SlideShare a Scribd company logo
comnet.informatik.uni-wuerzburg.de
Institute of Computer Science
Chair of Communication Networks
Prof. Dr. Tobias Hossfeld
Traffic Modeling for
Aggregated Periodic IoT Data
Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard
Tobias HoรŸfeld
Disclaimer
More details of the tutorial can be found in the related paper.
Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard, Traffic
Modeling for Aggregated Periodic IoT Data, 21st Conference on
Innovations in Clouds, Internet and Networks (ICIN 2018),
Feb 19-22, 2018, Paris, France
The tutorial was presented at MMB 2018, the 19th International GI/ITG
Conference on โ€œMeasurement, Modelling and Evaluation of Computing
Systemsโ€, Feb 26, 2018, Erlangen, Germany.
2
Tobias HoรŸfeld
Use Case: IoT Cloud
๏ต Many sensors send data to an IoT cloud
๏ต IoT cloud load balancer is used
๏ต What about the scalability of the IoT Cloud Load Balancer?
๏ต How to dimension for certain QoS requirements?
Tobias HoรŸfeld
Use Case: IoT Cloud
๏ต Many sensors send data to an IoT cloud
๏ต IoT cloud load balancer is used
๏ต How to answer those questions? Scalability, Dimensioning?
Measurement Simulation Analysis
๐ธ ๐‘‹ = ๐œ†๐ธ[๐‘Š]
Tobias HoรŸfeld
Measurement, Simulation, Analysis
number of nodes
106
waitingtime
Linear
relationship?
Tobias HoรŸfeld
Measurement, Simulation, Analysis
number of nodes
waitingtime
106
Is there an
upper bound?
Tobias HoรŸfeld
Measurement, Simulation, Analysis
number of nodes
waitingtime
106
Tobias HoรŸfeld
Agenda
๏ต Superposition of Periodic IoT Traffic
๏ต Palm-Khintchine Theorem: Modeling as Poisson Process
๏ต Evaluation of Bias: Poisson Process vs. Aggregated Periodic Traffic
8
๏ต Use Case: Load Balancer at IoT Cloud
๏ต Waiting times: Poisson Process vs. Aggregated Periodic Traffic
๏ต Impact of Network Transmissions
Tobias HoรŸfeld
Periodic Traffic Patterns
Some results from literature
[2] 3GPP. RAN Improvements for Machine-type Communications. TR37.868. Oct. 2011.
[7] Draft new Report ITU-R M.[IMT-2020.TECH PERF REQ] โ€“ Minimum requirements related to technical performance for IMT-
2020 radio interface(s). International Telecommunication Union Radiocommunication Sector, Feb. 2017.
[19] Massive IoT in the City. Ericsson White paper, Nov. 2016.
[28] R. Ratasuk et al. โ€œRecent advancements in M2M communications in 4G networks and evolution towards 5G.โ€ In: 18th
International Conference on Intelligence in Next Generation Networks. Feb. 2015.
9
Very different number of nodes
and rates
Tobias HoรŸfeld
Superposition of Traffic
๏ต In [1] the 3GPP notes that โ€œ[...] for a large amount of users the
overall arrival process can be modelled as a Poisson arrival process
regardless of the individual arrival process.โ€
10
for large
number n
โ€ฆ
โ€ฆ Poisson process !
[1] 3GPP. GERAN improvements for Machine-
Type Communications (MTC). TR 43.868. Feb.
2014.
Tobias HoรŸfeld
Superposition of Traffic
๏ต In [1] the 3GPP notes that โ€œ[...] for a large amount of users the
overall arrival process can be modelled as a Poisson arrival process
regardless of the individual arrival process.โ€
11
for large
number n
โ€ฆ
โ€ฆ Poisson process !
Tobias HoรŸfeld
Superposition of Periodic Traffic
12
for large
number n
โ€ฆ
โ€ฆ Poisson process !
When is n large enough so that the Poisson process
is a proper assumption?
How much bias is introduced by this assumption?
Which traffic characteristics are affected?
Tobias HoรŸfeld
Scenario: Async. Homogeneous Periodic Traffic
๏ต System consists of ๐‘› sensor nodes
๏ต Asynchronous sources: Nodes start randomly at ๐‘ก๐‘–
๏ต Homogeneous: Each node sends periodically with the same
sampling period ๐‘‡
๏ต ๐ด๐‘– is the time between data from node ๐‘– and node ๐‘– + 1
13
Sampling period ๐‘ป = ๐’Š=๐Ÿ
๐’
๐‘จ๐’Š
Tobias HoรŸfeld
Expected Arrivals
๏ต Expected time between arrivals is ๐ธ[๐ด๐‘–] = ๐‘‡/(๐‘› + 1)
๏‚ง Idea for proof: distance between two random points ๐‘ฅ1, ๐‘ฅ2
๏‚ง ๐ธ ๐ด๐‘– = 0
๐‘‡
0
๐‘‡
๐‘ก1 โˆ’ ๐‘ก2 โ‹… ๐‘ข ๐‘ก1 โ‹… ๐‘ข ๐‘ก2 ๐‘‘๐‘ก1 ๐‘‘๐‘ก2
๏‚ง =
1
๐‘‡2 ๐‘ก1=0
๐‘‡
( ๐‘ก2=0
๐‘ก1
(๐‘ก1 โˆ’ ๐‘ก2) ๐‘‘๐‘ก2 + ๐‘ก2=๐‘ก1
๐‘‡
๐‘ก2 โˆ’ ๐‘ก1 ๐‘‘๐‘ก2 ) ๐‘‘๐‘ก1 = T/3
14
Uniform distribution U(0,T)
โ€ข CDF ๐‘ˆ ๐‘ฅ =
๐‘ฅ
๐‘‡
โ€ข PDF ๐‘ข ๐‘ฅ =
๐‘‘
๐‘‘๐‘ฅ
๐‘ˆ ๐‘ฅ =
1
๐‘‡
Tobias HoรŸfeld
Expected Arrivals: Different Approach
๏ต We consider the ascending sequence of time instants
๏ต Average distance between two consecutive points
with ๐‘ก0 = 0 and ๐‘ก ๐‘›+1 = ๐‘‡
๐ธ ๐ด =
๐‘ก2 โˆ’ ๐‘ก1 + ๐‘ก3 โˆ’ ๐‘ก2 + โ‹ฏ + ๐‘ก ๐‘› โˆ’ ๐‘ก ๐‘›โˆ’1 + ๐‘‡ + ๐‘ก1 โˆ’ ๐‘ก ๐‘›
n + 1
=
๐‘ก1 โˆ’ 0 + ๐‘ก2 โˆ’ ๐‘ก1 + ๐‘ก3 โˆ’ ๐‘ก2 + โ‹ฏ + ๐‘ก ๐‘› โˆ’ ๐‘ก ๐‘›โˆ’1 + ๐‘‡ โˆ’ ๐‘ก ๐‘›
n + 1
=
๐‘–=1
๐‘›+1
๐‘ก๐‘– โˆ’ ๐‘ก๐‘–โˆ’1 =
๐‘ก ๐‘›+1 โˆ’ ๐‘ก0
๐‘› + 1
=
๐‘‡
๐‘› + 1
=
15
Tobias HoรŸfeld
Expected Arrivals
๏ต Expected time between arrivals is ๐ธ[๐ด๐‘–] = ๐‘‡/(๐‘› + 1)
๏ต Periodic system: rate ๐‘›/๐‘‡
๏ต Poisson process: rate ๐œ† = (๐‘› + 1)/๐‘‡
๏ต Poisson process with rate ๐œ†โˆ— = ๐‘›/๐‘‡
16
Intervals ๐ด๐‘– are not independent in
the periodic case: ๐‘– ๐ด๐‘– = ๐‘‡
Exponential distribution ๐ธ๐‘ฅ๐‘(๐œ†)
โ€ข CDF ๐ด ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’๐œ†๐‘ฅ
โ€ข PDF a ๐‘ฅ =
๐‘‘
๐‘‘๐‘ฅ
๐ด ๐‘ฅ = ๐œ†๐‘’โˆ’๐œ†๐‘ฅ
โ€ข Mean ๐ธ ๐ด = 1/๐œ†
Tobias HoรŸfeld
Distribution of Interarrival Times
๏ต Periodic system: rate ๐‘›/๐‘‡
๏‚ง Beta distribution for interarrival times
๏‚ง Idea: ๐‘‹ is minimum of arrivals ๐‘ก๐‘–
(first order statistic of uniform dist.)
๏ต Poisson process with rate ๐œ†โˆ—
= ๐‘›/๐‘‡
๏‚ง Exponential distribution for interarrival times
17
Tobias HoรŸfeld
Some Performance Metrics
๏ต Compare Poisson
process with
aggregated periodic
process (APP)
18
Tobias HoรŸfeld
Quantification of Bias due to Poisson Assumption
๏ต Periodic system: rate ๐‘›/๐‘‡
๏ต Poisson process with rate ๐œ†โˆ— = ๐‘›/๐‘‡
๏ต Identical rate and expected interarrival times
๏ต Shift of expected interarrival times ๐‘† = ๐‘‡/2๐‘› < ๐œ–
๏ต Difference between Coefficient of Variation of IAT should be zero
๏ต Number of arrivals in T should be close to n for Poisson process
19
Tobias HoรŸfeld
IoT Load Balancer
๏ต Constant processing time of messages
๏ต Aggregated periodic traffic: nD/D/1
๏ต Poisson process: M/D/1
20
๏ต Use Case: Load Balancer at IoT Cloud
๏ต Waiting times: Poisson Process vs. Aggregated Periodic Traffic
๏ต Impact of Network Transmissions
Tobias HoรŸfeld
M/D/1 and nD/D/1 System
๏ต Well known results
๏ต Arrival rate ๐œ† =
๐‘›
๐‘‡
, service rate ๐œ‡, offered load ๐œŒ = ๐œ†/๐œ‡
21
[10] T. C. Fry et al. Probability and its engineering uses. Van Nostrand New York, 1928.
[13] V. B. Iversen and L. Staalhagen. โ€œWaiting time distribution in M/D/1 queueing systems.โ€ In:
Electronics Letters 35.25 (1999).
[30] J. W. Roberts and J. T. Virtamo. โ€œThe superposition of periodic cell arrival streams in an ATM
multiplexer.โ€ In: IEEE Transactions on Communications 39.2 (1991).
M/D/1 nD/D/1
Tobias HoรŸfeld
M/D/1
๏ต Fryโ€˜s equation
22
Poisson distribution
๐† = ๐€ โ‹… ๐‘บ
V. B. Iversen and L. Staalhagen. โ€œWaiting time
distribution in M/D/1 queueing systems.โ€ In:
Electronics Letters 35.25 (1999).
Tobias HoรŸfeld
Number of Customers in the System
๏ต Overdimensioning due to Poisson process assumption!
23
Tobias HoรŸfeld
Some more known results โ€ฆ
24
M/D/1
nD/D/1
๐ธ[๐‘Š ๐‘€/๐‘€/1] =
๐ธ[๐‘†]โ‹…๐œŒ
1โˆ’๐œŒ
= 2 โ‹… ๐ธ[๐‘Š ๐‘€/๐ท/1]
Erlang-B formula:
blocking prob. for M/G/n/n
๐ต ๐‘›, ๐‘Ž =
๐‘Ž ๐‘›
๐‘›!
๐‘–=0
๐‘› ๐‘Ž ๐‘–
๐‘–!
Tobias HoรŸfeld
Bias due to Poisson Assumption
๏ต If number of nodes is large enough, small differences between
performance measures
25
For higher load, larger bias!
Tobias HoรŸfeld
Impact of Network Transmission
๏ต Constant processing time S=1 at the load balancer
๏ต Additional delay when packets arrive at load balancer: ๐ท + ๐‘€
26
No relevant influence if
number of nodes is
large enough, n>100
Tobias HoรŸfeld
Traffic Pattern: Autocorrelation
๏ต Autocorrelation and traffic pattern โ€ždestroyedโ€œ
๏ต May be crucial for some characteristics like signaling load
27
Tobias HoรŸfeld
Conclusions
๏ต Analytical methods appropriate for investigating scalability
๏ต Poisson approximation only valid for large number of nodes โ€ฆ
๏ต โ€ฆ but not for all characteristics like autocorrelation
๏ต Bias strongly depends on considered characteristic
๏ต Future work integrates those results
๏‚ง Adaptive sending frequency: energy vs. quality of information
๏‚ง Scalable systems
e.g. hierarchical
architecture
๏‚ง Heterogeneous
nodes
๏‚ง Impact of security
mechanisms
28
Tobias HoรŸfeld
Current Work: IoT Testbed Setup
29
Aggregator Monitoring
Cloud service
Real-time
analytics
time
FakeData
Attack on
cloud
Attack on
aggregator
Tobias HoรŸfeld
Literature (Suggestions and references therein)
๏ต M/D/1 system
๏‚ง T. C. Fry et al. Probability and its engineering uses. Van Nostrand New York, 1928.
๏‚ง V. B. Iversen and L. Staalhagen. โ€œWaiting time distribution in M/D/1 queueing systems.โ€ In:
Electronics Letters 35.25 (1999).
๏ต nD/D/1 system
๏‚ง A. Eckberg. โ€œThe single server queue with periodic arrival process and deterministic
service times.โ€ In: IEEE Transactions on communications 27.3 (1979).
๏‚ง M. Menth and S. Muehleck. โ€œPacket waiting time for multiplexed periodic on/off streams
in the presence of overbooking.โ€ In: International Journal of Communication Networks
and Distributed Systems 4.2 (2010).
๏‚ง J. Roberts, U. Mocci, and J. Virtamo. โ€œBroadband Network Teletraffic: Final Report of
Action COST 242.โ€ In: (1996).
๏‚ง J. W. Roberts and J. T. Virtamo. โ€œThe superposition of periodic cell arrival streams in an
ATM multiplexer.โ€ In: IEEE Transactions on Communications 39.2 (1991).
๏ต Modeling of IoT traffic
๏‚ง Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard, Traffic Modeling for Aggregated
Periodic IoT Data, 21st Conference on Innovations in Clouds, Internet and Networks (ICIN
2018), Paris, France
30
comnet.informatik.uni-wuerzburg.de
Institute of Computer Science
Chair of Communication Networks
Prof. Dr. Tobias Hossfeld
Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard
tobias.hossfeld@uni-wuerzburg.de
Traffic Modeling for Aggregated Periodic IoT Data
21st Conference on Innovations in Clouds, Internet and
Networks (ICIN 2018), Paris, France

More Related Content

PPTX
Tutorial: The Role of Event-Time Analysis Order in Data Streaming
PPTX
Crash course on data streaming (with examples using Apache Flink)
PPTX
The data streaming processing paradigm and its use in modern fog architectures
PPTX
Data Streaming (in a Nutshell) ... and Spark's window operations
PDF
Icbai 2018 ver_1
PDF
Fractional Signals and Systems 1st Edition Manuel Duarte Ortigueira
PDF
00b7d51ed81834e4d7000000
PDF
A new Leach protocol based on ICH-Leach for adaptive image transferring using...
Tutorial: The Role of Event-Time Analysis Order in Data Streaming
Crash course on data streaming (with examples using Apache Flink)
The data streaming processing paradigm and its use in modern fog architectures
Data Streaming (in a Nutshell) ... and Spark's window operations
Icbai 2018 ver_1
Fractional Signals and Systems 1st Edition Manuel Duarte Ortigueira
00b7d51ed81834e4d7000000
A new Leach protocol based on ICH-Leach for adaptive image transferring using...

Similar to Traffic Modeling for Aggregated Periodic IoT Data (20)

PDF
Comparing ICH-leach and Leach Descendents on Image Transfer using DCT
PDF
computer networks module 1 . fundamentals of networking and data communication
PDF
Download Full Fractional Signals and Systems 1st Edition Manuel Duarte Ortigu...
PDF
18 786
PPTX
Hardware Implementation of OTFS Modulation.pptx
PDF
THE IMPACT OF MOBILE NODES ARRIVAL PATTERNS IN MANETS USING POISSON MODELS
PDF
cis97003
ย 
PDF
Chaotic systems with pseudorandom number generate to protect the transmitted...
PDF
Data Compression using Multiple Transformation Techniques for Audio Applicati...
ย 
PDF
N017657985
PPTX
Digital Communication SPPU _Unit I.pptx
PDF
Making Connections Efficient: Multiplexing and Compression
PPTX
Grant free IoT, Ericsson Research Presentation
PDF
International Journal of Engineering Inventions (IJEI)
PDF
Performance Enhancement in SU and MU MIMO-OFDM Technique for Wireless Communi...
PDF
The Physical Layer
PPTX
Lecture 1.pptx
PPTX
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
PDF
Linear Regression Model Fitting and Implication to Self Similar Behavior Traf...
PDF
A comprehensive study of distributed Denial-of-Service attack with the detect...
Comparing ICH-leach and Leach Descendents on Image Transfer using DCT
computer networks module 1 . fundamentals of networking and data communication
Download Full Fractional Signals and Systems 1st Edition Manuel Duarte Ortigu...
18 786
Hardware Implementation of OTFS Modulation.pptx
THE IMPACT OF MOBILE NODES ARRIVAL PATTERNS IN MANETS USING POISSON MODELS
cis97003
ย 
Chaotic systems with pseudorandom number generate to protect the transmitted...
Data Compression using Multiple Transformation Techniques for Audio Applicati...
ย 
N017657985
Digital Communication SPPU _Unit I.pptx
Making Connections Efficient: Multiplexing and Compression
Grant free IoT, Ericsson Research Presentation
International Journal of Engineering Inventions (IJEI)
Performance Enhancement in SU and MU MIMO-OFDM Technique for Wireless Communi...
The Physical Layer
Lecture 1.pptx
sss1.pptxsss1.pptxsss1.pptxsss1.pptxsss1.pptx
Linear Regression Model Fitting and Implication to Self Similar Behavior Traf...
A comprehensive study of distributed Denial-of-Service attack with the detect...
Ad

Recently uploaded (20)

PPTX
Module 1 - Cyber Law and Ethics 101.pptx
PPTX
Introuction about WHO-FIC in ICD-10.pptx
PPTX
SAP Ariba Sourcing PPT for learning material
PDF
Sims 4 Historia para lo sims 4 para jugar
PPTX
artificialintelligenceai1-copy-210604123353.pptx
ย 
PPTX
E -tech empowerment technologies PowerPoint
PDF
๐Ÿ’ฐ ๐”๐Š๐“๐ˆ ๐Š๐„๐Œ๐„๐๐€๐๐†๐€๐ ๐Š๐ˆ๐๐„๐‘๐Ÿ’๐ƒ ๐‡๐€๐‘๐ˆ ๐ˆ๐๐ˆ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ“ ๐Ÿ’ฐ
ย 
PPTX
Introduction to Information and Communication Technology
PPT
FIRE PREVENTION AND CONTROL PLAN- LUS.FM.MQ.OM.UTM.PLN.00014.ppt
PDF
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
PDF
The New Creative Director: How AI Tools for Social Media Content Creation Are...
PDF
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
PPT
Design_with_Watersergyerge45hrbgre4top (1).ppt
PDF
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
PDF
WebRTC in SignalWire - troubleshooting media negotiation
PPTX
international classification of diseases ICD-10 review PPT.pptx
PDF
Introduction to the IoT system, how the IoT system works
ย 
PDF
Decoding a Decade: 10 Years of Applied CTI Discipline
PPTX
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
PPTX
Internet___Basics___Styled_ presentation
Module 1 - Cyber Law and Ethics 101.pptx
Introuction about WHO-FIC in ICD-10.pptx
SAP Ariba Sourcing PPT for learning material
Sims 4 Historia para lo sims 4 para jugar
artificialintelligenceai1-copy-210604123353.pptx
ย 
E -tech empowerment technologies PowerPoint
๐Ÿ’ฐ ๐”๐Š๐“๐ˆ ๐Š๐„๐Œ๐„๐๐€๐๐†๐€๐ ๐Š๐ˆ๐๐„๐‘๐Ÿ’๐ƒ ๐‡๐€๐‘๐ˆ ๐ˆ๐๐ˆ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ“ ๐Ÿ’ฐ
ย 
Introduction to Information and Communication Technology
FIRE PREVENTION AND CONTROL PLAN- LUS.FM.MQ.OM.UTM.PLN.00014.ppt
Automated vs Manual WooCommerce to Shopify Migration_ Pros & Cons.pdf
The New Creative Director: How AI Tools for Social Media Content Creation Are...
Best Practices for Testing and Debugging Shopify Third-Party API Integrations...
Design_with_Watersergyerge45hrbgre4top (1).ppt
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
WebRTC in SignalWire - troubleshooting media negotiation
international classification of diseases ICD-10 review PPT.pptx
Introduction to the IoT system, how the IoT system works
ย 
Decoding a Decade: 10 Years of Applied CTI Discipline
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
Internet___Basics___Styled_ presentation
Ad

Traffic Modeling for Aggregated Periodic IoT Data

  • 1. comnet.informatik.uni-wuerzburg.de Institute of Computer Science Chair of Communication Networks Prof. Dr. Tobias Hossfeld Traffic Modeling for Aggregated Periodic IoT Data Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard
  • 2. Tobias HoรŸfeld Disclaimer More details of the tutorial can be found in the related paper. Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard, Traffic Modeling for Aggregated Periodic IoT Data, 21st Conference on Innovations in Clouds, Internet and Networks (ICIN 2018), Feb 19-22, 2018, Paris, France The tutorial was presented at MMB 2018, the 19th International GI/ITG Conference on โ€œMeasurement, Modelling and Evaluation of Computing Systemsโ€, Feb 26, 2018, Erlangen, Germany. 2
  • 3. Tobias HoรŸfeld Use Case: IoT Cloud ๏ต Many sensors send data to an IoT cloud ๏ต IoT cloud load balancer is used ๏ต What about the scalability of the IoT Cloud Load Balancer? ๏ต How to dimension for certain QoS requirements?
  • 4. Tobias HoรŸfeld Use Case: IoT Cloud ๏ต Many sensors send data to an IoT cloud ๏ต IoT cloud load balancer is used ๏ต How to answer those questions? Scalability, Dimensioning? Measurement Simulation Analysis ๐ธ ๐‘‹ = ๐œ†๐ธ[๐‘Š]
  • 5. Tobias HoรŸfeld Measurement, Simulation, Analysis number of nodes 106 waitingtime Linear relationship?
  • 6. Tobias HoรŸfeld Measurement, Simulation, Analysis number of nodes waitingtime 106 Is there an upper bound?
  • 7. Tobias HoรŸfeld Measurement, Simulation, Analysis number of nodes waitingtime 106
  • 8. Tobias HoรŸfeld Agenda ๏ต Superposition of Periodic IoT Traffic ๏ต Palm-Khintchine Theorem: Modeling as Poisson Process ๏ต Evaluation of Bias: Poisson Process vs. Aggregated Periodic Traffic 8 ๏ต Use Case: Load Balancer at IoT Cloud ๏ต Waiting times: Poisson Process vs. Aggregated Periodic Traffic ๏ต Impact of Network Transmissions
  • 9. Tobias HoรŸfeld Periodic Traffic Patterns Some results from literature [2] 3GPP. RAN Improvements for Machine-type Communications. TR37.868. Oct. 2011. [7] Draft new Report ITU-R M.[IMT-2020.TECH PERF REQ] โ€“ Minimum requirements related to technical performance for IMT- 2020 radio interface(s). International Telecommunication Union Radiocommunication Sector, Feb. 2017. [19] Massive IoT in the City. Ericsson White paper, Nov. 2016. [28] R. Ratasuk et al. โ€œRecent advancements in M2M communications in 4G networks and evolution towards 5G.โ€ In: 18th International Conference on Intelligence in Next Generation Networks. Feb. 2015. 9 Very different number of nodes and rates
  • 10. Tobias HoรŸfeld Superposition of Traffic ๏ต In [1] the 3GPP notes that โ€œ[...] for a large amount of users the overall arrival process can be modelled as a Poisson arrival process regardless of the individual arrival process.โ€ 10 for large number n โ€ฆ โ€ฆ Poisson process ! [1] 3GPP. GERAN improvements for Machine- Type Communications (MTC). TR 43.868. Feb. 2014.
  • 11. Tobias HoรŸfeld Superposition of Traffic ๏ต In [1] the 3GPP notes that โ€œ[...] for a large amount of users the overall arrival process can be modelled as a Poisson arrival process regardless of the individual arrival process.โ€ 11 for large number n โ€ฆ โ€ฆ Poisson process !
  • 12. Tobias HoรŸfeld Superposition of Periodic Traffic 12 for large number n โ€ฆ โ€ฆ Poisson process ! When is n large enough so that the Poisson process is a proper assumption? How much bias is introduced by this assumption? Which traffic characteristics are affected?
  • 13. Tobias HoรŸfeld Scenario: Async. Homogeneous Periodic Traffic ๏ต System consists of ๐‘› sensor nodes ๏ต Asynchronous sources: Nodes start randomly at ๐‘ก๐‘– ๏ต Homogeneous: Each node sends periodically with the same sampling period ๐‘‡ ๏ต ๐ด๐‘– is the time between data from node ๐‘– and node ๐‘– + 1 13 Sampling period ๐‘ป = ๐’Š=๐Ÿ ๐’ ๐‘จ๐’Š
  • 14. Tobias HoรŸfeld Expected Arrivals ๏ต Expected time between arrivals is ๐ธ[๐ด๐‘–] = ๐‘‡/(๐‘› + 1) ๏‚ง Idea for proof: distance between two random points ๐‘ฅ1, ๐‘ฅ2 ๏‚ง ๐ธ ๐ด๐‘– = 0 ๐‘‡ 0 ๐‘‡ ๐‘ก1 โˆ’ ๐‘ก2 โ‹… ๐‘ข ๐‘ก1 โ‹… ๐‘ข ๐‘ก2 ๐‘‘๐‘ก1 ๐‘‘๐‘ก2 ๏‚ง = 1 ๐‘‡2 ๐‘ก1=0 ๐‘‡ ( ๐‘ก2=0 ๐‘ก1 (๐‘ก1 โˆ’ ๐‘ก2) ๐‘‘๐‘ก2 + ๐‘ก2=๐‘ก1 ๐‘‡ ๐‘ก2 โˆ’ ๐‘ก1 ๐‘‘๐‘ก2 ) ๐‘‘๐‘ก1 = T/3 14 Uniform distribution U(0,T) โ€ข CDF ๐‘ˆ ๐‘ฅ = ๐‘ฅ ๐‘‡ โ€ข PDF ๐‘ข ๐‘ฅ = ๐‘‘ ๐‘‘๐‘ฅ ๐‘ˆ ๐‘ฅ = 1 ๐‘‡
  • 15. Tobias HoรŸfeld Expected Arrivals: Different Approach ๏ต We consider the ascending sequence of time instants ๏ต Average distance between two consecutive points with ๐‘ก0 = 0 and ๐‘ก ๐‘›+1 = ๐‘‡ ๐ธ ๐ด = ๐‘ก2 โˆ’ ๐‘ก1 + ๐‘ก3 โˆ’ ๐‘ก2 + โ‹ฏ + ๐‘ก ๐‘› โˆ’ ๐‘ก ๐‘›โˆ’1 + ๐‘‡ + ๐‘ก1 โˆ’ ๐‘ก ๐‘› n + 1 = ๐‘ก1 โˆ’ 0 + ๐‘ก2 โˆ’ ๐‘ก1 + ๐‘ก3 โˆ’ ๐‘ก2 + โ‹ฏ + ๐‘ก ๐‘› โˆ’ ๐‘ก ๐‘›โˆ’1 + ๐‘‡ โˆ’ ๐‘ก ๐‘› n + 1 = ๐‘–=1 ๐‘›+1 ๐‘ก๐‘– โˆ’ ๐‘ก๐‘–โˆ’1 = ๐‘ก ๐‘›+1 โˆ’ ๐‘ก0 ๐‘› + 1 = ๐‘‡ ๐‘› + 1 = 15
  • 16. Tobias HoรŸfeld Expected Arrivals ๏ต Expected time between arrivals is ๐ธ[๐ด๐‘–] = ๐‘‡/(๐‘› + 1) ๏ต Periodic system: rate ๐‘›/๐‘‡ ๏ต Poisson process: rate ๐œ† = (๐‘› + 1)/๐‘‡ ๏ต Poisson process with rate ๐œ†โˆ— = ๐‘›/๐‘‡ 16 Intervals ๐ด๐‘– are not independent in the periodic case: ๐‘– ๐ด๐‘– = ๐‘‡ Exponential distribution ๐ธ๐‘ฅ๐‘(๐œ†) โ€ข CDF ๐ด ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’๐œ†๐‘ฅ โ€ข PDF a ๐‘ฅ = ๐‘‘ ๐‘‘๐‘ฅ ๐ด ๐‘ฅ = ๐œ†๐‘’โˆ’๐œ†๐‘ฅ โ€ข Mean ๐ธ ๐ด = 1/๐œ†
  • 17. Tobias HoรŸfeld Distribution of Interarrival Times ๏ต Periodic system: rate ๐‘›/๐‘‡ ๏‚ง Beta distribution for interarrival times ๏‚ง Idea: ๐‘‹ is minimum of arrivals ๐‘ก๐‘– (first order statistic of uniform dist.) ๏ต Poisson process with rate ๐œ†โˆ— = ๐‘›/๐‘‡ ๏‚ง Exponential distribution for interarrival times 17
  • 18. Tobias HoรŸfeld Some Performance Metrics ๏ต Compare Poisson process with aggregated periodic process (APP) 18
  • 19. Tobias HoรŸfeld Quantification of Bias due to Poisson Assumption ๏ต Periodic system: rate ๐‘›/๐‘‡ ๏ต Poisson process with rate ๐œ†โˆ— = ๐‘›/๐‘‡ ๏ต Identical rate and expected interarrival times ๏ต Shift of expected interarrival times ๐‘† = ๐‘‡/2๐‘› < ๐œ– ๏ต Difference between Coefficient of Variation of IAT should be zero ๏ต Number of arrivals in T should be close to n for Poisson process 19
  • 20. Tobias HoรŸfeld IoT Load Balancer ๏ต Constant processing time of messages ๏ต Aggregated periodic traffic: nD/D/1 ๏ต Poisson process: M/D/1 20 ๏ต Use Case: Load Balancer at IoT Cloud ๏ต Waiting times: Poisson Process vs. Aggregated Periodic Traffic ๏ต Impact of Network Transmissions
  • 21. Tobias HoรŸfeld M/D/1 and nD/D/1 System ๏ต Well known results ๏ต Arrival rate ๐œ† = ๐‘› ๐‘‡ , service rate ๐œ‡, offered load ๐œŒ = ๐œ†/๐œ‡ 21 [10] T. C. Fry et al. Probability and its engineering uses. Van Nostrand New York, 1928. [13] V. B. Iversen and L. Staalhagen. โ€œWaiting time distribution in M/D/1 queueing systems.โ€ In: Electronics Letters 35.25 (1999). [30] J. W. Roberts and J. T. Virtamo. โ€œThe superposition of periodic cell arrival streams in an ATM multiplexer.โ€ In: IEEE Transactions on Communications 39.2 (1991). M/D/1 nD/D/1
  • 22. Tobias HoรŸfeld M/D/1 ๏ต Fryโ€˜s equation 22 Poisson distribution ๐† = ๐€ โ‹… ๐‘บ V. B. Iversen and L. Staalhagen. โ€œWaiting time distribution in M/D/1 queueing systems.โ€ In: Electronics Letters 35.25 (1999).
  • 23. Tobias HoรŸfeld Number of Customers in the System ๏ต Overdimensioning due to Poisson process assumption! 23
  • 24. Tobias HoรŸfeld Some more known results โ€ฆ 24 M/D/1 nD/D/1 ๐ธ[๐‘Š ๐‘€/๐‘€/1] = ๐ธ[๐‘†]โ‹…๐œŒ 1โˆ’๐œŒ = 2 โ‹… ๐ธ[๐‘Š ๐‘€/๐ท/1] Erlang-B formula: blocking prob. for M/G/n/n ๐ต ๐‘›, ๐‘Ž = ๐‘Ž ๐‘› ๐‘›! ๐‘–=0 ๐‘› ๐‘Ž ๐‘– ๐‘–!
  • 25. Tobias HoรŸfeld Bias due to Poisson Assumption ๏ต If number of nodes is large enough, small differences between performance measures 25 For higher load, larger bias!
  • 26. Tobias HoรŸfeld Impact of Network Transmission ๏ต Constant processing time S=1 at the load balancer ๏ต Additional delay when packets arrive at load balancer: ๐ท + ๐‘€ 26 No relevant influence if number of nodes is large enough, n>100
  • 27. Tobias HoรŸfeld Traffic Pattern: Autocorrelation ๏ต Autocorrelation and traffic pattern โ€ždestroyedโ€œ ๏ต May be crucial for some characteristics like signaling load 27
  • 28. Tobias HoรŸfeld Conclusions ๏ต Analytical methods appropriate for investigating scalability ๏ต Poisson approximation only valid for large number of nodes โ€ฆ ๏ต โ€ฆ but not for all characteristics like autocorrelation ๏ต Bias strongly depends on considered characteristic ๏ต Future work integrates those results ๏‚ง Adaptive sending frequency: energy vs. quality of information ๏‚ง Scalable systems e.g. hierarchical architecture ๏‚ง Heterogeneous nodes ๏‚ง Impact of security mechanisms 28
  • 29. Tobias HoรŸfeld Current Work: IoT Testbed Setup 29 Aggregator Monitoring Cloud service Real-time analytics time FakeData Attack on cloud Attack on aggregator
  • 30. Tobias HoรŸfeld Literature (Suggestions and references therein) ๏ต M/D/1 system ๏‚ง T. C. Fry et al. Probability and its engineering uses. Van Nostrand New York, 1928. ๏‚ง V. B. Iversen and L. Staalhagen. โ€œWaiting time distribution in M/D/1 queueing systems.โ€ In: Electronics Letters 35.25 (1999). ๏ต nD/D/1 system ๏‚ง A. Eckberg. โ€œThe single server queue with periodic arrival process and deterministic service times.โ€ In: IEEE Transactions on communications 27.3 (1979). ๏‚ง M. Menth and S. Muehleck. โ€œPacket waiting time for multiplexed periodic on/off streams in the presence of overbooking.โ€ In: International Journal of Communication Networks and Distributed Systems 4.2 (2010). ๏‚ง J. Roberts, U. Mocci, and J. Virtamo. โ€œBroadband Network Teletraffic: Final Report of Action COST 242.โ€ In: (1996). ๏‚ง J. W. Roberts and J. T. Virtamo. โ€œThe superposition of periodic cell arrival streams in an ATM multiplexer.โ€ In: IEEE Transactions on Communications 39.2 (1991). ๏ต Modeling of IoT traffic ๏‚ง Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard, Traffic Modeling for Aggregated Periodic IoT Data, 21st Conference on Innovations in Clouds, Internet and Networks (ICIN 2018), Paris, France 30
  • 31. comnet.informatik.uni-wuerzburg.de Institute of Computer Science Chair of Communication Networks Prof. Dr. Tobias Hossfeld Tobias HoรŸfeld, Florian Metzger, Poul E. Heegaard tobias.hossfeld@uni-wuerzburg.de Traffic Modeling for Aggregated Periodic IoT Data 21st Conference on Innovations in Clouds, Internet and Networks (ICIN 2018), Paris, France

Editor's Notes

  • #4: Scalability: โ€œmeans that the application maintains its performance goals/SLAs even when its workload increases (up to a certain workload bound)โ€ Elasticity in Cloud Computing: What It Is, and What It Is Not Nikolas Roman Herbst, Samuel Kounev, Ralf Reussner
  • #5: Scalability: โ€œmeans that the application maintains its performance goals/SLAs even when its workload increases (up to a certain workload bound)โ€ Elasticity in Cloud Computing: What It Is, and What It Is Not Nikolas Roman Herbst, Samuel Kounev, Ralf Reussner
  • #20: Interarrival times follow a Beta distribution
  • #22: Crommelin: M/D/n Idea behind nD/D/1?
  • #25: Offered lad: a=lambda/mu