectif - Printemps 80 4000 Period 1 Period i Period N typically 1 to 5 years Calibration Investment i 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Horizon: typically 10 to 50 years 3500 3000 2500 2000 1500 1000 500 0 Autre électroménag Clim Chauff appoint Chauff principa Veilles Plaques de cuisson Fours micro-ondes Fours traditionnel E.C.S. Informatique Congél Combinés Réfrig Eclairage Sèche-linge Lave-vaisselle Lave-linge Téléviseur Total réel coll 568 LES BOUDINES;28/05/2002 862 AVANCHET PARC RTE DE MEYRIN; 12/07/2002 675 LIGNON EST; printemps 2002 Détente-SIG-c_zone_hab.xls demand allocation (dynamics) General time-structure
  • 13. EV Imported biomass ORDECSYS »The TOU Project - An overview General structure CHP Electricity Heat CO2 Transport demand Large-scale flow problem
  • 14. minimise total cost flow conservation technology description activity bounded by capacity other constraints (e.g. CO2) ORDECSYS Annexes »The TOU Project - An overview Modèle déterministe General mathematical structure X = flows, C = capacity increase, I = imports, E = exports i,j = commodity index, t = time index, k = technology index Soit i et j les indices des commodités, k l’indice des technologies et t l’indice des périodes, la formulation mathématique simplifiée du modèle ETEM s’écrit: min f(X,C, I,E) (1a) Iit + X k Xout ikt = Eit + X k Xin ikt + dit, 8i 8t (1b) X j !ijktXin jkt = Xout ikt , 8i 8k 8t (1c) X i Xout ikt  ↵kt#kt(ckt + X lt Ckl), 8k 8t (1d) gm(X,C, I,E)  0, 8m (1e) avec X = (Xin,Xout), les variables représentant les flots de commodités entrant et sortant des technologies, C les variables d’investissement dans les capacités de technologies et I et E les variables d’import et d’export. La fonction objectif f(X,C, I,E) représente l’ensemble des coûts et profits annualisés fixes et variables associés aux technologies et à leur utilisation, aux
  • 15. ORDECSYS »The TOU Project - An overview { Current energy system (capacities) Evolution of useful demands and of imported energy prices (drivers) Catalogue of existing and future technologies ETEMSmartGrid Sources of uncertainties ‣ Capacity expansion (technology portfolio) ‣ Activities (operation) ‣ GHG and pollutants emissions ‣ Imports and exports ‣ Marginal costs (electricity, GHG, etc.) 1 2 3 4
  • 16. ORDECSYS »The TOU Project - An overview Cantons of Vaud & Geneva 2005-2050 Inputs 1. Current energy system Hydro VD Hydro GE PV Cheneviers Tridel Pierre de Plan Chatillon Veytaux 0.9" 0.8" 0.7" 0.6" 0.5" 0.4" 0.3" 0.2" 0.1" 0" """"""WN"" """"""WP1""""""""WM""""""""WP2"" """"""SN"" """"""SP1"" """"""SM"" """"""SP2"" """"""IN"" """"""IP1"" """"""IM"" """"""IP2"" Electricity production 2005 Load curve 2005 Transport Heat & Warm Water Industry Residential Electricity Food/Textile/ Paper Chemistry/ Metallurgy Machines Construction Tertiary Others Industry consumption by sector 2005
  • 17. ORDECSYS »The TOU Project - An overview Cantons of Vaud & Geneva 2005-2050 Inputs 2. Evolution of useful demands and of imported energy prices Future growth rate, SECO Population increase, OFS
  • 18. ORDECSYS »The TOU Project - An overview Cantons of Vaud & Geneva 2005-2050 Inputs 3. Catalogue of existing and future technologies Investment cost : 1500 MCHF/GW O&M costs : 40 MCHF/GW/year Lifetime : 30 years Emissions : 0 tCO2/PJ Upper-bound : Suisse.Eole
  • 19. ORDECSYS »The TOU Project - An overview Results
  • 20. 10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 12:00 16:00 20:00 0:00 4:00 8:00 12:00 Fig. 5. Simulation results with δ = 0.007. Although the tracking parameter does not satisfy the conditions of Theorem 3.2, convergence still occurs. 10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 ORDECSYS »8 7.5 The 7 TOU Project - An overview 6.5 6 5.5 5 12:00 16:00 20:00 0:00 4:00 8:00 12:00 August 15 − 16, 2007 Normalized power Fig. 5. Simulation results with δ = 0.007. Although the tracking parameter does not satisfy the conditions of Theorem 3.2, convergence still occurs. 10 9.5 9 Normalized power (kW) Fig. 6. Simulation results with δ = 0.003. At this point the tracking 8.5 8 7.5 7 6.5 6 5.5 5 12:00 16:00 20:00 0:00 4:00 8:00 12:00 August 15 − 16, 2007 parameter is small enough that the negotiation process does not converge. PEVs charge for less time than others. As a consequence, total demand ramps down at the beginning of the charging interval, and ramps up at the end. 8 7.5 7 6.5 6 5.5 5 12:00 16:00 20:00 0:00 4:00 8:00 12:00 August 15 − 16, 2007 Normalized power Fig. 7. Converged Nash equilibrium for a heterogeneous population of PEVs with δ = 0.015. APPENDIX The proof of Theorem 3.3 proceeds by considering, with-out loss of generality, adjacent time instants t and s = t+1. Local charging controls (!unt , !unt +1), that are optimal with Normalized power (kW) respect to u and xnt , can be decomposed as !unt = bn,∗−an,∗ and !unt +1 = bn,∗ + an,∗ respectively. It is possible to show that an,∗ = arginf an∈Sbn,∗ "# an − 1 2 (ut+1 − ut) + 1 4δ $ p(dt+1 + ut+1) − p(dt + ut) %&2' with Sbn,∗ ! {an;−bn,∗ ≤ an ≤ bn,∗}. Relationship (11a) can be established by contradiction. If (11a) were not true, then it can be shown that an,∗ < 12 August 15 − 16, 2007 (ut+1 − ut), implying that !unt +1 − !unt < ut+1 − ut for all n, and hence that avg(!u t+1) − avg(!u t) < ut+1 − ut where !u 10 9.5 ≡ ( !un; 1 ≤ n < ∞ ) . This, however, conflicts with the fact that 9 {un;!n < ∞} is a Nash equilibrium with respect to u, see Theorem 2.1. Hence a contradiction. kW) 12:00 5 Normalized power (kW) Fig. 7. PEVs with The proof loss Demand response can flatten the load curve through iterative negotiation processes (modelled via mean field games) Ma, Callaway & Hiskens, 2007
  • 21. ORDECSYS »The TOU Project - An overview Global models of TOU pricing reveals how to price electricity based on measured elasticities Supply Demand
  • 22. ORDECSYS »The TOU Project - An overview 0.6" 0.5" 0.4" 0.3" 0.2" 0.1" 0" 2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" NEP" NEP"-"CO2" NEP"+"DR" NEP"+"V2G" NEP"+"DR"+"V2G" 0.7" 0.6" 0.5" 0.4" 0.3" 0.2" 0.1" 0" 2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" NEP" NEP"."CO2" NEP"+"DR" NEP"+"V2G" NEP"+"DR"+"V2G" Photovoltaics Wind turbines Demand response tends to delay investments in renewables by allowing demand to better match existing production facilities’ constraints.
  • 23. ORDECSYS »The TOU Project - An overview 0.6" 0.5" 0.4" 0.3" 0.2" 0.1" 0" 2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" NEP" NEP"-"CO2" NEP"+"DR" NEP"+"V2G" NEP"+"DR"+"V2G" 0.7" 0.6" 0.5" 0.4" 0.3" 0.2" 0.1" 0" 2005" 2010" 2015" 2020" 2025" 2030" 2035" 2040" 2045" 2050" NEP" NEP"."CO2" NEP"+"DR" NEP"+"V2G" NEP"+"DR"+"V2G" Photovoltaics Wind turbines Demand response tends to delay investments in renewables by allowing demand to better match existing production facilities’ constraints. However, when combining DR with V2G possibilities*, investments in intermittent renewables are encouraged. *Dual use of electric vehicles batteries: Vehicle to Grid.
  • 24. ORDECSYS »The TOU Project - An overview 24# 22# 20# 18# 16# 14# 12# 2010# 2015# 2020# 2025# 2030# 2035# 2040# 2045# 2050# NEP# NEP#-#CO2# NEP#+#DR# NEP#+#V2G# NEP#+#DR#+#V2G# Demand response tends decrease the need for imports, by allowing assets to be more efficiently managed.
  • 25. ORDECSYS »The TOU Project - An overview 24# 22# 20# 18# 16# 14# 12# 2010# 2015# 2020# 2025# 2030# 2035# 2040# 2045# 2050# NEP# NEP#-#CO2# NEP#+#DR# NEP#+#V2G# NEP#+#DR#+#V2G# Demand response tends decrease the need for imports, by allowing assets to be more efficiently managed. However, when combined with V2G possibilities, imports raise due to the electricity demand stemming from electric vehicles.
  • 26. ORDECSYS »The TOU Project - An overview 0.3" 0.25" 0.2" 0.15" 0.1" 0.05" 0" Demand-response allows the energy system to dynamically adapt to changing weather conditions Scenario based on 2011's weather data WN! WP1! WM! WP2! SN! SP1! SM! SP2! IN! IP1! IM! IP2!
  • 27. ORDECSYS »The TOU Project - An overview 0.3" 0.25" 0.2" 0.15" 0.1" 0.05" 0" Demand-response allows the energy system to dynamically adapt to changing weather conditions Scenario based on 2012’s weather data WN! WP1! WM! WP2! SN! SP1! SM! SP2! IN! IP1! IM! IP2!
  • 28. ORDECSYS »The TOU Project - An overview 0.3" 0.25" 0.2" 0.15" 0.1" 0.05" 0" Demand-response allows the energy system to dynamically adapt to changing weather conditions Scenario based on 2013’s weather data WN! WP1! WM! WP2! SN! SP1! SM! SP2! IN! IP1! IM! IP2!
  • 29. 1. The effects of demand-response and storage can be assessed through ETEMSmartGrid 2. Suisse-Romande’s households have a positive view of EVs and of DR mechanisms 3. EVs and DR can be exploited for a faster integration of renewables 4. Stochastic weather scenarios’ impact on DR and renewables has been studied ORDECSYS »The TOU Project - An overview Conclusions Perspectives 1. Integration of electricity network contraints, e.g. to define zonal pricing schemes (in progress) 2. Load shedding 3. Evaluation of the repercussion of an energy/climate policy on the value chain