Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Timo Honkela
Modeling Meaning and Knowledge
25 Apr 2016
timo.honkela@helsinki.fi
An introduction to
text mining
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Data mining
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Data mining tasks
(Hand, Mannila & Smyth 2001)
● Exploratory data analysis
● Descriptive modeling
● Prescriptive modeling:
classification and regression
● Discovering patterns and rules
● Retrieval by content
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Text mining
http://www.intechopen.com/books/theory-and-applications-for-advanced-text-mining
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Text mining
● Finding structures and relations at
different levels of abstraction
● Study of distributions, trends and correlations
● Text classification and clustering
● Entity extraction
● Authorship analysis
● Sentiment analysis
● etc. etc.
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Application areas of text mining
● Digital humanities
– Sociology
– History
– Literature
– Law
● Knowledge management
● Customer relationship management (CRM)
● Competence management
– Archeology
– Linguistics
– Religion
– Philosophy
● Remember also
– Medicine
– Psychology
– Geology
– etc.
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
Examples using the SOM
● Art museum visitors
Pockets full of memories: an interactive museum installation
G Legrady, T Honkela
Visual Communication 1 (2), 163-169
● Poetry
In search for volta: Statistical analysis of word patterns in Shakespeare's sonnets
O Kohonen, S Katajamäki, T Honkela.
Proceedings of AMKLC'05, International Symposium on Adaptive Models of Knowledge, Language and Cognition, pages 44–47,
Finland
● Religious cognition
Counterintuitiveness as the hallmark of religiosity
I Pyysiäinen, M Lindeman, T Honkela
Religion 33 (4), 341-355
● Competence
Document maps for competence management
T Honkela, R Nordfors, R Tuuli
Proceedings of the Symposium on Professional Practice in AI, 31-39
Dimensionality reduction
Visualization
Abstraction
Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016
New projects
● Digital Mindscapes: Mining social media
(Jussi Pakkasvirta, Krista Lagus, Mika Pantzar, Minna Ruckenstein, etc.)
http://www.aka.fi/globalassets/32akatemiaohjelmat/digihum/citizen-mindscapes-digihum-starts_3-vain-luku.pdf
● Computational History 1640–1910:
Mining newspapers
(Mikko Tolonen, Kimmo Kettunen, Hannu Salmi, Tapio Salakoski, etc.)
http://www.aka.fi/globalassets/32akatemiaohjelmat/digihum/comhis-presentation-logomo-22-march-2016.pdf
In many cases
a supporting
infrastructure
is FIN-CLARIN

More Related Content

PPT
Osm presentation workshop 19 sept 2018
PDF
Text Mining the History of Medicine
PPTX
Beyond the PDF + linked data and other futuristic stuff
PPTX
Text mining, machine learning, NLP and all that (in 10 minutes)
PDF
Timo Honkela: Spaces of Knowledge
PDF
Timo Honkela: Research interests in text and metadata mining of literature
PDF
Timo Honkela: Modeling evolution and dynamical systems
PDF
Timo Honkela: Epistemological status of linguistic theories and models
Osm presentation workshop 19 sept 2018
Text Mining the History of Medicine
Beyond the PDF + linked data and other futuristic stuff
Text mining, machine learning, NLP and all that (in 10 minutes)
Timo Honkela: Spaces of Knowledge
Timo Honkela: Research interests in text and metadata mining of literature
Timo Honkela: Modeling evolution and dynamical systems
Timo Honkela: Epistemological status of linguistic theories and models

More from Timo Honkela (20)

PDF
Timo Honkela: Meaning negotiations as phenomenon and as languages technology...
PDF
Timo Honkela: Meaning negotiations as phenomenon and as languages technology ...
PDF
Timo Honkela: Peace Machine: Using Artificial Intelligence to Promote Peacefu...
PDF
Timo Honkela: From early to later Wittgenstein and Artificial Intelligence
PDF
Timo Honkela: Peace Machine: Peace from a difference perspective - Dialogue o...
PDF
Timo Honkela: Kielellisten merkisten tilastollinen ja psykologinen luonne: Ko...
PDF
Timo Honkela, kutsuttu esitelmä Automaatiopäivillä 2017
PDF
Timo Honkela: Turning quantity into quality and making concepts visible using...
PDF
Timo Honkela: Tietokone lukemassa yli 100 miljoonaa eri kirjaa: Kielitieteen ...
PDF
Timo Honkela: Introducing the book Encyclopedia of Artificial Intelligence (i...
PDF
Timo Honkela: Tekoälyn ja koneoppimisen uhat ja mahdollisuudet, Turku, 27.10....
PDF
Timo Honkela: Kohonen's Self-Organizing Maps for Intelligent Systems Developm...
PDF
Timo Honkela: Kylmä data kohtaa inhimillisen tulkinnan, Studia Generalia -esi...
PDF
Timo Honkela: Ihminen+ -esitelmä, Mikkeli, 22.9.2016
PDF
Timo Honkela: Kynä ja kone alustus menetelmistä, 15.9.2016
PDF
Honkela. Lagus & Kanner: Parallel Conceptual Spaces and Systems in Health and...
PDF
Timo Honkela: Miten tekoäly muuttaa oppimista ja työtä? Kalajoen lukio, 17.8....
PDF
Timo Honkela: Digitalisaatio tulevaisuudessa
PDF
Timo Honkela: Semantic and pragmatics representations of large text corpora
PDF
Timo Honkela: Analysis of Qualitative Data using Machine Learning Methods
Timo Honkela: Meaning negotiations as phenomenon and as languages technology...
Timo Honkela: Meaning negotiations as phenomenon and as languages technology ...
Timo Honkela: Peace Machine: Using Artificial Intelligence to Promote Peacefu...
Timo Honkela: From early to later Wittgenstein and Artificial Intelligence
Timo Honkela: Peace Machine: Peace from a difference perspective - Dialogue o...
Timo Honkela: Kielellisten merkisten tilastollinen ja psykologinen luonne: Ko...
Timo Honkela, kutsuttu esitelmä Automaatiopäivillä 2017
Timo Honkela: Turning quantity into quality and making concepts visible using...
Timo Honkela: Tietokone lukemassa yli 100 miljoonaa eri kirjaa: Kielitieteen ...
Timo Honkela: Introducing the book Encyclopedia of Artificial Intelligence (i...
Timo Honkela: Tekoälyn ja koneoppimisen uhat ja mahdollisuudet, Turku, 27.10....
Timo Honkela: Kohonen's Self-Organizing Maps for Intelligent Systems Developm...
Timo Honkela: Kylmä data kohtaa inhimillisen tulkinnan, Studia Generalia -esi...
Timo Honkela: Ihminen+ -esitelmä, Mikkeli, 22.9.2016
Timo Honkela: Kynä ja kone alustus menetelmistä, 15.9.2016
Honkela. Lagus & Kanner: Parallel Conceptual Spaces and Systems in Health and...
Timo Honkela: Miten tekoäly muuttaa oppimista ja työtä? Kalajoen lukio, 17.8....
Timo Honkela: Digitalisaatio tulevaisuudessa
Timo Honkela: Semantic and pragmatics representations of large text corpora
Timo Honkela: Analysis of Qualitative Data using Machine Learning Methods
Ad

Recently uploaded (20)

PDF
semiconductor packaging in vlsi design fab
PDF
Journal of Dental Science - UDMY (2021).pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
International_Financial_Reporting_Standa.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
advance database management system book.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
semiconductor packaging in vlsi design fab
Journal of Dental Science - UDMY (2021).pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
International_Financial_Reporting_Standa.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
advance database management system book.pdf
Introduction to pro and eukaryotes and differences.pptx
Complications of Minimal Access-Surgery.pdf
Hazard Identification & Risk Assessment .pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Race Reva University – Shaping Future Leaders in Artificial Intelligence
Ad

Timo Honkela: An introduction to text mining

  • 1. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Timo Honkela Modeling Meaning and Knowledge 25 Apr 2016 timo.honkela@helsinki.fi An introduction to text mining
  • 2. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Data mining
  • 3. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Data mining tasks (Hand, Mannila & Smyth 2001) ● Exploratory data analysis ● Descriptive modeling ● Prescriptive modeling: classification and regression ● Discovering patterns and rules ● Retrieval by content
  • 4. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Text mining http://www.intechopen.com/books/theory-and-applications-for-advanced-text-mining
  • 5. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Text mining ● Finding structures and relations at different levels of abstraction ● Study of distributions, trends and correlations ● Text classification and clustering ● Entity extraction ● Authorship analysis ● Sentiment analysis ● etc. etc.
  • 6. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Application areas of text mining ● Digital humanities – Sociology – History – Literature – Law ● Knowledge management ● Customer relationship management (CRM) ● Competence management – Archeology – Linguistics – Religion – Philosophy ● Remember also – Medicine – Psychology – Geology – etc.
  • 7. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 Examples using the SOM ● Art museum visitors Pockets full of memories: an interactive museum installation G Legrady, T Honkela Visual Communication 1 (2), 163-169 ● Poetry In search for volta: Statistical analysis of word patterns in Shakespeare's sonnets O Kohonen, S Katajamäki, T Honkela. Proceedings of AMKLC'05, International Symposium on Adaptive Models of Knowledge, Language and Cognition, pages 44–47, Finland ● Religious cognition Counterintuitiveness as the hallmark of religiosity I Pyysiäinen, M Lindeman, T Honkela Religion 33 (4), 341-355 ● Competence Document maps for competence management T Honkela, R Nordfors, R Tuuli Proceedings of the Symposium on Professional Practice in AI, 31-39 Dimensionality reduction Visualization Abstraction
  • 8. Timo Honkela, Modeling Meaning and Knowledge, 25.4.2016 New projects ● Digital Mindscapes: Mining social media (Jussi Pakkasvirta, Krista Lagus, Mika Pantzar, Minna Ruckenstein, etc.) http://www.aka.fi/globalassets/32akatemiaohjelmat/digihum/citizen-mindscapes-digihum-starts_3-vain-luku.pdf ● Computational History 1640–1910: Mining newspapers (Mikko Tolonen, Kimmo Kettunen, Hannu Salmi, Tapio Salakoski, etc.) http://www.aka.fi/globalassets/32akatemiaohjelmat/digihum/comhis-presentation-logomo-22-march-2016.pdf In many cases a supporting infrastructure is FIN-CLARIN