This document summarizes a research paper on the design and testing of a two-wheeled self-balancing robot capable of autonomous navigation. The robot balances using a PID control loop applied to data from an inertial measurement unit. A complementary filter fuses gyroscope and accelerometer readings to estimate the robot's tilt angle in real-time. Autonomous navigation is achieved using an ultrasonic distance sensor and image processing system to detect obstacles and determine the robot's path. The stability of the balancing system is analyzed using real-time data plotting in MATLAB, allowing tuning of the PID controller constants.