The Unit Circle
Sine t = y/r Cosine t = x/r Tangent t = y/x Cotangent t = x/y Secant t = r/x Cosecant t = r/y
The variable r is the Radius.  This will always equal 1  on the unit circle.
Here at 30° x = √3/2 Also at 30° y = ½ 45° both x & y = √2/2 At 60° x = ½ Also at 60° y = √3/2
By using the Pythagorean Theorem the sides of a 45°, 45°, 90° can be found. You will use these on to find all Six Trigonometric Functions. The Hypotenuse must equal 1 therefore the sides opposite 45° is √2/2.
Use the Pythagorean Theorem to find the sides of a 30°, 60°, 90° Triangle. Remember the Hypotenuse must equal 1. Therefore, the side opposite 30° = ½. The side opposite 60° = √3/2.
Here you can see Sine t = y/r. Cosine t = x/r. Notice that r = 1.
Sin 30° = 1/2  Cos 30° = √3/2 Tan 30°   = 3√3 Cot 30° = √3 Sec 30° = 2√3/3 Csc 30° = 2
Sin 45° = √2/2 Cos 45° = √2/2 Tan 45° = 1 Cot 45° = 1 Sec 45° = √2 Csc 45° = √2
Sin 60° = √3/2 Cos 60° = 1/2 Tan 60° = √3 Cot 60° = 3√3 Sec 60° = 2 Csc 60° = 2√3/3
Notice that at 90° the (x,y) is (0,1). Sin 90° = 1 Cos 90° = 0 Tan 90° = undefined Cot 90° = 0 Sec 90° = undefined Csc 90° = 1
All y values stay the same as in Quadrant I. All x values are negative here.  The Six Trig Functions are reflected across the y-axis here. (-cos t, sin t)
All x values are negative here. All y values are negative here.  The Six Trig Functions are reflected across the origin from Quadrant I. (-cos t, -sin t)
All x values stay the same as in Quadrant I. All y values are negative here.  The Six Trig Functions are reflected across the x-axis here. (cos t, -sin t)
Sin 135° = √2/2 Cos 135° = - √2/2 Tan 135° = -1 Cot 135° = -1  Sec 135° = -√2 Csc 135° = √2
Sin 150° = -√3/2 Cos 150° = 1/2 Tan 150° = -√3 Cot 150° = -3√3 Sec 150° = 2 Csc 150° = -2√3/3
Sin 225° = -√2/2 Cos 225° = -√2/2 Tan 225° = 1 Cot 225° = 1 Sec 225° = -√2 Csc 225° = -√2
Sin 300° = -√3/2 Cos 300° = 1/2 Tan 300° = -√3 Cot 300° = -3√3 Sec 300° = 2 Csc 300° = -2√3/3
Sin 315° = √2/2  Cos 315° = - √2/2  Tan 315° = -1 Cot 315° = -1 Sec 315° = -√2 Csc 315° = √2
All the Trig Functions in the second Quadrant have the same values as Quad I except the x values are now negative. The same thing happens in Quad III both the x and y values are negative here. In Quad IV the x values are positive and the y values here are negative.

More Related Content

PPTX
Trig overview
PDF
Ley tangente (02.12.2020)
PDF
Stress Resultants
PDF
PPTX
Trigonometri
PPT
Grade 12 Unit1-L1-Kinematic Equations
DOCX
Trigonometry
Trig overview
Ley tangente (02.12.2020)
Stress Resultants
Trigonometri
Grade 12 Unit1-L1-Kinematic Equations
Trigonometry

What's hot (20)

DOCX
Ejericio analisis
PPT
Trigonometry - Strand 3
PPTX
Determining whether lines are parallel
PPT
PPT
Day 12 h-kinematic equations-per4
PPT
presentation
PPT
Geometry unit 12.4
PPTX
3002 a more with parrallel lines and anglesupdated 10 22-13
PPTX
Physics On the Road - Lesson 7
PDF
5. radial and transverse compo. 2 by-ghumare s m
PPTX
4. coordinate systems part 1 by-ghumare s m
PPT
8.1.6example2
PPTX
Right Triangles with SOund on Slide 9
PPT
11.5 Special Right Triangls
PPTX
Right triangles day2
PDF
Ss report 2 part 2
PPTX
Systolic array
PPT
Chap 1 trigonometry 2 part 1
PPT
Geometry unit 12.2
Ejericio analisis
Trigonometry - Strand 3
Determining whether lines are parallel
Day 12 h-kinematic equations-per4
presentation
Geometry unit 12.4
3002 a more with parrallel lines and anglesupdated 10 22-13
Physics On the Road - Lesson 7
5. radial and transverse compo. 2 by-ghumare s m
4. coordinate systems part 1 by-ghumare s m
8.1.6example2
Right Triangles with SOund on Slide 9
11.5 Special Right Triangls
Right triangles day2
Ss report 2 part 2
Systolic array
Chap 1 trigonometry 2 part 1
Geometry unit 12.2
Ad

Viewers also liked (20)

PPT
11 Tips for 2011: Making Social Media Marketing Work Smarter For You
PPT
Ontroking mm
PDF
Stereo3D - Entertainment for the 21st Century
PPTX
Построение высоконагруженных приложений на базе Windows Azure
PDF
fashion editorial_Improper Bostonian
PPT
Writing an Effective Résumé
PPT
Monica bush
PPT
Joel Roberts
PPT
Danny trig
PPT
Trig animated 2
PPT
Hannah Burke
PPT
Desirae Miller
PPT
Trig motion
PDF
Inscripción de registro sanitario a través de la ventanilla única ecuatoriana...
PPT
William coleman
PPTX
Wesley conrad
PPT
Trigonomerty
PPT
Heaven Buckner
PPT
Game theory 1
PPTX
Azure Powershell. Azure Automation
11 Tips for 2011: Making Social Media Marketing Work Smarter For You
Ontroking mm
Stereo3D - Entertainment for the 21st Century
Построение высоконагруженных приложений на базе Windows Azure
fashion editorial_Improper Bostonian
Writing an Effective Résumé
Monica bush
Joel Roberts
Danny trig
Trig animated 2
Hannah Burke
Desirae Miller
Trig motion
Inscripción de registro sanitario a través de la ventanilla única ecuatoriana...
William coleman
Wesley conrad
Trigonomerty
Heaven Buckner
Game theory 1
Azure Powershell. Azure Automation
Ad

Similar to Trig overview (20)

PDF
04 fundamental trig
PPT
Trigonometric_Functions_on_the_Unit_Circle.ppt
PPT
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
PDF
CBSE - Grade 11 - Mathematics - Ch 3 - Trigonometric Functions - Notes (PDF F...
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
PDF
T7.2 Right Triangle Trigonometry Presentation
PPT
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
PPTX
trigonometry_2.pptx
PPT
Circular functions
PPT
Circular functions
PPT
Section 6.3 properties of the trigonometric functions
PPTX
Trigonometry and trigonometric ratios angles
PPT
Trigonometry Lesson: Introduction & Basics
PPT
Lecture 14 section 5.3 trig fcts of any angle
PDF
Math lecture 8 (Introduction to Trigonometry)
PDF
5.2 Trigonometric Functions
PPT
Higher Maths 1.2.3 - Trigonometric Functions
DOCX
Trigonometry for class xi
PDF
Appendex a
PPT
Trigonometry functions of general angles reference angles
04 fundamental trig
Trigonometric_Functions_on_the_Unit_Circle.ppt
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
CBSE - Grade 11 - Mathematics - Ch 3 - Trigonometric Functions - Notes (PDF F...
Correlation: Powerpoint 2- Trigonometry (1).pdf
T7.2 Right Triangle Trigonometry Presentation
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
trigonometry_2.pptx
Circular functions
Circular functions
Section 6.3 properties of the trigonometric functions
Trigonometry and trigonometric ratios angles
Trigonometry Lesson: Introduction & Basics
Lecture 14 section 5.3 trig fcts of any angle
Math lecture 8 (Introduction to Trigonometry)
5.2 Trigonometric Functions
Higher Maths 1.2.3 - Trigonometric Functions
Trigonometry for class xi
Appendex a
Trigonometry functions of general angles reference angles

Trig overview

  • 2. Sine t = y/r Cosine t = x/r Tangent t = y/x Cotangent t = x/y Secant t = r/x Cosecant t = r/y
  • 3. The variable r is the Radius. This will always equal 1 on the unit circle.
  • 4. Here at 30° x = √3/2 Also at 30° y = ½ 45° both x & y = √2/2 At 60° x = ½ Also at 60° y = √3/2
  • 5. By using the Pythagorean Theorem the sides of a 45°, 45°, 90° can be found. You will use these on to find all Six Trigonometric Functions. The Hypotenuse must equal 1 therefore the sides opposite 45° is √2/2.
  • 6. Use the Pythagorean Theorem to find the sides of a 30°, 60°, 90° Triangle. Remember the Hypotenuse must equal 1. Therefore, the side opposite 30° = ½. The side opposite 60° = √3/2.
  • 7. Here you can see Sine t = y/r. Cosine t = x/r. Notice that r = 1.
  • 8. Sin 30° = 1/2 Cos 30° = √3/2 Tan 30° = 3√3 Cot 30° = √3 Sec 30° = 2√3/3 Csc 30° = 2
  • 9. Sin 45° = √2/2 Cos 45° = √2/2 Tan 45° = 1 Cot 45° = 1 Sec 45° = √2 Csc 45° = √2
  • 10. Sin 60° = √3/2 Cos 60° = 1/2 Tan 60° = √3 Cot 60° = 3√3 Sec 60° = 2 Csc 60° = 2√3/3
  • 11. Notice that at 90° the (x,y) is (0,1). Sin 90° = 1 Cos 90° = 0 Tan 90° = undefined Cot 90° = 0 Sec 90° = undefined Csc 90° = 1
  • 12. All y values stay the same as in Quadrant I. All x values are negative here. The Six Trig Functions are reflected across the y-axis here. (-cos t, sin t)
  • 13. All x values are negative here. All y values are negative here. The Six Trig Functions are reflected across the origin from Quadrant I. (-cos t, -sin t)
  • 14. All x values stay the same as in Quadrant I. All y values are negative here. The Six Trig Functions are reflected across the x-axis here. (cos t, -sin t)
  • 15. Sin 135° = √2/2 Cos 135° = - √2/2 Tan 135° = -1 Cot 135° = -1 Sec 135° = -√2 Csc 135° = √2
  • 16. Sin 150° = -√3/2 Cos 150° = 1/2 Tan 150° = -√3 Cot 150° = -3√3 Sec 150° = 2 Csc 150° = -2√3/3
  • 17. Sin 225° = -√2/2 Cos 225° = -√2/2 Tan 225° = 1 Cot 225° = 1 Sec 225° = -√2 Csc 225° = -√2
  • 18. Sin 300° = -√3/2 Cos 300° = 1/2 Tan 300° = -√3 Cot 300° = -3√3 Sec 300° = 2 Csc 300° = -2√3/3
  • 19. Sin 315° = √2/2 Cos 315° = - √2/2 Tan 315° = -1 Cot 315° = -1 Sec 315° = -√2 Csc 315° = √2
  • 20. All the Trig Functions in the second Quadrant have the same values as Quad I except the x values are now negative. The same thing happens in Quad III both the x and y values are negative here. In Quad IV the x values are positive and the y values here are negative.