The document outlines the anatomy of MapReduce applications including common phases like input splitting, mapping, shuffling, and reducing. It then provides high-level and low-level views of how a word counting MapReduce job works, explaining that it takes a text corpus as input, maps words to counts of 1, shuffles to reduce by word, and outputs final word counts. The map and reduce functions are explained at a high-level, and then implementation details like MapRunner, RecordReader, and OutputCollector are described at a lower level.