Subjects on Objects in Contexts:
Using GICA method to quantify
  epistemological subjectivity
    Timo Honkela1, Juha Raitio1, Krista Lagus1,
 Ilari T. Nieminen1, Nina Honkela2, Mika Pantzar3
                           1
                            Aalto University
                    (former Helsinki University of Technology)
Department of Information and Computer Science
 (former Neural Networks Research Center, Adaptive Informatics Research Center)
                     2
                       University of Helsinki
        3
         National Consumer Research Center
                                  Finland
Subjects on Objects in Contexts:
Using GICA method to quantify
  epistemological subjectivity

Timo Honkela    Juha Raitio   Krista Lagus




Ilari T. Nieminen Nina Honkela Mika Pantzar
Traditional representation of meaning:
Generalized (non-contextual, non-subjective)




   Gaines: “Designing Visual Languages for Description Logics”
        http://pages.cpsc.ucalgary.ca/~gaines/reports/KBS/VLL/
Meaning is contextual


     red wine
     red skin
     red shirt


Gärdenfors: Conceptual Spaces
Hardin Color for Philosophers
Meaning is contextual


WHITE




SNOW -
WHITE?
Meaning is contextual
●   “Small”, “big”
●   “White house”
●   “Get”
●   “Every” - “Every Swede is tall/blond”
●   etc. etc.
Learning meaning from context
●   Self-Organizing Semantic Maps
    (Ritter & Kohonen 1989)
●   Latent Semantic Analysis
●   Latent Dirichlet Allocation
●   WordICA
●   etc. etc.



                 Honkela, Pulkki & Kohonen 1995
Learning meaning from context:
Maps of words in Grimm fairy tales




       Honkela, Pulkki & Kohonen 1995
Meaning is subjective
Meaning is subjective
●   Good
●   Fair
●   Useful
                       A proper theory of
●   Scientific         meaning has to take
●   Democratic         this into account.
●   Sustainable        (opposite to the view
                        given by V. Cherkassky
●   etc.                about an hour ago)
Modeling variation of
   meaning in a community of agents
Honkela: ICANN 1993

Steels, Kaplan, Vogt, et al.:
Language games




                                (Lindh-Knuutila, Lagus & Honkela, SAB'06)
                                Related to e.g. Steels and Vogt on language games
Intersubjective Concept Spaces

concept       symbol                   concept         symbol
                           (shared)
 space         space                    space           space
                            context
  C1             S1                      C2               S2



                        observations




                           signal
          Sender              d        Receiver    (Honkela, Könönen,
          (agent 1)                    (agent 2)   Lindh-Knuutila &
                                                   Paukkeri 2008)
Intersubjective Concept Spaces
                          (Honkela, Könönen, Lindh-Knuutila & Paukkeri 2008)



Ci: N­dimensional             ξ: si ∈ Si → C
metric concept                An individual 
space                         mapping function 
                              from symbols to 
                              concepts                            Observing f1 and after symbol 
S: symbol space,
                                                                  selection process, agent 1 
The vocabulary of an
                              φi: Si → D                          communicates a symbol s*
agent that consists of 
                              An individual                       to agent 2 as signal d.  When agent 
discrete symbols
                              mapping from agent                  2 observes d, it maps it  to some 
                              i's vocabulary to the               s2 ∈ S2  by using the function φ ­11.  
λ : Ci × Cj → R, i ≠ j        signal space D and                   Then it maps the symbol to some 
A distance between            an inverse mapping                  point in its concept space by using 
two points in the             φ­1 i from the signal               ξ2.  If this point is close to its 
concept spaces of             space to the symbol                 observation f2 in the sense of λ, 
different agents              space                               the communication process has 
                                                                  succeeded.
Gary B. Fogel
11th of June, 2012
   WCCI 2012
GICA:
        Grounded
     Intersubjective
        Concept
         Analysis

Description of the method
Subjectifying: adding subjective
views into object-context matrices




Outcome: Subject-Object-Context (SOC) Tensors
More on subjectification
●   A central question in GICA is how to obtain the
    data on subjectivity for expanding an object-
    context matrix into the tensor that accounts
    additionally for subjectivity.
●   The basic idea is that for each element in the
    object-context matrix one needs several
    subjective evaluations.
●   Specifically, the GICA data collection measures
    for each subject si the relevance xijk of
    an object oj in a context ck
Potential sources for subjectification
●   Conceptual surveys:
    ●   individual assessment of contextual
        appropriateness
●   Text mining:
    ●   statistics of word/phrase-context patterns
●   Empirical psychology:
    ●   reaction times, etc.
●   Brain research
Flattening: unfolding 3-way tensor
   for traditional 2-way analysis
GICA:
   Grounded
Intersubjective
   Concept
    Analysis

Examples of use
Case 1: Wellbeing concepts

●   A conceptual survey was conducted among the
    participants of the EIT ICT Labs activity “Wellbeing
    Innovation Camp” that took place between 26th and
    29th of October 2010 in Vierumäki, Finland.
●   The participants were asked to fill in a data matrix
    that consisted of the objects as rows and the
    contexts as columns.
●   Each individual’s task was to determine how
    strongly an object is associated with a context, using
    Likert scale from 1 to 5
Data collection
                     CONTEXTS:
OBJECTS:

Relaxation
Happiness
Fitness
Wellbeing


SUBJECTS:

Event participants
MDS: Objects x Subjects
                      Fitness
NeRV: Objects x Subjects


                                                                                    Fitness




NeRV:
J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information Retrieval Perspective to Nonlinear
Dimensionality Reduction for Data Visualization. Journal of Machine Learning Research, 11:451-490, 2010.
SOM: Objects x Subjects
SOM: Distribution of contexts
SOM: Contexts
Case 2: State of the Union
                 Addresses
●   In this case, text mining is used for populating
    the Subject-Object-Context tensor
●   This took place by calculating the frequencies
    on how often a subject uses an object word in
    the context of a context word
    ●   Context window of 30 words
SOM: Subjects (presidents)
SOM: Objects x Subjects
Analysis of the word 'health'
Related research and
    future plans
Our related research on subjectivity:
User-specific difficulty assessment




                           Paukkeri, Ollikainen &
                           Honkela, Information
                           Processing & Management,
                           2012
Interoperability
●   Current situation:

    Formalization and harmonization of knowledge
    representations (e.g. using XML)

●   Future possibility:

    Meaning negotiation between systems
    based on SOC tensors and further
    developments
                          Context data is important!
Enhanced communication, democratic and
        participatory processes
Collaboration opportunities
●   Theoretical work
    ●   Interdisciplinary: brain research, psychology,
        sociology, organization research, etc.
    ●   Methodological
        –   Formulation in different theoretical frameworks
        –   Analogical development with crisp>fuzzy:
            “objective”>subjective
●   Experimental
    ●   Case studies
●   Research visits, tutorials, workshops
●   GICA workshop/summer school in 2013 in Finland

More Related Content

PDF
Timo Honkela: Multimodally Grounded Translation by Humans and Machines
PDF
Timo Honkela: From Patterns of Movement to Subjectivity of Understanding
PDF
Lecture1 - Machine Learning
PDF
PPT
Introduction to soft computing
PDF
PPTX
Virtual worlds and Memory
PDF
T4 Introduction to the modelling and verification of, and reasoning about mul...
Timo Honkela: Multimodally Grounded Translation by Humans and Machines
Timo Honkela: From Patterns of Movement to Subjectivity of Understanding
Lecture1 - Machine Learning
Introduction to soft computing
Virtual worlds and Memory
T4 Introduction to the modelling and verification of, and reasoning about mul...

What's hot (7)

KEY
1 three partitioned-model_unifi_cnr
PDF
Ai lecture 14(unit03)
PDF
Word Sense Disambiguation and Induction
PDF
Language and Vision (D2L11 Insight@DCU Machine Learning Workshop 2017)
PPT
Artificial intelligence and knowledge representation
PDF
Pde psych education_cogpersp_p_conway_ucc
PPT
Artificial intelligence and knowledge representation
1 three partitioned-model_unifi_cnr
Ai lecture 14(unit03)
Word Sense Disambiguation and Induction
Language and Vision (D2L11 Insight@DCU Machine Learning Workshop 2017)
Artificial intelligence and knowledge representation
Pde psych education_cogpersp_p_conway_ucc
Artificial intelligence and knowledge representation
Ad

Similar to Timo Honkela: Subjects on objects in contexts: Using GICA method to quantify epistemological subjectivity (20)

PDF
Timo Honkela: Spaces of Knowledge
PDF
Constructing Epistemic Landscapes: Methods of GIS-Based Mapping
PDF
Timo Honkela: Relevance and meaning: Interplay between objective and subjective
PDF
Digital Face project presentation
PDF
Disentangled Representation Learning in Speech and Vocalization
PPTX
A general understanding of information ws2012-13
PDF
Ph d course on formal ontology and conceptual modeling
PDF
ConNeKTion: A Tool for Exploiting Conceptual Graphs Automatically Learned fro...
PDF
Building intelligent systems (that can explain)
PDF
Ex nihilo nihil fit: A COMMONSENSE REASONING FRAMEWORK FOR DYNAMIC KNOWLEDGE...
PPTX
A Consensus-Building Support System based on Ontology Exploration
PDF
Models 2021
PDF
Information among networks and systems of knowledge
PDF
Engineering active learning: LEGO robots & 3D virtual worlds
PDF
The Intelligence Corpus, an Annotated Corpus of Definitions of Intelligence: ...
PPT
PHPnw (England) User Group - Concepts, Spaces and Thresholds and why they matter
PDF
Seminar CCC
PPTX
Frontiers of Computational Journalism week 1 - Introduction and High Dimensio...
ODP
How to Ground A Language for Legal Discourse In a Prototypical Perceptual Sem...
PPTX
Augmented reality sandbox
Timo Honkela: Spaces of Knowledge
Constructing Epistemic Landscapes: Methods of GIS-Based Mapping
Timo Honkela: Relevance and meaning: Interplay between objective and subjective
Digital Face project presentation
Disentangled Representation Learning in Speech and Vocalization
A general understanding of information ws2012-13
Ph d course on formal ontology and conceptual modeling
ConNeKTion: A Tool for Exploiting Conceptual Graphs Automatically Learned fro...
Building intelligent systems (that can explain)
Ex nihilo nihil fit: A COMMONSENSE REASONING FRAMEWORK FOR DYNAMIC KNOWLEDGE...
A Consensus-Building Support System based on Ontology Exploration
Models 2021
Information among networks and systems of knowledge
Engineering active learning: LEGO robots & 3D virtual worlds
The Intelligence Corpus, an Annotated Corpus of Definitions of Intelligence: ...
PHPnw (England) User Group - Concepts, Spaces and Thresholds and why they matter
Seminar CCC
Frontiers of Computational Journalism week 1 - Introduction and High Dimensio...
How to Ground A Language for Legal Discourse In a Prototypical Perceptual Sem...
Augmented reality sandbox
Ad

More from Timo Honkela (20)

PDF
Timo Honkela: Meaning negotiations as phenomenon and as languages technology...
PDF
Timo Honkela: Meaning negotiations as phenomenon and as languages technology ...
PDF
Timo Honkela: Peace Machine: Using Artificial Intelligence to Promote Peacefu...
PDF
Timo Honkela: From early to later Wittgenstein and Artificial Intelligence
PDF
Timo Honkela: Peace Machine: Peace from a difference perspective - Dialogue o...
PDF
Timo Honkela: Kielellisten merkisten tilastollinen ja psykologinen luonne: Ko...
PDF
Timo Honkela, kutsuttu esitelmä Automaatiopäivillä 2017
PDF
Timo Honkela: Turning quantity into quality and making concepts visible using...
PDF
Timo Honkela: Tietokone lukemassa yli 100 miljoonaa eri kirjaa: Kielitieteen ...
PDF
Timo Honkela: Introducing the book Encyclopedia of Artificial Intelligence (i...
PDF
Timo Honkela: Tekoälyn ja koneoppimisen uhat ja mahdollisuudet, Turku, 27.10....
PDF
Timo Honkela: Kohonen's Self-Organizing Maps for Intelligent Systems Developm...
PDF
Timo Honkela: Kylmä data kohtaa inhimillisen tulkinnan, Studia Generalia -esi...
PDF
Timo Honkela: Ihminen+ -esitelmä, Mikkeli, 22.9.2016
PDF
Timo Honkela: Kynä ja kone alustus menetelmistä, 15.9.2016
PDF
Honkela. Lagus & Kanner: Parallel Conceptual Spaces and Systems in Health and...
PDF
Timo Honkela: Miten tekoäly muuttaa oppimista ja työtä? Kalajoen lukio, 17.8....
PDF
Timo Honkela: Digitalisaatio tulevaisuudessa
PDF
Timo Honkela: Semantic and pragmatics representations of large text corpora
PDF
Timo Honkela: Analysis of Qualitative Data using Machine Learning Methods
Timo Honkela: Meaning negotiations as phenomenon and as languages technology...
Timo Honkela: Meaning negotiations as phenomenon and as languages technology ...
Timo Honkela: Peace Machine: Using Artificial Intelligence to Promote Peacefu...
Timo Honkela: From early to later Wittgenstein and Artificial Intelligence
Timo Honkela: Peace Machine: Peace from a difference perspective - Dialogue o...
Timo Honkela: Kielellisten merkisten tilastollinen ja psykologinen luonne: Ko...
Timo Honkela, kutsuttu esitelmä Automaatiopäivillä 2017
Timo Honkela: Turning quantity into quality and making concepts visible using...
Timo Honkela: Tietokone lukemassa yli 100 miljoonaa eri kirjaa: Kielitieteen ...
Timo Honkela: Introducing the book Encyclopedia of Artificial Intelligence (i...
Timo Honkela: Tekoälyn ja koneoppimisen uhat ja mahdollisuudet, Turku, 27.10....
Timo Honkela: Kohonen's Self-Organizing Maps for Intelligent Systems Developm...
Timo Honkela: Kylmä data kohtaa inhimillisen tulkinnan, Studia Generalia -esi...
Timo Honkela: Ihminen+ -esitelmä, Mikkeli, 22.9.2016
Timo Honkela: Kynä ja kone alustus menetelmistä, 15.9.2016
Honkela. Lagus & Kanner: Parallel Conceptual Spaces and Systems in Health and...
Timo Honkela: Miten tekoäly muuttaa oppimista ja työtä? Kalajoen lukio, 17.8....
Timo Honkela: Digitalisaatio tulevaisuudessa
Timo Honkela: Semantic and pragmatics representations of large text corpora
Timo Honkela: Analysis of Qualitative Data using Machine Learning Methods

Recently uploaded (20)

PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
Consumable AI The What, Why & How for Small Teams.pdf
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PPTX
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PPTX
Modernising the Digital Integration Hub
PPT
What is a Computer? Input Devices /output devices
PPT
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
PPTX
Configure Apache Mutual Authentication
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
CloudStack 4.21: First Look Webinar slides
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Convolutional neural network based encoder-decoder for efficient real-time ob...
PDF
Flame analysis and combustion estimation using large language and vision assi...
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
Credit Without Borders: AI and Financial Inclusion in Bangladesh
Comparative analysis of machine learning models for fake news detection in so...
Consumable AI The What, Why & How for Small Teams.pdf
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
AI IN MARKETING- PRESENTED BY ANWAR KABIR 1st June 2025.pptx
A proposed approach for plagiarism detection in Myanmar Unicode text
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
Modernising the Digital Integration Hub
What is a Computer? Input Devices /output devices
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
Configure Apache Mutual Authentication
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
UiPath Agentic Automation session 1: RPA to Agents
CloudStack 4.21: First Look Webinar slides
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
Chapter 5: Probability Theory and Statistics
Convolutional neural network based encoder-decoder for efficient real-time ob...
Flame analysis and combustion estimation using large language and vision assi...
A contest of sentiment analysis: k-nearest neighbor versus neural network
Final SEM Unit 1 for mit wpu at pune .pptx

Timo Honkela: Subjects on objects in contexts: Using GICA method to quantify epistemological subjectivity

  • 1. Subjects on Objects in Contexts: Using GICA method to quantify epistemological subjectivity Timo Honkela1, Juha Raitio1, Krista Lagus1, Ilari T. Nieminen1, Nina Honkela2, Mika Pantzar3 1 Aalto University (former Helsinki University of Technology) Department of Information and Computer Science (former Neural Networks Research Center, Adaptive Informatics Research Center) 2 University of Helsinki 3 National Consumer Research Center Finland
  • 2. Subjects on Objects in Contexts: Using GICA method to quantify epistemological subjectivity Timo Honkela Juha Raitio Krista Lagus Ilari T. Nieminen Nina Honkela Mika Pantzar
  • 3. Traditional representation of meaning: Generalized (non-contextual, non-subjective) Gaines: “Designing Visual Languages for Description Logics” http://pages.cpsc.ucalgary.ca/~gaines/reports/KBS/VLL/
  • 4. Meaning is contextual red wine red skin red shirt Gärdenfors: Conceptual Spaces Hardin Color for Philosophers
  • 6. Meaning is contextual ● “Small”, “big” ● “White house” ● “Get” ● “Every” - “Every Swede is tall/blond” ● etc. etc.
  • 7. Learning meaning from context ● Self-Organizing Semantic Maps (Ritter & Kohonen 1989) ● Latent Semantic Analysis ● Latent Dirichlet Allocation ● WordICA ● etc. etc. Honkela, Pulkki & Kohonen 1995
  • 8. Learning meaning from context: Maps of words in Grimm fairy tales Honkela, Pulkki & Kohonen 1995
  • 10. Meaning is subjective ● Good ● Fair ● Useful A proper theory of ● Scientific meaning has to take ● Democratic this into account. ● Sustainable (opposite to the view given by V. Cherkassky ● etc. about an hour ago)
  • 11. Modeling variation of meaning in a community of agents Honkela: ICANN 1993 Steels, Kaplan, Vogt, et al.: Language games (Lindh-Knuutila, Lagus & Honkela, SAB'06) Related to e.g. Steels and Vogt on language games
  • 12. Intersubjective Concept Spaces concept symbol concept symbol (shared) space space space space context C1 S1 C2 S2  observations signal Sender d Receiver (Honkela, Könönen, (agent 1) (agent 2) Lindh-Knuutila & Paukkeri 2008)
  • 13. Intersubjective Concept Spaces (Honkela, Könönen, Lindh-Knuutila & Paukkeri 2008) Ci: N­dimensional  ξ: si ∈ Si → C metric concept  An individual  space  mapping function  from symbols to  concepts Observing f1 and after symbol  S: symbol space, selection process, agent 1  The vocabulary of an φi: Si → D communicates a symbol s* agent that consists of  An individual  to agent 2 as signal d.  When agent  discrete symbols mapping from agent  2 observes d, it maps it  to some  i's vocabulary to the  s2 ∈ S2  by using the function φ ­11.   λ : Ci × Cj → R, i ≠ j signal space D and  Then it maps the symbol to some  A distance between  an inverse mapping point in its concept space by using  two points in the  φ­1 i from the signal  ξ2.  If this point is close to its  concept spaces of  space to the symbol  observation f2 in the sense of λ,  different agents space the communication process has  succeeded.
  • 14. Gary B. Fogel 11th of June, 2012 WCCI 2012
  • 15. GICA: Grounded Intersubjective Concept Analysis Description of the method
  • 16. Subjectifying: adding subjective views into object-context matrices Outcome: Subject-Object-Context (SOC) Tensors
  • 17. More on subjectification ● A central question in GICA is how to obtain the data on subjectivity for expanding an object- context matrix into the tensor that accounts additionally for subjectivity. ● The basic idea is that for each element in the object-context matrix one needs several subjective evaluations. ● Specifically, the GICA data collection measures for each subject si the relevance xijk of an object oj in a context ck
  • 18. Potential sources for subjectification ● Conceptual surveys: ● individual assessment of contextual appropriateness ● Text mining: ● statistics of word/phrase-context patterns ● Empirical psychology: ● reaction times, etc. ● Brain research
  • 19. Flattening: unfolding 3-way tensor for traditional 2-way analysis
  • 20. GICA: Grounded Intersubjective Concept Analysis Examples of use
  • 21. Case 1: Wellbeing concepts ● A conceptual survey was conducted among the participants of the EIT ICT Labs activity “Wellbeing Innovation Camp” that took place between 26th and 29th of October 2010 in Vierumäki, Finland. ● The participants were asked to fill in a data matrix that consisted of the objects as rows and the contexts as columns. ● Each individual’s task was to determine how strongly an object is associated with a context, using Likert scale from 1 to 5
  • 22. Data collection CONTEXTS: OBJECTS: Relaxation Happiness Fitness Wellbeing SUBJECTS: Event participants
  • 23. MDS: Objects x Subjects Fitness
  • 24. NeRV: Objects x Subjects Fitness NeRV: J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization. Journal of Machine Learning Research, 11:451-490, 2010.
  • 25. SOM: Objects x Subjects
  • 28. Case 2: State of the Union Addresses ● In this case, text mining is used for populating the Subject-Object-Context tensor ● This took place by calculating the frequencies on how often a subject uses an object word in the context of a context word ● Context window of 30 words
  • 30. SOM: Objects x Subjects
  • 31. Analysis of the word 'health'
  • 32. Related research and future plans
  • 33. Our related research on subjectivity: User-specific difficulty assessment Paukkeri, Ollikainen & Honkela, Information Processing & Management, 2012
  • 34. Interoperability ● Current situation: Formalization and harmonization of knowledge representations (e.g. using XML) ● Future possibility: Meaning negotiation between systems based on SOC tensors and further developments Context data is important!
  • 35. Enhanced communication, democratic and participatory processes
  • 36. Collaboration opportunities ● Theoretical work ● Interdisciplinary: brain research, psychology, sociology, organization research, etc. ● Methodological – Formulation in different theoretical frameworks – Analogical development with crisp>fuzzy: “objective”>subjective ● Experimental ● Case studies ● Research visits, tutorials, workshops ● GICA workshop/summer school in 2013 in Finland