2
Most read
4
Most read
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 63
COMPLEX NUMBERS
Summary of the theory
Washngton pp 334 - 361
THEORY
 Argand diagram: A representation of a complex number in a complex plane
o The horizontal axis represents the real part of the complex numbers, while the vertical axis represents the imaginary part of the
complex number
o When we multiply a complex number by 1
j= − , its representation in an Argand diagram rotates anti-clock wise through 900
o A complex number and its conjugate is symmetrical about the real axis
o A complex number is often represented by a directed line segment (an arrow), similar to a vector
 Argument/amplitude/phase angle: If z r θ
= ∠ , then the argument, denoted by arg( )
z , is given by arg( )
z θ
=
 Cartesian form: Rectangular form
 Complex conjugate
o Rectangular form: If z x jy
= + , then the complex conjugate of z, denoted by z , is given by z x jy
= −
o Polar form: If (cos sin )
z r r j
θ θ θ
= ∠ = + , then ( ) (cos sin )
z r r j
θ θ θ
= ∠ − = −
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 64
o Exponential form: If j
z re θ
= , then j
z re θ
−
=
 Complex number: Any number z x jy
= + where ,
x y ∈ and 1
j= −
o Pure real numbers and pure imaginary numbers are sub sets of the set of complex numbers
 Complex plane: The x-y plane where the x-axis represents the real numbers and the y-axis represents the imaginary numbers
 Conversions: ( )
2 2 1
cos ; sin ; ; tan y
x
x r y r r x y
θ θ θ −
= = = + =
 De Moivre's theorems: If 1 1 1
z r θ
= ∠ and 2 2 2
z r θ
= ∠ , then
o 1 2 1 2 1 2
( )
z z rr θ θ
= ∠ +
o 1 1
2 2 1 2
( )
z r
z r θ θ
= ∠ −
o 1 1 1
( ) ( )
n n
z r nθ
= ∠
o ( ) ( )
1 1
360 2
1 1 1 , 0,1,2, ,( 1)
k k
n n n
n n
z r r k n
θ θ π
+ ° +
=
∠ =
∠ = −

 Equality: Two complex numbers 1
z a jb
= + and are equal if and only if a c
= and b d
=
 Euler's formula: cos sin
j
e j
θ
θ θ
±
= ±
 Exponential form: A complex number in the form j
z re θ
=
o θ MUST be in radians!
o De Moivre: 1/ 1/ ( 2 )/
n n j k n
z r e θ π
+
=
o Logs: ln( ) ln( ) ln
j
z re r j
θ
θ
= = +
 Fact: Remember, ,
a b ab a b
= ∀ ∈ but if ,
a b ab a b
≠ ∈
 Imaginary number: Any number aj where a∈ and 1
j= −
 Imaginary part: If z x jy
= + , then Im( )
z y
=
 Imaginary unit: 1
i j
= = −
 Modulus/magnitude/absolute value: If z r θ
= ∠ , then the modulus, denoted by z , is given by z r
=
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 65
 Phasor: The representation of a wave by a rotating arm in an Argand plane, called a phasor plane
 Polar form: A complex number in the form ( ) ( )
cos sin cis
z r r j r r
θ θ θ θ
= ∠ = + =
o Also called the modulus-argument or trigonometric form
o θ MAY be in radians or degrees!
o ( 180 ;180 ]
θ ∈ − ° °
 Powers of j: 2 3 4 1
1; ; 1; j
j j j j j
=
− =
− ==
−
 Principal argument: ( 180 ;180 ]
θ ∈ − ° °
o Calculators give the principal argument when converting from rectangular to polar coordinates
 Real part: If z x jy
= + , then Re( )
z x
=
 Rectangular form: A complex number in the form x jy
+ where ,
x y ∈ and 1
j= −
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 66
CALCULATIONS
 By hand:
Operation Rectangular Polar Exponential
1 2
,
z z ∈; n∈ 1 1 1
z x jy
= +
2 2 2
z x jy
= +
1 1 1
z r θ
= ∠
2 2 2
z r θ
= ∠
θ in either radians or degrees
1
1 1
j
z re θ
=
2
2 2
j
z r e θ
=
θ in radians
Conjugate 1 1 1
z x jy z x jy
= + ⇔ = − 1 1 1 1 1 1
( )
z r z r
θ θ
= ∠ ⇔ = ∠ − 1 1
1 1 1 1
j j
z re z re
θ θ
−
= ⇔ =
Addition/subtraction 1 2 1 2 1 2
( ) ( )
z z x x j y y
± = ± + ± Covert to rectangular Covert to rectangular
Multiplication 1 2 1 1 2 2
( )( )
z z x jy x jy
=+ + ( )
1 2 1 2 1 2
z z rr θ θ
= ∠ + ( )
1 2
1 2 1 2
j
z z rr e
θ θ
+
=
Division 1 1 1 2 2
2 2 2 2 2
z x jy x jy
z x jy x jy
+ −
+ −
= × ( )
1 1
2 2 1 2
z r
z r θ θ
= ∠ − ( )
1 2
1 1
2 2
j
z r
z r e θ θ
−
=
Powers 1 1 1
( ) ( )
n n
z x jy
= + or convert to polar ( ) ( ) ( )
1 1 1
n n
z r nθ
= ∠ ( ) ( ) ( )
1
1 1
n n j n
z r e
θ
=
Roots Convert to polar ( ) ( ) ( )
( ) ( )
1
1
1/ 1/ 360
1 1 1
1/ 2
1
n n k
n
n
n k
n
z z r
r
θ
θ π
+ °
+
= = ∠
= ∠
( ) ( ) ( )
1
1/ 1/ 2 /
1 1
n n j k n
z r e θ π
+
=
Logs Convert to exponential Convert to exponential ( ) ( )
1 1 1
ln ln
z r jθ
= +
 Practice using your calculator!
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 67
APPLICATIONS
 Electrical
o Reactance – effective resistance of a part in a circuit
o Impedance – total effective resistance to the flow of a current
o For a circuit with a resistor with resistance R, a capacitor with reactance XC and an inductor with reactance XL the impedance is
( )
L C
Z R j X X
=
+ +
 Magnitude: 2 2
( )
L C
z R X X
= + −
 Phase angle: ( )
1
tan L C
X X
R
θ −
−
=
SUPPLEMENTARY EXERCISE 4 (JJ Verlinde)
1. Simplify the complex numbers below. Do the operations in the rectangular form and leave your answer in the simplest rectangular form.
1.1 35
j 1.2 41
j 1.3 74
j 1.4 (2 )(3 4)
j j
− +
1.5 (1 3)(1 3)
j j
− + 1.6 ( 2)( 2)
j j
+ − (j+2) 1.7
3
2
1
−
−
j
j
1.8
j
+
−1
2
1.9
j
j
−
1
2
2. Convert the following complex numbers to the polar form, with the argument in radians, accurately to 2 decimal places where necessary.
2.1 1 j
+ 2.2 3 j
− 2.3 2 2
j
− + 2.4 4 3
j
− −
2.5 5
j
− 2.6 8
−
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 68
3. Convert the following complex numbers to the rectangular form:
3.1
3
3
4
π
3.2 2 π 3.3 2120
3.4 2 240
− 
3.5 4 0 3.6 5
2
π
−
4. Simplify the following complex numbers. Do not convert to another form. Leave your answers in the simplest polar form.
4.1
4
2 3
4 3
4
2
π π
π
 
 
 
 
    4.2
6
2
8
π
−
 
 
 
4.3
( )( )
4 30
2150 3 60

 
5. Simplify the following complex numbers by using De Moivre’s theorem. Leave your answer in the polar form with the angles in radians.
5.1 4
)
1
(
4
j
−
5.2 2 2
j
− + 5.3 4
2
( 1 )
j
j
− +
5.4 8
)
1
( j
−
6. Use De Moivre’s theorem to solve for z and leave your answer in the polar form with the angles in radians.
6.1 2
4
z j
= 6.2 8
3
−
=
z 6.3 3
2 2
z j
= − 6.4 3
1
2
j
z +
−
=
6.5 16
4
−
=
z
7. Write the following complex numbers in the simplest rectangular (Cartesian) form, accurately to 3 decimal places.
7.1 2
3 π
j
e −
7.2 2
ln3 j
e
π
−
7.3 3
2
j
e
π
8. Write the following complex numbers in the exponential form.
8.1 1 j
+ 8.2 3 j
− 8.3 2 2
j
− + 8.4 4 3
j
− −
8.5 5
j
− 8.6 8
−
9. Solve for x and y, both real, if:
9.1 )
3
5
(
)
3
2
(
2 j
y
j
xj
j +
−
−
= 9.2 )
2
3
)(
2
(
)
1
( j
j
x
y
j
xj −
+
=
+
−
Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 69
ANSWERS 4
If your answers are different from those given here, first do some further calculations – your answers may still be the same! If they are not,
please discuss it with your lecturer.
1.1 -j 1.2 j 1.3 -1 1.4 10 5
j
+ 1.5 4
1.6 10 5
j
− − 1.7
1 1
2 2
j
− + 1.8 1 j
− − 1.9 1 j
− +
2.1 2 1.410.79
4
π
≈ 2.2 2 2 0.52
6
π
− ≈ − 2.3
3
8 2.83 2.36
4
π
≈ 2.4 5 3.79 5 2.50
= − 2.5 5 5 1.57
2
π
− ≈ −
2.6 8 8 3.14
π ≈ 3.1
3 3
2 2
j
− + 3.2 -2 3.3 1 3
j
− + 3.4 1 3
j
− +
3.5 4 3.6 5
j 4.1
5
12
6
π
4.2
1 3
8 4
π
− 4.3
2
180
3
− 
5.1 π 5.2 4 3
8
8
π
5.3
1
2 2
π
− 5.4 16 0
6.1 2
4
z
π
= or
5
2
4
z
π
= 6.2 2
3
z
π
= or 2
z π
= or
5
2
3
z
π
=
6.3 6
8
12
z
π
= − or 6 7
8
12
z
π
= or 6 5
8
4
z
π
= 6.4 2
3
z
π
= or
4
2
3
z
π
=
6.5 2
4
z
π
= or
3
2
4
z
π
= or
5
2
4
z
π
= or
7
2
4
z
π
= 7.1 3
je
− 7.2 3
j
− 7.3 1 3
j
+
8.1 4
2
j
e
π
8.2 6
2
j
e
π
−
8.3
3
4
8
j
e
π
8.4 2.50
5 j
e−
8.5 2
5
j
e
π
−
8.6 8 j
e π
9.1 ( ; ) (10;6)
x y = 9.2 ( ; ) (1;9)
x y =

More Related Content

PPTX
Last+minute+revision(+Final)+(1) (1).pptx
PPTX
Matlab complex numbers
PDF
1. introduction to complex numbers
PDF
Complex Numbers
PDF
complex numbers and functions.PDF
PDF
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
PPT
Application of Cylindrical and Spherical coordinate system in double-triple i...
PDF
Quadric surfaces
Last+minute+revision(+Final)+(1) (1).pptx
Matlab complex numbers
1. introduction to complex numbers
Complex Numbers
complex numbers and functions.PDF
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Application of Cylindrical and Spherical coordinate system in double-triple i...
Quadric surfaces

Similar to Theme 4 Notes Complex Numbers (1).pdf (20)

PDF
Pure Mathematics Unit 2 - Textbook
PPT
Modeling Transformations
PDF
Maths-MS_Term2 (1).pdf
PDF
Complex%20numbers
PPTX
Advance Engineering Mathematics Complex Numbers a.pptx
PDF
ME Reference.pdf
PPT
Complex Numbers And Appsfeb
PDF
maths_formula_sheet.pdf
PDF
Cbse Class 12 Maths Sample Paper 2013 Model 3
PDF
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
PDF
Aieee 2012 Solved Paper by Prabhat Gaurav
PPTX
Complex numbers 1
PPT
Shape drawing algs
PDF
05 De-Moivre's Theorem.pdf undergrade presentation
PDF
Ali hassan Kashif Saleem fa24_rph_019.pdf
PDF
Ali hassan Kashif Saleem fa24_rph_019.pdf
PDF
Ali hassan Kashif Saleem fa24_rph_019.pdf
PPT
Mathematics
PDF
Integration techniques
PDF
Math20001 dec 2015
Pure Mathematics Unit 2 - Textbook
Modeling Transformations
Maths-MS_Term2 (1).pdf
Complex%20numbers
Advance Engineering Mathematics Complex Numbers a.pptx
ME Reference.pdf
Complex Numbers And Appsfeb
maths_formula_sheet.pdf
Cbse Class 12 Maths Sample Paper 2013 Model 3
INTRODUCTION TO CIRCUIT THEORY (A PRACTICAL APPROACH)
Aieee 2012 Solved Paper by Prabhat Gaurav
Complex numbers 1
Shape drawing algs
05 De-Moivre's Theorem.pdf undergrade presentation
Ali hassan Kashif Saleem fa24_rph_019.pdf
Ali hassan Kashif Saleem fa24_rph_019.pdf
Ali hassan Kashif Saleem fa24_rph_019.pdf
Mathematics
Integration techniques
Math20001 dec 2015
Ad

Recently uploaded (20)

PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
Empowerment Technology for Senior High School Guide
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Trump Administration's workforce development strategy
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
advance database management system book.pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Empowerment Technology for Senior High School Guide
Paper A Mock Exam 9_ Attempt review.pdf.
Trump Administration's workforce development strategy
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Chinmaya Tiranga quiz Grand Finale.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Environmental Education MCQ BD2EE - Share Source.pdf
Weekly quiz Compilation Jan -July 25.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
advance database management system book.pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Hazard Identification & Risk Assessment .pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
Ad

Theme 4 Notes Complex Numbers (1).pdf

  • 1. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 63 COMPLEX NUMBERS Summary of the theory Washngton pp 334 - 361 THEORY  Argand diagram: A representation of a complex number in a complex plane o The horizontal axis represents the real part of the complex numbers, while the vertical axis represents the imaginary part of the complex number o When we multiply a complex number by 1 j= − , its representation in an Argand diagram rotates anti-clock wise through 900 o A complex number and its conjugate is symmetrical about the real axis o A complex number is often represented by a directed line segment (an arrow), similar to a vector  Argument/amplitude/phase angle: If z r θ = ∠ , then the argument, denoted by arg( ) z , is given by arg( ) z θ =  Cartesian form: Rectangular form  Complex conjugate o Rectangular form: If z x jy = + , then the complex conjugate of z, denoted by z , is given by z x jy = − o Polar form: If (cos sin ) z r r j θ θ θ = ∠ = + , then ( ) (cos sin ) z r r j θ θ θ = ∠ − = −
  • 2. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 64 o Exponential form: If j z re θ = , then j z re θ − =  Complex number: Any number z x jy = + where , x y ∈ and 1 j= − o Pure real numbers and pure imaginary numbers are sub sets of the set of complex numbers  Complex plane: The x-y plane where the x-axis represents the real numbers and the y-axis represents the imaginary numbers  Conversions: ( ) 2 2 1 cos ; sin ; ; tan y x x r y r r x y θ θ θ − = = = + =  De Moivre's theorems: If 1 1 1 z r θ = ∠ and 2 2 2 z r θ = ∠ , then o 1 2 1 2 1 2 ( ) z z rr θ θ = ∠ + o 1 1 2 2 1 2 ( ) z r z r θ θ = ∠ − o 1 1 1 ( ) ( ) n n z r nθ = ∠ o ( ) ( ) 1 1 360 2 1 1 1 , 0,1,2, ,( 1) k k n n n n n z r r k n θ θ π + ° + = ∠ = ∠ = −   Equality: Two complex numbers 1 z a jb = + and are equal if and only if a c = and b d =  Euler's formula: cos sin j e j θ θ θ ± = ±  Exponential form: A complex number in the form j z re θ = o θ MUST be in radians! o De Moivre: 1/ 1/ ( 2 )/ n n j k n z r e θ π + = o Logs: ln( ) ln( ) ln j z re r j θ θ = = +  Fact: Remember, , a b ab a b = ∀ ∈ but if , a b ab a b ≠ ∈  Imaginary number: Any number aj where a∈ and 1 j= −  Imaginary part: If z x jy = + , then Im( ) z y =  Imaginary unit: 1 i j = = −  Modulus/magnitude/absolute value: If z r θ = ∠ , then the modulus, denoted by z , is given by z r =
  • 3. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 65  Phasor: The representation of a wave by a rotating arm in an Argand plane, called a phasor plane  Polar form: A complex number in the form ( ) ( ) cos sin cis z r r j r r θ θ θ θ = ∠ = + = o Also called the modulus-argument or trigonometric form o θ MAY be in radians or degrees! o ( 180 ;180 ] θ ∈ − ° °  Powers of j: 2 3 4 1 1; ; 1; j j j j j j = − = − == −  Principal argument: ( 180 ;180 ] θ ∈ − ° ° o Calculators give the principal argument when converting from rectangular to polar coordinates  Real part: If z x jy = + , then Re( ) z x =  Rectangular form: A complex number in the form x jy + where , x y ∈ and 1 j= −
  • 4. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 66 CALCULATIONS  By hand: Operation Rectangular Polar Exponential 1 2 , z z ∈; n∈ 1 1 1 z x jy = + 2 2 2 z x jy = + 1 1 1 z r θ = ∠ 2 2 2 z r θ = ∠ θ in either radians or degrees 1 1 1 j z re θ = 2 2 2 j z r e θ = θ in radians Conjugate 1 1 1 z x jy z x jy = + ⇔ = − 1 1 1 1 1 1 ( ) z r z r θ θ = ∠ ⇔ = ∠ − 1 1 1 1 1 1 j j z re z re θ θ − = ⇔ = Addition/subtraction 1 2 1 2 1 2 ( ) ( ) z z x x j y y ± = ± + ± Covert to rectangular Covert to rectangular Multiplication 1 2 1 1 2 2 ( )( ) z z x jy x jy =+ + ( ) 1 2 1 2 1 2 z z rr θ θ = ∠ + ( ) 1 2 1 2 1 2 j z z rr e θ θ + = Division 1 1 1 2 2 2 2 2 2 2 z x jy x jy z x jy x jy + − + − = × ( ) 1 1 2 2 1 2 z r z r θ θ = ∠ − ( ) 1 2 1 1 2 2 j z r z r e θ θ − = Powers 1 1 1 ( ) ( ) n n z x jy = + or convert to polar ( ) ( ) ( ) 1 1 1 n n z r nθ = ∠ ( ) ( ) ( ) 1 1 1 n n j n z r e θ = Roots Convert to polar ( ) ( ) ( ) ( ) ( ) 1 1 1/ 1/ 360 1 1 1 1/ 2 1 n n k n n n k n z z r r θ θ π + ° + = = ∠ = ∠ ( ) ( ) ( ) 1 1/ 1/ 2 / 1 1 n n j k n z r e θ π + = Logs Convert to exponential Convert to exponential ( ) ( ) 1 1 1 ln ln z r jθ = +  Practice using your calculator!
  • 5. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 67 APPLICATIONS  Electrical o Reactance – effective resistance of a part in a circuit o Impedance – total effective resistance to the flow of a current o For a circuit with a resistor with resistance R, a capacitor with reactance XC and an inductor with reactance XL the impedance is ( ) L C Z R j X X = + +  Magnitude: 2 2 ( ) L C z R X X = + −  Phase angle: ( ) 1 tan L C X X R θ − − = SUPPLEMENTARY EXERCISE 4 (JJ Verlinde) 1. Simplify the complex numbers below. Do the operations in the rectangular form and leave your answer in the simplest rectangular form. 1.1 35 j 1.2 41 j 1.3 74 j 1.4 (2 )(3 4) j j − + 1.5 (1 3)(1 3) j j − + 1.6 ( 2)( 2) j j + − (j+2) 1.7 3 2 1 − − j j 1.8 j + −1 2 1.9 j j − 1 2 2. Convert the following complex numbers to the polar form, with the argument in radians, accurately to 2 decimal places where necessary. 2.1 1 j + 2.2 3 j − 2.3 2 2 j − + 2.4 4 3 j − − 2.5 5 j − 2.6 8 −
  • 6. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 68 3. Convert the following complex numbers to the rectangular form: 3.1 3 3 4 π 3.2 2 π 3.3 2120 3.4 2 240 −  3.5 4 0 3.6 5 2 π − 4. Simplify the following complex numbers. Do not convert to another form. Leave your answers in the simplest polar form. 4.1 4 2 3 4 3 4 2 π π π             4.2 6 2 8 π −       4.3 ( )( ) 4 30 2150 3 60    5. Simplify the following complex numbers by using De Moivre’s theorem. Leave your answer in the polar form with the angles in radians. 5.1 4 ) 1 ( 4 j − 5.2 2 2 j − + 5.3 4 2 ( 1 ) j j − + 5.4 8 ) 1 ( j − 6. Use De Moivre’s theorem to solve for z and leave your answer in the polar form with the angles in radians. 6.1 2 4 z j = 6.2 8 3 − = z 6.3 3 2 2 z j = − 6.4 3 1 2 j z + − = 6.5 16 4 − = z 7. Write the following complex numbers in the simplest rectangular (Cartesian) form, accurately to 3 decimal places. 7.1 2 3 π j e − 7.2 2 ln3 j e π − 7.3 3 2 j e π 8. Write the following complex numbers in the exponential form. 8.1 1 j + 8.2 3 j − 8.3 2 2 j − + 8.4 4 3 j − − 8.5 5 j − 8.6 8 − 9. Solve for x and y, both real, if: 9.1 ) 3 5 ( ) 3 2 ( 2 j y j xj j + − − = 9.2 ) 2 3 )( 2 ( ) 1 ( j j x y j xj − + = + −
  • 7. Complex numbers © Tshwane University of Technology: EL Voges 19/02/25 Page 69 ANSWERS 4 If your answers are different from those given here, first do some further calculations – your answers may still be the same! If they are not, please discuss it with your lecturer. 1.1 -j 1.2 j 1.3 -1 1.4 10 5 j + 1.5 4 1.6 10 5 j − − 1.7 1 1 2 2 j − + 1.8 1 j − − 1.9 1 j − + 2.1 2 1.410.79 4 π ≈ 2.2 2 2 0.52 6 π − ≈ − 2.3 3 8 2.83 2.36 4 π ≈ 2.4 5 3.79 5 2.50 = − 2.5 5 5 1.57 2 π − ≈ − 2.6 8 8 3.14 π ≈ 3.1 3 3 2 2 j − + 3.2 -2 3.3 1 3 j − + 3.4 1 3 j − + 3.5 4 3.6 5 j 4.1 5 12 6 π 4.2 1 3 8 4 π − 4.3 2 180 3 −  5.1 π 5.2 4 3 8 8 π 5.3 1 2 2 π − 5.4 16 0 6.1 2 4 z π = or 5 2 4 z π = 6.2 2 3 z π = or 2 z π = or 5 2 3 z π = 6.3 6 8 12 z π = − or 6 7 8 12 z π = or 6 5 8 4 z π = 6.4 2 3 z π = or 4 2 3 z π = 6.5 2 4 z π = or 3 2 4 z π = or 5 2 4 z π = or 7 2 4 z π = 7.1 3 je − 7.2 3 j − 7.3 1 3 j + 8.1 4 2 j e π 8.2 6 2 j e π − 8.3 3 4 8 j e π 8.4 2.50 5 j e− 8.5 2 5 j e π − 8.6 8 j e π 9.1 ( ; ) (10;6) x y = 9.2 ( ; ) (1;9) x y =