SlideShare a Scribd company logo
Model reduction concepts & Voltage predictions
Senthil Kumar V.
Chemical Reactions Modeling
India Science Lab, GM Global R&D
1
Reduced order model for a single cell
- with uniform reaction rate approximation
Detailed 1D Electro-chemical model for a single cell
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
LiC6 →x Li++Li1-xC6+x e- x Li++ LiMO2 +x e- → Li1+xMO2
Li+
Discharge of a Lithium Metal Oxide cell
“Current”
Loss of electrons  Oxidation  Anode Gain of electrons  Reduction  Cathode
Load
2
Solid
Electrolyte Electrolyte
Solid
Electrolyte
5 phases in 3 regions (n, s & p)
Isothermal 1D model:
Mass and Charge balances for each phase.
5 phases x 2 balances =10 PDEs
Mass balance: Diffusion equation
Charge balance: Ohm’s law & Current balance
Negative electrode
n
n
n Fj
a
x
x
−
=









−

 1
1

( )
1
2
2
2
2 n
n
n
n j
t
a
x
c
D
x
t
c
+
−
+










=



( ) I
x
c
t
F
RT
x
x
n
n
n =


−
+



−



− +
2
2
2
2
1
1
ln
1
2












=


r
c
D
r
r
r
t
c n
n
n 1
1
2
2
1 1
Solid phase current balance
Liquid phase mass balance
Total current balance
Solid phase mass balance
Separator










=


x
c
D
x
t
c
s
s
2
2
2
2

( ) I
x
c
t
F
RT
x
s
s =


−
+



− +
2
2
2
2
ln
1
2

Liquid phase mass balance
Total current balance
Positive electrode
p
p
p Fj
a
x
x
−
=









−

 1
1













=


r
c
D
r
r
r
t
c p
p
p 1
1
2
2
1 1
( ) p
p
p
p j
t
a
x
c
D
x
t
c
+
−
+










=


1
2
2
2
2

( ) I
x
c
t
F
RT
x
x
p
p
p =


−
+



−



− +
2
2
2
2
1
1
ln
1
2


Solid phase current balance
Liquid phase mass balance
Total current
balance
Solid phase mass balance
Need for Model Reduction
• The single cell isothermal model has 10 coupled PDEs. Difficult to use for packs, on-board control ,
calendar / cycle life predictions, detailed parameters estimation, inclusion of complex degradation
mechanisms etc.
• The reduced order model should preferably comprise of first order ODEs. Such a mathematical
structure will automatically ensure minimal computational requirement and numerical stability. If
the first order ODEs turn out to be linear, optimization during parameter (re-)estimations become
robust.
• Equivalent circuit based single cell models are popular for on-board control due to their first order
ODEs structure, and the consequent properties. Detailed electrochemical model should be reduced
to a similar structure to make the physics based model attractive for on-board applications.
• Need a first order ODEs based model which
– Is grid / system size independent: Unlike Method of lines or PDEs discretized into ODEs.
– Has physically relevant internal variables: Like Lyapunov-Schmidt model reduction (here:
interfacial electrolyte fluxes and concentrations).
– Has systematic mathematical approximations rather than phenomenological approximations:
Unlike neglecting electrolyte potential /concentration variations - Single particle model.
3
n s p
``
``
Model reduction methodology (I): Volume averaging
4
• Volume averaging a PDE yields an ODE. Hence volume averaging is the chosen methodology for
model reduction. On volume averaging information about spatial gradients or profiles are lost. This
information is recovered by profile based approximation in the next step.
( )
( )
( )
( ) ( )
( )
( ) n
n
n
in
n
n
n
n
n
n
in
n
n
n
n
n
n
n
n
in
l
x
n
n
n
l
x
n
n
n
n
l
x
n
n
l
x
n
n
n
l
x
n
n
l
x
n
n
n
n
n
j
l
a
t
q
dt
c
d
l
j
a
t
l
q
dt
c
d
j
t
a
j
t
a
RHS
l
q
x
c
D
l
dx
x
c
D
x
l
RHS
dt
c
d
dx
c
l
dt
d
dx
t
c
l
dx
x
f
l
Al
dx
x
f
A
f
j
t
a
x
c
D
x
t
c
n
n
n
n
n
n
+
+
+
+
=
=
=
=
=
=
+
−
+
−
=
−
+
−
=
−
=
−
=
−
=








=










=
=








=


=
=
=
−
+










=







1
1
1
1
2
1
1
1
1
LHS
1
1
2
2
2
2
2
2
2
0
2
2
2
2
0
2
2
2
0
2
0
2
2
0
0
2
2
2
2






e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
LiC6 →x Li++Li1-xC6+x e- x Li++ LiMO2 +x e- → Li1+xMO2
Li+
Discharge of a Lithium Metal Oxide cell
“Current”
Load
Negative
electrode
Accumulation of Li+ in a slice of n-electrode =
Difference in diffusive out-flow and in-flow +
Generation of Li+ in that slice.
Accumulation of Li+ in the whole of n-electrode = - Out flux from the
interface + Total generation of Li+ within the n-electrode.
Negative
electrode
q2in
Interfacial flux is a physically relevant internal variable
``
``
Model reduction methodology (II): Profile based approximations
5
• The profile approximations are constructed such that volume averages are respected. The profiles
are expressed in terms of physically relevant internal variables. Eventually equations (ODEs or
algebraic equations) are derived for these internal variables.
( ) ( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) n
n
n
in
in
n
n
n
in
n
n
n
n
n
in
n
n
n
in
n
n
in
n
n
n
n
n
l
x
n
n
n
n
n
in
in
n
in
n
n
in
n
n
j
l
a
t
q
dt
dq
D
l
dt
dc
l
j
l
a
t
q
dt
c
d
l
t
q
D
l
t
c
t
c
l
l
l
x
dx
x
f
l
f
x
l
D
l
t
q
t
c
t
x
c
l
q
x
c
D
x
l
q
x
c
D
x
n
+
+
=
−
+
−
=
+
−
+
−
=
+
=
=
=

=
−
+
=
−











−












1
3
1
3
3
3
1
1
2
,
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
0
2
2
2
2
2
2
2
2
2
2
2
2



2. Volume average respecting lowest order profile approximation
1. Exact result from volume averaging
3. Profile is expressed in terms of interfacial flux & concentration
4. Average concentration depends only on interfacial flux & concentration
5. Volume averaged diffusion equation, exact result
6. An evolution equation for the interfacial flux & concentration
n s p
c2in & q2in
6
Nonlinear
PDEs
Linear ODEs
Nonlinear algebraic
expressions
Approximations
Consistent
Reaction rate
Butler – Volmer
Kinetics
Electrolyte
concentration field
Electrolyte
potential field
Solid potential
field
Solid phase
concentration field
Electrolyte phase Solid phase
Linear
ODEs
Algebraic
expressions
Linear
ODEs
Algebraic
expressions
Algebraic
expressions
Uniform reaction rate
from external current
Diffusion approx as in
Single particle model
Model reduction methodology (III): Smart decomposition
1. Nonlinearity in a system is not bothersome if
it can be relegated to algebraic evaluations.
2. Coupled linear ODEs can be solved by time marching without iteration, unlike
non-linear coupled PDEs which require iteration to achieve a consistent solution.
It is better to have a time-marchable structure for on-board algorithm.
( ) ( )
p
p
p
Fl
a
t
I
t
j −
=
( ) ( )
n
n
n
Fl
a
t
I
t
j =
( ) ( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( )
( )
( ) ( ) ( )
( )
( )( ) ( ) ( )2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
20
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
,
ln
2
,
2
ln
2
,
2
,
2
1
3
3
2
;
1
3
6
2
x
l
l
t
I
x
l
t
I
t
c
t
x
c
t
t
x
l
t
I
t
c
t
c
t
l
t
x
l
D
l
t
q
t
c
t
x
c
D
q
q
l
c
c
q
q
c
c
l
l
l
D
l
D
l
D
l
l
l
l
l
D
l
D
l
D
l
l
n
n
n
n
n
in
in
s
s
mid
in
n
in
n
n
n
in
in
s
ip
in
s
ip
in
ip
ip
in
in
ip
p
p
s
s
n
n
p
p
p
s
s
s
s
n
s
n
ip
p
p
s
s
n
n
n
n
n
s
s
s
s
n
s
n
in
−
−
−
+









+

=

+







=

=

−
+
=
+
+
=
+
+
=
+
+








−
+
−
=
+
+








+
+
−
=



















Model reduction – Bird’s eye view
7
( )
( ) p
p
p
ip
ip
p
p
p
ip
p
p
in
in
p
p
n
n
n
in
ip
s
n
s
n
ip
n
n
in
n
n
n
s
n
n
s
in
n
n
j
l
a
t
q
dt
dq
D
l
l
dt
dq
l
j
l
a
t
q
dt
dq
D
l
l
l
dt
dq
D
l
D
l
l
l
+
+
−
+
=








−
+
−
+
−
=








+
+








+
+
1
3
1
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2












p
p
p
R
j
dt
c
d 3
1
−
=
2
2
1
1
1
2
45
30
n
n
n
rn
n
rn
R
j
R
c
D
dt
c
d
−
=
+
2
2
1
1
1
2
45
30
p
p
p
rp
p
rp
R
j
R
c
D
dt
c
d
−
=
+
n
n
n
R
j
dt
c
d 3
1
−
=
1. Two coupled ODEs for the
interfacial fluxes, obtained
by volume averaging and
profile based
approximations.
2. Quartic diffusion approximations for
diffusion within active material spheres.
Two coupled ODEs for each electrode.
3. Rest are algebraic expressions
5. Model reduction achieved with uniform
reaction rate approximation:
10 coupled PDEs to 6 linear ODEs.
4. ROM predicts the internal field profiles too, not just the cell voltage.
Negative Positive
2 ODEs
4 ODEs
1C discharge prediction by uniform rate ROM
8
Fig. 1
Max abs error  9 mV
Fig. 2
Fig. 3
Max % error  0.27 %
Max % error  0.2%
Fig. 4
Fig. 2
Voltage recovery at the
beginning of rest periods
are predicted well.
Fig. 3
Max abs error  10 mV
2000 s 1C discharge,
Then 300 s rest,
Then 2000s 1C charge,
Then rest till 8000 s.
1C pulse prediction by uniform rate ROM
9
Fig. 1
7C discharge prediction by uniform rate ROM
10
Model enhancement
underway to reduce
errors at high current
discharge & charge.
Fig. 1
Max abs error  80 mV
Fig. 2
Fig. 3
Max % error  3.2%
Max % error  2%
Fig. 4
Model enhancement
underway to reduce
errors at high current
discharge & charge.
Fig. 2
Max abs error  80 mV
Voltage recovery at the
beginning of rest periods
are predicted well.
Fig. 3
10 s 7C discharge,
Then 40 s rest,
Then 10s 7C charge,
Then 60 s rest.
7C pulse prediction by uniform rate ROM
11
Fig. 1
Back up: Detailed derivation
12
Electro-chemical reactions in a Lithium Metal Oxide cell
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
LiC6 →x Li++Li1-xC6+x e- x Li++ LiMO2 +x e- → Li1+xMO2
Li+
Discharge of a Lithium Metal Oxide cell
“Current”
Loss of electrons  Oxidation  Anode Gain of electrons  Reduction  Cathode
Load
e- e-
Separator Lithium Metal
Oxide
Graphite
- +
x Li++Li1-xC6+x e- → LiC6 Li1+xMO2 → x Li++ LiMO2 +x e-
Li+
Charge of a Lithium Metal Oxide cell
“Current”
Loss of electrons  Oxidation  Anode
Gain of electrons  Reduction  Cathode
Charger
Compound Oxidation
state of M
Check
LiMO2 +3 +1+3-2*2 = 0
Li2MO2 +2 +1*2+2-2*2 = 0
Li1+xMO2 y = +3-x +1*(1+x)+y-2*2 = 0
M: Co, Ni, Mn
Manganese can have +2 to +7 oxidation states
LiMn2O4  Mn+3.5 , KMnO4  Mn+7
Basic mnemonics
LEO – Loss of Electron is Oxidation
GER – Gain of Electron is Reduction
AnOx – Anode is where Oxidation occurs
RedCat – Cathode is where Reduction occurs
Process – Electrode
Energy
consumer
Energy
producer
Reduction – Cathode - +
Oxidation - Anode + -
13
(I) Solid phase current balances in n & p regions
14
n s p
Solid phase current balance equations
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
Li+
“Current”
x=0 x=ln x=ln+ls
x=L=ln+ls+lp
15
Positive electrode
Negative electrode
0
and
:
BCs 1
1
0
1
1
1
1
=



−
=



−
−
=









−


=
= n
l
x
n
x
n
n
n
n
x
I
x
Fj
a
x
x



I
x
x
Fj
a
x
x
L
x
p
l
l
x
p
p
p
p
s
n
=



−
=



−
−
=









−


=
+
=
1
1
1
1
1
1
and
0
:
BCs 


Convention: Discharge
current is positive.
Subscripts Notation:
n – Negative electrode
p – Positive electrode
s – Separator
1- solid phase
2- liquid phase
( ) ( )
( )
( ) ( )
( )
( ) ( )
ρ
S
E
J
E
E
J
R
V
V
A
I
D
m
1
m
m
V/m
A/m2
:
Continuum
:
1
1
-

=


−
=


−
=
=


−
=

=


=





• Cell reactions generate or consume
electrons. Hence the gradient of current is
proportional to the reaction rate.




















−
=















−


s
m
mol
j
mol
C
F
m
m
a
m
A
x
x 2
3
2
3
1

Separator has ionic conduction only.
16
Volume averaging of solid phase current balances
Negative electrode:
0
and
:
BCs 1
1
0
1
1
1
1
=



−
=



−
−
=









−


=
= n
l
x
n
x
n
n
n
n
x
I
x
Fj
a
x
x



( ) ( )
n
n
n
n
n
n
n
n
n
l
x
n
l
x
n
n
l
x
n
Fl
a
t
I
t
j
l
j
F
a
I
l
j
F
a
x
dx
j
F
a
x
d
n
n
n
=

=
−
=









−

−
=









−
=
=
=

 0
1
1
0
0
1
1 

Positive electrode:
I
x
x
Fj
a
x
x
L
x
p
l
l
x
p
p
p
p
s
n
=



−
=



−
−
=









−


=
+
=
1
1
1
1
1
1
and
0
:
BCs 


( ) ( )
p
p
p
p
p
p
p
p
p
l
l
l
l
l
x
p
l
l
l
l
l
x
p
p
l
l
l
l
l
x
p
Fl
a
t
I
t
j
l
j
F
a
I
l
j
F
a
x
dx
j
F
a
x
d
p
s
n
s
n
p
s
n
s
n
p
s
n
s
n
−
=

−
=
−
=









−

−
=









−
+
+
+
=
+
+
+
=
+
+
+
=

 1
1
1
1 

e- e-
Separator
LMO
Graphite
- +
Li+
“Current”
x=0 x=ln x=ln+ls
x=L=ln+ls+lp
( )
( )
( )
( )




+
=
+
=
=
=
=
=
=
=
L
l
l
x
p
p
L
l
l
x
p
l
x
n
n
l
x
n
s
n
s
n
n
n
dx
x
f
l
Al
dx
x
f
A
f
dx
x
f
l
Al
dx
x
f
A
f
1
1
0
0
( ) ( )
( ) ( )
( ) ( ) 0
=
+
−
=
=
t
j
l
a
t
j
l
a
F
t
I
t
j
l
a
F
t
I
t
j
l
a
p
p
p
n
n
n
p
p
p
n
n
n
Volume averaging results are exact,
but information on spatial variations are lost.
No accumulation of electrons.
Hence average rates are coupled
at any instant.
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )( )
I
x
x
l
l
t
I
x
t
f
l
l
t
I
x
t
f
x
l
t
I
x
l
t
I
t
j
F
a
x
x
Fj
a
x
x
t
j
t
x
j
Fl
a
t
I
t
j
x
n
n
n
n
n
n
l
x
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
=



−
−
=



−
+
−
=

=



−
+
−
=



−
−
=
−










−


−
=









−



=
=
=
0
1
1
1
1
1
1
1
1
1
1
1
1
Satisfies
0
0
,
:
ion
approximat
rate
reaction
Uniform






17
Solid phase current in electrodes
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )( ) ( )
( ) ( )
 
( )
t
I
x
l
l
x
l
t
I
x
t
f
l
l
l
t
I
x
t
f
x
l
t
I
x
l
t
I
t
j
F
a
x
x
Fj
a
x
x
t
j
t
x
j
Fl
a
t
I
t
j
L
x
p
s
n
p
p
s
n
p
l
l
x
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
s
n
=



−
+
−
=



−
+
+
=

=



−
+
=



−
=
−










−


−
=









−



−
=
=
+
=
1
1
1
1
1
1
1
1
1
1
1
1
Satisfies
0
0
,
:
ion
approximat
rate
reaction
Uniform






Uniform reaction rate approximation will recover the volume average evolution equations. It decouples the potential
and concentration fields, enabling a step-by-step solution of all the fields. The volume average contributions give the
leading order transient solution, which contains the steady state solution within it. It is possible to derive corrections
by introducing the deviations from volume average. Corrections will be attempted in future.
( ) ( ) ( )
t
x
j
t
j
t
x
j d
n
n
n ,
, +
=
(II) Liquid phase mass balances in n, s, & p regions
18
n s p
Liquid phase mass balance (or electrolyte diffusion) equations
( )
( ) ( )
 
( )
0
and
,
,
:
BCs
,
0
,
:
IC
1
2
2
2
2
2
2
2
20
2
2
2
2
2
=


−
=


−
=
+
=
−
+










=


=
+
=
+
+
+
L
x
p
ip
l
l
x
p
ip
s
n
p
p
p
p
x
c
D
q
x
c
D
c
t
l
l
c
c
x
c
j
t
a
x
c
D
x
t
c
s
n

Positive
electrode
( )
( ) ( ) ,
,
,
0
:
BCs
,
0
,
:
IC
1
2
2
2
2
2
0
2
2
20
2
2
2
2
2
in
l
x
n
in
n
x
n
n
n
n
n
q
x
c
D
c
t
l
c
x
c
D
c
x
c
j
t
a
x
c
D
x
t
c
n
=


−
=
=


−
=
−
+










=


−
=
−
=
+

Negative
electrode
( ) 20
2
2
2
2
2
0
,
:
IC c
x
c
x
c
D
x
t
c
s
s
=










=



Separator
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
Li+
“Current”
x=0 x=ln x=ln+ls
x=L=ln+ls+lp
19
Concentration and flux continuity conditions at N-S interface
( )
( )
 
( )
.
,
,
,
,
,
:
BCs
2
2
2
2
2
2
2
2
2
2
ip
l
l
x
s
ip
s
n
in
l
x
s
in
n
q
x
c
D
c
t
l
l
c
q
x
c
D
c
t
l
c
s
n
n
=


−
=
+
=


−
=
−
+
+
=
−
=
+
Continuity conditions at N-S interface
Continuity conditions at S-P interface
Concentration and flux continuity conditions at S-P interface
Electrolyte concentration is a continuous
field through negative electrode, separator
and positive electrode regions.
Volume averaged Li mass balance in electrolyte phase
20
( )
( )


=
=
=
=
n
n
l
x
n
n
l
x
n
dx
x
f
l
Al
dx
x
f
A
f
0
0 1
( )
( ) ( ) ( )
( )
( ) p
p
p
ip
p
p
p
ip
in
s
s
s
n
n
n
in
n
n
n
n
n
n
in
n
n
l
x
n
n
n
n
n
l
x
n
n
n
l
x
n
n
l
x
n
n
l
x
n
n
n
n
n
j
l
a
t
q
dt
c
d
l
q
q
dt
c
d
l
j
l
a
t
q
dt
c
d
l
j
t
a
l
q
j
t
a
x
c
D
l
j
t
a
dx
x
c
D
x
l
RHS
dt
c
d
dx
c
l
dt
d
dx
t
c
l
dx
j
t
a
x
c
D
x
t
c
l
n
n
n
n
n
+
+
+
+
=
+
=
=
=
=
+
−
+
=
−
=
−
+
−
=
−
+
−
=
−
+








=
−
+










=
=








=


=






−
+










=






1
1
1
1
1
1
1
1
LHS
1
1
2
2
2
2
2
2
2
2
2
2
2
0
2
2
2
2
0
2
2
2
0
2
0
2
2
0
2
2
2
2







`` Negative electrode
Positive electrode
Separator
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
Li+
“Current”
x=0 x=ln x=ln+ls
x=ln+ls+lp
( )
0
:
balance
e
electrolyt
Overall
2
2
2
2
2
2
20
2
2
2
2
2
2
2
2
2
=
+
+
+
+
=
+
+
dt
c
d
l
dt
c
d
l
dt
c
d
l
c
l
l
l
A
c
Al
c
Al
c
Al
p
p
p
s
s
s
n
n
n
p
p
s
s
n
n
p
p
p
s
s
s
n
n
n









Interfacial fluxes appear in the volume
averaged equations, hence they are
identified as physically relevant variables.
0
0
0
0
0
:
discharge
For
0
2
0
2



−
=



=

=
=
t
p
p
p
p
t
n
n
n
n
dt
c
d
Fl
a
I
j
dt
c
d
Fl
a
I
j
I
0
=
+ p
p
p
n
n
n j
l
a
j
l
a
21
Lowest order approximation in negative electrode
( )
( )
( )
( ) ( )
( ) ( )
( )
t
f
l
D
l
q
c
l
x
t
f
x
D
l
q
t
x
c
x
D
l
q
x
c
x
c
x
l
q
x
c
D
t
f
t
f
l
l
q
q
l
x
t
f
x
l
q
x
c
D
l
q
x
c
D
x
l
q
x
c
D
x
j
l
a
t
q
dt
c
d
l
j
t
a
x
c
D
x
t
c
n
n
n
in
in
n
n
n
in
n
n
in
x
n
in
n
n
n
in
in
n
n
in
n
n
in
n
n
in
n
n
n
n
in
n
n
n
n
n
n
n
+
−
=
=
+
−
=
−
=


=



−
=


=

+
−
=
−
=
+
−
=


−











−











−
+
−
=
−
+










=


=
+
+
2
:
@
2
,
0
Satisfies
0
:
@
1
1
2
2
2
2
2
2
2
2
2
2
2
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

 ( ) ( ) ( ) ( )
( )
( )
( ) n
n
n
in
in
n
n
n
in
n
n
in
n
n
in
n
n
in
n
in
n
n
n
n
in
in
n
n
n
n
l
x
n
n
n
n
n
in
in
j
l
a
t
q
dt
dq
D
l
dt
dc
l
dt
dq
D
l
dt
dc
dt
c
d
D
q
l
c
c
l
D
l
q
c
t
x
c
l
l
l
x
dx
x
f
l
f
x
l
D
l
t
q
t
c
t
x
c
n
+
=
−
+
−
=
+
+
=
+
=
+
=
=
=

=
−
+
=

1
3
3
balance.
e
electrolyt
overall
the
in
later
used
be
Will
3
3
2
2
,
3
3
1
1
2
,
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
0
2
2
2
2
2
2


n s p
Lowest order approximation in positive electrode
( )
( )
( )
( )
( )
( )
( ) ( )
( )
t
f
l
D
l
q
c
l
l
x
t
f
x
L
D
l
q
c
x
L
D
l
q
x
c
q
x
c
D
x
L
l
q
x
c
D
t
f
L
l
q
L
x
t
f
x
l
q
x
c
D
l
q
x
c
D
x
l
q
x
c
D
x
j
l
a
t
q
dt
c
d
l
j
t
a
x
c
D
x
t
c
p
p
p
ip
ip
s
n
p
p
ip
p
p
ip
ip
l
l
x
p
p
ip
p
p
ip
p
ip
p
p
ip
p
p
ip
p
p
p
p
ip
p
p
p
p
p
p
p
s
n
+
=
+
=
+
−
=
−
−
=


=


−

−
−
=


+
=
=
+
=
























−
+
=
−
+










=


+
=
+
+
2
:
@
2
Satisfies
0
:
@
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

 ( ) ( )
( )
( )
 
( ) ( )
( )
( ) p
p
p
ip
ip
p
p
p
ip
p
p
ip
p
p
ip
p
p
ip
p
ip
p
p
p
p
ip
ip
p
p
L
l
l
x
p
p
p
p
p
ip
ip
j
l
a
t
q
dt
dq
D
l
dt
dc
l
dt
dq
D
l
dt
dc
dt
c
d
D
q
l
c
c
l
D
l
q
c
t
x
c
l
x
L
dx
x
f
l
f
x
L
l
D
l
t
q
t
c
t
x
c
s
n
+
+
=
−
+
=
−
−
=
−
=
−
=
=
−

=
−
−
−
=

1
3
3
3
3
2
2
,
3
1
2
,
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2


n s p
22
Electrolyte concentration profile in the separator
23
( )
( )
( )
( )
( ) ( )
( )
t
f
l
D
q
c
l
x
t
f
l
x
D
l
q
q
x
D
q
c
l
x
l
D
q
q
D
q
x
c
q
x
c
D
l
x
l
q
q
q
x
c
D
t
f
l
l
q
q
q
l
x
t
f
x
l
q
q
x
c
D
l
q
q
x
c
D
x
l
q
q
x
c
D
x
q
q
dt
c
d
l
x
c
D
x
t
c
n
s
in
in
n
n
s
s
ip
in
s
in
n
s
s
ip
in
s
in
ip
l
l
x
s
n
s
ip
in
in
s
n
s
ip
in
in
n
s
ip
in
s
s
ip
in
s
s
ip
in
s
ip
in
s
s
s
s
s
s
n
+
−
=
=
+
−







 −
+
−
=
−







 −
+
−
=


=


−

−







 −
+
−
=


+







 −
=
−
=
+







 −
=


−












−











−
=










=


+
=
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
:
@
2
Satsifies
:
@


( ) ( ) ( )
( )
( )
( )
( ) ( )
( )
ip
in
ip
s
s
s
in
s
s
s
in
s
s
ip
s
s
in
s
s
in
s
s
ip
s
s
in
s
in
s
s
ip
in
s
s
in
s
in
s
s
s
s
s
n
s
s
s
s
n
l
l
l
x
s
s
s
ip
in
s
ip
in
s
ip
s
s
in
s
in
ip
s
ip
in
s
s
in
s
in
ip
s
n
n
s
s
ip
in
n
s
in
in
q
q
dt
dq
D
l
dt
dq
D
l
dt
dc
l
dt
dq
D
l
dt
dq
D
l
dt
dc
dt
c
d
D
q
l
D
q
l
c
c
D
q
q
l
D
q
l
c
c
l
l
l
l
x
l
l
l
l
x
dx
x
f
l
f
D
q
q
l
c
c
D
q
l
D
q
l
c
c
D
q
q
l
D
q
l
c
c
l
l
x
l
x
D
l
q
q
l
x
D
q
c
t
x
c
s
n
n
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
6
3
6
3
6
3
6
2
3
3
1
,
2
2
1
1
2
2
2
2
:
@
2
,
−
=
−
−
−
−
=
−
−
=
−
+
−
=
=
=
−
=
=
−

=
+
=
−
−
−
=
−
+
−
=
+
=
−







 −
+
−
−
=

+
=



n s p
An inter-relationship between the
four internal variables, at any time.
Overall electrolyte balance – Lowest order approximation
24
( )
( ) ( ) 20
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
20
2
2
2
2
2
2
2
2
2
6
3
3
3
3
;
6
3
;
3
c
l
l
l
q
D
l
D
l
c
l
q
D
l
D
l
c
l
l
D
q
l
c
c
D
q
l
D
q
l
c
c
D
q
l
c
c
c
l
l
l
c
l
c
l
c
l
p
p
s
s
n
n
ip
s
s
s
p
p
p
ip
p
p
in
s
s
s
n
n
n
in
s
s
n
n
p
ip
p
ip
p
s
ip
s
s
in
s
in
s
n
in
n
in
n
p
p
s
s
n
n
p
p
p
s
s
s
n
n
n
















+
+
=








+
−
+








−
+
+
−
=
−
−
=
+
=
+
+
=
+
+
``
( )
( )
( )
( ) ( ) 20
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
6
3
3
3
2
1
3
1
3
c
l
l
l
q
D
l
D
l
c
l
q
D
l
D
l
c
l
l
D
q
q
l
c
c
j
l
a
t
q
dt
dq
D
l
dt
dc
l
j
l
a
t
q
dt
dq
D
l
dt
dc
l
p
p
s
s
n
n
ip
s
s
s
p
p
p
ip
p
p
in
s
s
s
n
n
n
in
s
s
n
n
s
ip
in
s
ip
in
p
p
p
ip
ip
p
p
p
ip
p
p
n
n
n
in
in
n
n
n
in
n
n














+
+
=








+
−
+








−
+
+
+
=
−
−
+
=
−
−
+
−
=
+
+
+
Four unknowns & Four equations
( ) ( ) ( ) ( )
t
q
t
c
t
q
t
c ip
ip
in
in 2
2
2
2 ,
,
,
(4 unknowns x 4 equations) → (2 unknowns x 2 equations)
25
( )
( )
( ) ( )
( ) ( )
( ) ( )
( )
( ) p
p
p
ip
ip
p
p
p
ip
p
p
in
in
p
p
n
n
n
in
ip
s
n
s
n
ip
n
n
in
n
n
n
s
n
n
s
in
n
n
ip
s
s
ip
in
s
s
in
in
ip
s
s
in
s
s
ip
in
ip
ip
in
in
ip
p
p
s
s
n
n
p
p
p
s
s
s
s
n
s
n
ip
p
p
s
s
n
n
n
n
n
s
s
s
s
n
s
n
in
ip
ip
in
in
ip
p
p
s
s
n
n
ip
s
s
s
p
p
p
ip
p
p
in
s
s
s
n
n
n
in
s
s
n
n
s
ip
in
s
ip
in
s
ip
in
s
ip
in
p
p
p
ip
ip
p
p
p
ip
p
p
n
n
n
in
in
n
n
n
in
n
n
j
l
a
t
q
dt
dq
D
l
l
dt
dq
l
j
l
a
t
q
dt
dq
D
l
l
l
dt
dq
D
l
D
l
l
l
dt
dq
D
l
dt
dq
D
l
dt
dc
dt
dq
D
l
dt
dq
D
l
dt
dc
dt
dc
dt
dq
dt
dq
dt
dc
l
l
l
D
l
D
l
D
l
l
l
l
l
D
l
D
l
D
l
l
q
q
c
c
c
l
l
l
q
D
l
D
l
c
l
q
D
l
D
l
c
l
l
D
q
q
l
c
c
D
q
q
l
c
c
j
l
a
t
q
dt
dq
D
l
dt
dc
l
j
l
a
t
q
dt
dq
D
l
dt
dc
l
+
+
+
+
−
+
=








−
+
−
+
−
=








+
+








+
+








+
+








+
=

+
+
=
+
=
+
+








−
+
−
=
+
+








+
+
−
=
+
+
=
+
+
=








+
−
+








−
+
+
+
+
=

+
=
−
−
+
=
−
−
+
−
=
+
1
3
1
2
3
2
2
2
2
2
1
3
3
2
;
1
3
6
2
6
3
3
3
2
2
1
3
1
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
20
2
20
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2














































``
( ) ( ) ( ) ( )
t
q
t
c
t
q
t
c ip
ip
in
in 2
2
2
2 ,
,
,
( ) ( )
t
q
t
q ip
in 2
2 ,
(III) Total current balances in n, s, & p regions
26
n s p
Total current balance
Positive
electrode
Negative
electrode
Separator
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
Li+
“Current”
x=0 x=ln x=ln+ls
x=L=ln+ls+lp
( )
( ) ( ) ( )
t
I
x
t
t
l
x
I
x
c
t
F
RT
x
x
in
l
x
n
in
n
x
n
n
n
n
n
2
2
2
2
2
0
2
2
2
2
2
2
1
1
and
,
,
0
:
BCs
ln
1
2
=



−

=

=



−
=


−
+



−



−
=
=
+





( )
( ) ( )+
−
+
−
+
=
+
=
=
=
+



−
=



−



−
=



−
=


−
+



−
s
n
s
n
n
n l
l
x
p
l
l
x
s
l
x
s
l
x
n
s
s
x
x
x
x
I
x
c
t
F
RT
x
2
2
2
2
2
2
2
2
2
2
2
2
and
:
BCs
ln
1
2






( )
( ) ( )
0
and
:
BCs
ln
1
2
2
2
2
2
2
2
2
2
2
2
1
1
=



−



−
=



−
=


−
+



−



−
=
+
=
+
=
+
+
−
L
x
p
l
l
x
p
l
l
x
s
p
p
p
x
x
x
I
x
c
t
F
RT
x
x
s
n
s
n






27
0
:
Newman
Reference, 2
/
2 =
 +
= s
n l
l
x
Ohmic
current
Migrational
current
Diffusional current
0
:
Venkat
0
:
Comsol
:
styles
Reference
Other
2
0
1
=

=

=
=
L
x
x
Electrolyte potential is a continuous field through the
three regions. Hence, liquid potential and migrational
current continuities apply at the interfaces.
( )
+
−
=
 t
F
RT
1
Liquid potential in the separator
28
( ) ( )
( )
  ( )
( ) ( )
( ) 











+
−
−







=

+






+
−

=






+



+
−

=

−



=



=



+



−
+
=
2
,
ln
2
,
2
ln
2
0
,
2
0
:
Reference
ln
2
,
ln
2
ln
2
2
2
2
2
2
2
2
2
2
/
2
2
2
2
2
2
2
2
2
2
2
s
n
s
mid
s
n
s
mid
s
n
mid
l
l
x
s
s
s
s
l
l
x
I
t
c
t
x
c
t
x
t
f
l
l
I
t
c
t
l
l
c
c
t
f
x
I
c
t
x
I
x
c
x
I
x
c
x
s
n






( ) ( ) ( )
( )
( ) ( )
( )
( )
t
c
t
q
D
t
I
x
t
I
t
c
t
q
D
t
I
x
t
I
x
c
c
I
x
ip
ip
s
s
l
l
x
s
ip
in
in
s
s
l
x
s
in
s
s
s
n
n
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2

+
=



−
=

+
=



−
=



−
=



−
+
=
=





 Liquid current
& potential
continuities
( ) ( ) ( )
( )
( )
( ) ( )
( )
( )
( )
s
s
mid
ip
s
n
ip
s
s
mid
in
n
in
l
t
I
t
c
t
c
t
l
l
t
l
t
I
t
c
t
c
t
l
t
2
2
2
2
2
2
2
2
2
2
2
ln
2
,
2
ln
2
,


−







=
+

=

+







=

=

( ) ( ) ( )
( ) ip
s
s
in
s
s
in
s
n
mid
n
s
s
ip
in
n
s
in
in
q
D
l
q
D
l
c
t
l
l
c
t
c
l
x
D
l
q
q
l
x
D
q
c
t
x
c
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
8
8
3
,
2
2
,
−
−
=






+
=
−







 −
+
−
−
=
Liquid potential in the negative electrode
29
( ) ( )
 
( ) ( )
 
( )( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )
( )( ) ( ) ( )
( ) ( ) ( )
( )
( )
n
n
in
in
n
n
n
n
n
in
in
n
in
n
in
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
brug
n
n
n
brug
n
n
l
t
I
t
c
t
x
c
t
t
x
x
l
l
t
I
x
l
t
I
t
c
t
x
c
t
t
x
t
f
l
t
I
c
l
x
t
f
Ix
c
x
l
l
t
I
I
c
x
l
l
t
I
x
I
x
c
x
x
l
l
t
I
x
x
l
l
t
I
x
I
x
c
x
x
t
c
t
t
x
c
t
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
,
0
ln
2
,
0
2
,
ln
2
,
ln
2
:
At
ln
2
2
ln
2
2
ln
2
2
ln
2
,





















+







 =

+

=
=

−
−
−
+









+

=

+
=

+

−
=
+
=

+

−
−
−
=







+

−
−
−


=



+



−





 −
−


−
=



−
=



+



−



−



=
Liquid potential in the positive electrode
30
( ) ( )
 
( ) ( )
 
( )
( ) ( )
 
( ) ( )
  ( )
( ) ( )
  ( )
( ) ( )
  ( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )
( )
( ) ( )
  ( ) ( )
 
( ) ( ) ( )
( )
( )
p
p
ip
ip
s
n
p
p
s
n
p
ip
ip
s
n
ip
p
ip
p
s
n
p
p
s
n
p
p
p
s
n
p
p
p
s
n
p
s
n
p
p
p
p
p
brug
p
p
p
brug
p
p
l
t
I
t
c
t
L
x
c
t
t
L
x
l
l
x
l
t
I
l
l
x
t
I
t
c
t
x
c
t
t
x
t
f
l
l
t
I
c
l
l
x
t
f
x
t
I
c
l
l
x
l
t
I
t
I
c
l
l
x
l
t
I
x
t
I
x
c
x
l
l
x
l
t
I
x
l
l
x
l
t
I
x
t
I
x
c
x
x
t
c
t
t
x
c
t
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
,
ln
2
,
2
,
ln
2
,
ln
2
:
At
ln
2
2
ln
2
2
ln
2
2
ln
2
,





















−







 =

+

=
=

+
−
+
+
−
−









+

=

+
+
=

+

−
+
=
+
=

+

−
+
−
=











+

−
+
−


=



+



−









 +
−


+
−
=



−
=



+



−



−



=
(IV) Diffusion approximations &
Solid phase potential in n & p regions
31
n s p
Solid state diffusion within
the electrode particles
( )
k
r
r
k
k
r
k
k
k
k
k
k
k
j
r
c
D
r
c
D
c
r
c
p
n
k
r
c
D
r
r
r
t
c
k
=


−
=


−
=
=










=


=
=
1
1
0
1
1
0
1
1
1
1
2
2
1
and
0
:
BCs
,
0
,
:
IC
.
,
;
1
32
e- e-
Separator
Lithium Metal
Oxide
Graphite
- +
Li+
“Current”
x=0 x=ln x=ln+ls
x=ln+ls+lp
Negative and Positive electrodes
Volume averaged diffusion eqns
( )
( )


=
=
=
=
k
k
r
r
k
k
r
r
dr
r
f
r
r
r
dr
r
f
r
f
0
2
3
3
0
2
3
3
4
4


flux.
averaged
volume
electrode
with
particle
electrode
an
in
ion
concentrat
average
of
Evolution
3
:
averaging
volume
electrode
with
However,
.
of
functions
are
and
general
In
3
3
3
1
3
3
3
1
1
1
0
1
1
2
3
0
2
1
1
2
2
3
1
0
1
2
3
0
2
1
3
k
k
k
k
k
k
k
k
k
k
r
r
k
k
k
r
r
k
k
k
k
r
r
k
k
r
r
k
k
r
j
dt
c
d
x
j
c
r
j
dt
c
d
r
j
r
c
D
r
r
dr
r
r
c
D
r
r
r
r
RHS
dt
c
d
dr
c
r
r
t
dr
r
t
c
r
LHS
k
k
k
k
−
=
−
=
−
=








=










=
=


=


=
=
=
=
=



Solid diffusion – Parabolic approx
33
( )
( )
( )
( )
( )
( )
( ) 2
5
3
0
2
2
3
2
0
2
3
2
2
1
1
2
2
1
1
2
1
2
1
1
1
1
1
1
3
1
1
2
3
1
1
2
2
1
1
2
1
1
2
2
1
1
2
2
5
3
5
3
3
3
2
2
2
:
@
2
0
0
:
0
@
3
3
3
3
1
3
1
k
k
k
r
r
k
r
r
k
k
k
k
k
sk
k
k
k
k
k
sk
k
k
k
k
k
sk
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
r
r
r
dr
r
r
r
r
dr
r
f
r
r
f
r
r
r
D
j
c
c
r
r
r
D
j
c
c
t
f
r
r
D
j
c
r
r
t
f
r
r
D
j
c
r
r
D
j
r
c
r
r
D
j
r
c
r
r
j
r
c
D
r
t
f
r
t
f
r
r
j
r
c
D
r
r
r
j
r
c
D
r
r
r
j
r
c
D
r
r
r
r
j
r
c
D
r
r
r
k
k
=
=
=

=
−
+
=
−
=
−
+
−
=
=
+
−
=

−
=


−
=



−
=


+
−
=
=
+
−
=


−
=










−











−
=











 =
=
( ) ( )
k
k
k
k
k
k
k
k
k
sk
k
k
k
sk
k
k
k
k
k
sk
k
k
k
k
k
k
sk
k
r
j
dt
c
d
t
j
t
x
j
D
r
j
c
c
D
r
j
c
c
r
r
D
j
c
c
r
r
r
D
j
c
c
3
,
5
5
5
2
2
5
3
2
1
1
1
1
1
2
1
1
2
2
1
1
−
=

−
=
+
=






+
=






−
+
=
Solid diffusion – Quartic approx (I)
34
( )
( )
earlier.
as
Same
.
5
3
3
5
3
:
@
5
3
5
3
0
0
:
0
@
5
3
3
5
3
1
5
3
5
3
3
1
3
1
2
3
2
3
1
1
2
5
3
1
1
2
2
5
3
1
1
2
2
4
2
1
1
2
1
1
2
2
2
5
3
0
2
2
3
2
2
2
1
1
2
2
1
1
2
2
B
A
r
j
r
r
B
r
A
j
r
r
r
r
B
r
A
r
c
D
r
r
B
r
A
r
c
D
r
t
f
r
t
f
r
r
B
r
A
r
c
D
r
r
r
B
Ar
r
c
D
r
r
r
j
B
A
r
c
D
r
r
r
r
r
r
dr
r
r
r
r
r
r
B
A
r
c
D
r
r
r
r
j
r
c
D
r
r
r
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
r
r
k
k
k
k
k
k
k
k
k
+
=
−
+
=
−
=
+
=


+
=


+
−
=
=
+
+
=


+
=










−
=
+
=










=
=
=
+
=










−
=










=
kr
k
k
k
k
kr
k
k
k
k
kr
k
k
k
k
k
k
kr
k
k
k
k
k
k
k
k
k
k
k
kr
k
kr
k
k
k
r
r
k
k
k
k
r
r
k
k
k
k
k
k
k
k
c
r
D
j
r
B
c
r
D
j
r
A
B
c
r
D
j
r
B
A
j
r
B
A
c
r
D
D
Br
D
Ar
r
r
D
B
r
D
A
c
r
c
c
r
r
r
dr
r
r
r
r
r
r
r
dr
rr
r
r
r
r
D
B
r
D
A
r
c
r
r
B
r
A
r
c
D
k
k
1
1
1
1
1
1
1
1
1
1
3
2
1
1
1
1
1
3
6
3
0
2
3
3
3
4
3
0
2
3
3
2
1
1
1
2
3
1
1
20
15
12
6
5
1
4
3
5
3
3
5
2
4
10
4
2
1
5
4
3
3
2
1
6
3
3
4
3
4
3
3
5
3
5
3
−
−
=
+
=
=
−
−
+
=
−
+
=
+
=
+
=



=
=
=
=
=
=
+
=


+
=




=
=
Solid diffusion – Quartic approx (II)
35
( )
( )
( ) ( )
( ) ( )
B
D
r
A
D
r
c
c
r
r
r
D
B
r
r
D
A
c
c
r
r
r
dr
r
r
r
r
r
r
r
dr
r
r
r
r
r
r
r
D
B
r
r
D
A
c
c
r
r
r
D
B
r
r
D
A
c
c
t
f
r
r
D
B
r
D
A
c
r
r
t
f
r
r
D
B
r
D
A
c
r
r
D
B
r
D
A
r
c
r
r
B
r
A
r
c
D
k
k
k
k
sk
k
k
k
k
k
k
k
k
sk
k
k
k
k
r
r
k
k
k
k
r
r
k
k
k
k
k
k
sk
k
k
k
k
k
k
sk
k
k
k
k
k
k
sk
k
k
k
k
k
k
k
k
k
k
k
k
k
k
1
2
1
2
1
4
4
2
1
2
2
1
1
4
7
3
0
2
4
3
4
2
5
3
0
2
2
3
2
4
4
2
1
2
2
1
1
4
4
2
1
2
2
1
1
4
2
1
2
1
4
2
1
2
1
1
3
2
1
1
1
2
3
1
1
35
15
7
3
20
5
3
6
7
3
7
3
3
5
3
5
3
3
20
6
20
6
20
6
:
@
20
6
5
3
5
3
−
−
=






−
−






−
−
=
=
=
=
=
=
=
−
−
−
−
=
−
−
−
−
=
−
+
+
=
=
+
+
=
+
=


+
=




=
=
r
c
r
j
D
r
c
c
r
c
r
j
D
r
c
c
r
c
r
D
j
r
D
r
c
c
r
c
r
D
j
r
B
A
r
c
r
D
j
r
B
r
c
r
D
j
r
B
r
c
r
D
j
r
A
B
A
D
r
c
c
k
k
k
k
k
k
sk
k
k
k
k
k
sk
k
k
k
k
k
k
k
k
sk
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
sk
k


+
−
=


−
+
=










+
−
−
=


+
−
=
+


−
−
=


−
−
=


+
=






+
−
=
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
2
1
35
8
35
35
8
35
7
24
7
3
15
7
24
7
3
7
3
7
60
7
45
7
3
20
15
12
6
7
3
15
Solid diffusion – Quartic approx (III)
36
k
kr
k
k
k
k
k
k
k
k
r
r
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
r
B
dt
c
d
r
r
B
r
c
dt
d
r
r
B
r
c
t
r
r
r
dr
rr
r
r
r
r
B
r
c
t
r
r
B
r
c
D
r
r
r
r
r
r
B
A
r
c
D
r
r
r
r
c
D
r
r
r
r
r
c
t
t
c
r
r
c
D
r
r
r
t
c
r
r
c
D
r
r
r
t
c
k
2
3
4
3
2
2
4
3
4
3
3
2
2
1
1
1
1
1
1
2
1
2
1
4
3
0
2
3
2
1
2
1
1
2
2
2
2
1
1
2
2
1
1
2
2
1
1
1
1
2
2
1
1
1
2
2
1
=
=










=










=
=
=
=










=


















+
=




























=










=


























=














=


=
k
k
kr
k
k
kr
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
j
r
c
r
D
dt
c
d
r
c
r
D
j
r
r
c
dt
d
r
c
r
D
j
r
B
r
r
c
dt
d
r
B
r
c
dt
d
r
c
r
D
j
r
B
2
1
2
1
1
1
2
1
2
1
1
2
1
2
1
1
1
1
2
45
30
30
2
45
30
2
45
2
3
2
3
20
15
−
=
+


−
−
=












−
−
=
=










=












−
−
=
Uniform rate ROM – Model overview
37
( ) ( ) ( )
n
n
n
n
Fl
a
t
I
t
j
t
j =
 ( ) ( ) ( )
p
p
p
p
Fl
a
t
I
t
j
t
j −
=

( )
( )
( ) ( ) 







+
=

+
=
=









=
−

−







−

−

=
−
=
−
−
0
1
2
1
0
1
2
1
2
1
0
5
.
0
2
5
.
0
5
.
0
max
0
2
sinh
2
,
0
,
0
2
sinh
2
2
sinh
2
n
n
n
n
n
n
n
n
n
sn
sn
n
s
n
n
j
j
F
RT
t
x
U
t
x
j
j
F
RT
U
U
RT
F
j
j
c
c
c
c
k
j
2
2
1
1
1
2
45
30
n
n
n
rn
n
rn
r
j
r
c
D
dt
c
d
−
=
+
n
n
n
rn
n
n
sn
D
r
j
c
r
c
c
1
1
1
35
35
8
−
+
=
p
p
p
r
j
dt
c
d 3
1
−
=
2
2
1
1
1
2
45
30
p
p
p
rp
p
rp
r
j
r
c
D
dt
c
d
−
=
+
p
p
p
rp
p
p
sp
D
r
j
c
r
c
c
1
1
1
35
35
8
−
+
=
( )
( )
( ) ( ) 







+
=

+
=
=









=
−

−







−

−

=
−
=
−
−
0
1
2
1
0
1
2
1
2
1
0
5
.
0
2
5
.
0
5
.
0
max
0
2
sinh
2
,
,
2
sinh
2
2
sinh
2
;
p
p
p
p
p
p
p
p
p
sp
sp
p
s
p
p
j
j
F
RT
t
L
x
U
t
L
x
j
j
F
RT
U
U
RT
F
j
j
c
c
c
c
k
j
Positive electrode
Negative electrode
Diffusion approximations
( ) ( ) ( )
n
n
n
n
sn
D
r
t
j
t
c
t
c
1
1
5
−
= ( ) ( )
( )
p
p
p
p
sp
D
r
t
j
t
c
t
c
1
1
5
−
=
Parabolic Quartic Parabolic Quartic
n
n
n
r
j
dt
c
d 3
1
−
=

More Related Content

PDF
Chemical_Engineering_Practice_IIT_Ropar.pdf
PDF
IIT_Tirupati_Chemical_Engineering_Practice
PPTX
Battery_Final_Presentation_SOC_Est.pptx
PDF
SOC estimation using electro chemical model and Extended Kalman Filter
PPT
Chemistry chapter 21
PPTX
14.0 Electrochemical PowerPoint FITB.pptx
PDF
T19 IB Chemistry Redox
PPT
Chapter 20
Chemical_Engineering_Practice_IIT_Ropar.pdf
IIT_Tirupati_Chemical_Engineering_Practice
Battery_Final_Presentation_SOC_Est.pptx
SOC estimation using electro chemical model and Extended Kalman Filter
Chemistry chapter 21
14.0 Electrochemical PowerPoint FITB.pptx
T19 IB Chemistry Redox
Chapter 20

Similar to Uniform_Reaction_Rate_ROM_slides_2013.pdf (20)

PPT
Chapter_20_Electrochemistry John D. Bookstaver.ppt
PPT
Basics of electrochemistry with the FRET
PDF
Electrochemistry
PDF
Model based battery management system for condition based maintenance confren...
PPTX
Electrochemistry
PDF
ISFragkopoulos - Seminar on Electrochemical Promotion
PDF
Fragkopoulos, 2014 - PhD Thesis
PPT
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
PDF
Electrochemistry
PPTX
.18551507-046_CHEM-416_1645176262000.pptx
PDF
Generación y Almacenamiento Energético con métodos Electroquímicos
PDF
Development of Multi-level Reduced Order MOdeling Methodology
PDF
MultiLevelROM_ANS_Summer2015_RevMarch23
PPTX
electrochemistry
PDF
Electrochemistry
PDF
Basic concepts in electrochemistry
PPT
AP_Chapter_18_Electrochemistry.ppt
PPTX
Topic 2_1_Mass Tranasfer_Electric Double Layer_April 2020.pptx
PDF
Hsslive-xii-chem-slide-ch-3. Electrochemistry (1).pdf
PPT
Chapter_20_Electrochemistry John D. Bookstaver.ppt
Basics of electrochemistry with the FRET
Electrochemistry
Model based battery management system for condition based maintenance confren...
Electrochemistry
ISFragkopoulos - Seminar on Electrochemical Promotion
Fragkopoulos, 2014 - PhD Thesis
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Electrochemistry
.18551507-046_CHEM-416_1645176262000.pptx
Generación y Almacenamiento Energético con métodos Electroquímicos
Development of Multi-level Reduced Order MOdeling Methodology
MultiLevelROM_ANS_Summer2015_RevMarch23
electrochemistry
Electrochemistry
Basic concepts in electrochemistry
AP_Chapter_18_Electrochemistry.ppt
Topic 2_1_Mass Tranasfer_Electric Double Layer_April 2020.pptx
Hsslive-xii-chem-slide-ch-3. Electrochemistry (1).pdf
Ad

More from kumarvs3 (8)

PDF
Mechanical_Engineers_Upskilling_into_AI_ML_DS.pdf
PDF
Mechanical_Engineers_Upskilling_into_AI_ML_DS.pdf
PDF
Thermodynamics_From_Scratch_to_Surface_II.pdf
PDF
Thermodynamics_From_Scratch_to_Surface_I.pdf
PDF
IIITDM_Kanchee_Senthil_Dec2024_Part2.pdf
PDF
IIITDM_Kanchee_Senthil_Dec2024_Part1.pdf
PDF
Data Reconciliation for Chemical Process Systems
PDF
Data Reconciliation for Chemical Process Systems
Mechanical_Engineers_Upskilling_into_AI_ML_DS.pdf
Mechanical_Engineers_Upskilling_into_AI_ML_DS.pdf
Thermodynamics_From_Scratch_to_Surface_II.pdf
Thermodynamics_From_Scratch_to_Surface_I.pdf
IIITDM_Kanchee_Senthil_Dec2024_Part2.pdf
IIITDM_Kanchee_Senthil_Dec2024_Part1.pdf
Data Reconciliation for Chemical Process Systems
Data Reconciliation for Chemical Process Systems
Ad

Recently uploaded (20)

PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
737-MAX_SRG.pdf student reference guides
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPT
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
PPTX
communication and presentation skills 01
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT
Total quality management ppt for engineering students
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Nature of X-rays, X- Ray Equipment, Fluoroscopy
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Automation-in-Manufacturing-Chapter-Introduction.pdf
737-MAX_SRG.pdf student reference guides
III.4.1.2_The_Space_Environment.p pdffdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Exploratory_Data_Analysis_Fundamentals.pdf
Abrasive, erosive and cavitation wear.pdf
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
communication and presentation skills 01
UNIT 4 Total Quality Management .pptx
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Total quality management ppt for engineering students
Fundamentals of safety and accident prevention -final (1).pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT

Uniform_Reaction_Rate_ROM_slides_2013.pdf

  • 1. Model reduction concepts & Voltage predictions Senthil Kumar V. Chemical Reactions Modeling India Science Lab, GM Global R&D 1 Reduced order model for a single cell - with uniform reaction rate approximation
  • 2. Detailed 1D Electro-chemical model for a single cell e- e- Separator Lithium Metal Oxide Graphite - + LiC6 →x Li++Li1-xC6+x e- x Li++ LiMO2 +x e- → Li1+xMO2 Li+ Discharge of a Lithium Metal Oxide cell “Current” Loss of electrons  Oxidation  Anode Gain of electrons  Reduction  Cathode Load 2 Solid Electrolyte Electrolyte Solid Electrolyte 5 phases in 3 regions (n, s & p) Isothermal 1D model: Mass and Charge balances for each phase. 5 phases x 2 balances =10 PDEs Mass balance: Diffusion equation Charge balance: Ohm’s law & Current balance Negative electrode n n n Fj a x x − =          −   1 1  ( ) 1 2 2 2 2 n n n n j t a x c D x t c + − +           =    ( ) I x c t F RT x x n n n =   − +    −    − + 2 2 2 2 1 1 ln 1 2             =   r c D r r r t c n n n 1 1 2 2 1 1 Solid phase current balance Liquid phase mass balance Total current balance Solid phase mass balance Separator           =   x c D x t c s s 2 2 2 2  ( ) I x c t F RT x s s =   − +    − + 2 2 2 2 ln 1 2  Liquid phase mass balance Total current balance Positive electrode p p p Fj a x x − =          −   1 1              =   r c D r r r t c p p p 1 1 2 2 1 1 ( ) p p p p j t a x c D x t c + − +           =   1 2 2 2 2  ( ) I x c t F RT x x p p p =   − +    −    − + 2 2 2 2 1 1 ln 1 2   Solid phase current balance Liquid phase mass balance Total current balance Solid phase mass balance
  • 3. Need for Model Reduction • The single cell isothermal model has 10 coupled PDEs. Difficult to use for packs, on-board control , calendar / cycle life predictions, detailed parameters estimation, inclusion of complex degradation mechanisms etc. • The reduced order model should preferably comprise of first order ODEs. Such a mathematical structure will automatically ensure minimal computational requirement and numerical stability. If the first order ODEs turn out to be linear, optimization during parameter (re-)estimations become robust. • Equivalent circuit based single cell models are popular for on-board control due to their first order ODEs structure, and the consequent properties. Detailed electrochemical model should be reduced to a similar structure to make the physics based model attractive for on-board applications. • Need a first order ODEs based model which – Is grid / system size independent: Unlike Method of lines or PDEs discretized into ODEs. – Has physically relevant internal variables: Like Lyapunov-Schmidt model reduction (here: interfacial electrolyte fluxes and concentrations). – Has systematic mathematical approximations rather than phenomenological approximations: Unlike neglecting electrolyte potential /concentration variations - Single particle model. 3 n s p
  • 4. `` `` Model reduction methodology (I): Volume averaging 4 • Volume averaging a PDE yields an ODE. Hence volume averaging is the chosen methodology for model reduction. On volume averaging information about spatial gradients or profiles are lost. This information is recovered by profile based approximation in the next step. ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n in n n n n n n in n n n n n n n n in l x n n n l x n n n n l x n n l x n n n l x n n l x n n n n n j l a t q dt c d l j a t l q dt c d j t a j t a RHS l q x c D l dx x c D x l RHS dt c d dx c l dt d dx t c l dx x f l Al dx x f A f j t a x c D x t c n n n n n n + + + + = = = = = = + − + − = − + − = − = − = − =         =           = =         =   = = = − +           =        1 1 1 1 2 1 1 1 1 LHS 1 1 2 2 2 2 2 2 2 0 2 2 2 2 0 2 2 2 0 2 0 2 2 0 0 2 2 2 2       e- e- Separator Lithium Metal Oxide Graphite - + LiC6 →x Li++Li1-xC6+x e- x Li++ LiMO2 +x e- → Li1+xMO2 Li+ Discharge of a Lithium Metal Oxide cell “Current” Load Negative electrode Accumulation of Li+ in a slice of n-electrode = Difference in diffusive out-flow and in-flow + Generation of Li+ in that slice. Accumulation of Li+ in the whole of n-electrode = - Out flux from the interface + Total generation of Li+ within the n-electrode. Negative electrode q2in Interfacial flux is a physically relevant internal variable
  • 5. `` `` Model reduction methodology (II): Profile based approximations 5 • The profile approximations are constructed such that volume averages are respected. The profiles are expressed in terms of physically relevant internal variables. Eventually equations (ODEs or algebraic equations) are derived for these internal variables. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n in in n n n in n n n n n in n n n in n n in n n n n n l x n n n n n in in n in n n in n n j l a t q dt dq D l dt dc l j l a t q dt c d l t q D l t c t c l l l x dx x f l f x l D l t q t c t x c l q x c D x l q x c D x n + + = − + − = + − + − = + = = =  = − + = −            −             1 3 1 3 3 3 1 1 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 0 2 2 2 2 2 2 2 2 2 2 2 2    2. Volume average respecting lowest order profile approximation 1. Exact result from volume averaging 3. Profile is expressed in terms of interfacial flux & concentration 4. Average concentration depends only on interfacial flux & concentration 5. Volume averaged diffusion equation, exact result 6. An evolution equation for the interfacial flux & concentration n s p c2in & q2in
  • 6. 6 Nonlinear PDEs Linear ODEs Nonlinear algebraic expressions Approximations Consistent Reaction rate Butler – Volmer Kinetics Electrolyte concentration field Electrolyte potential field Solid potential field Solid phase concentration field Electrolyte phase Solid phase Linear ODEs Algebraic expressions Linear ODEs Algebraic expressions Algebraic expressions Uniform reaction rate from external current Diffusion approx as in Single particle model Model reduction methodology (III): Smart decomposition 1. Nonlinearity in a system is not bothersome if it can be relegated to algebraic evaluations. 2. Coupled linear ODEs can be solved by time marching without iteration, unlike non-linear coupled PDEs which require iteration to achieve a consistent solution. It is better to have a time-marchable structure for on-board algorithm. ( ) ( ) p p p Fl a t I t j − = ( ) ( ) n n n Fl a t I t j =
  • 7. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , ln 2 , 2 ln 2 , 2 , 2 1 3 3 2 ; 1 3 6 2 x l l t I x l t I t c t x c t t x l t I t c t c t l t x l D l t q t c t x c D q q l c c q q c c l l l D l D l D l l l l l D l D l D l l n n n n n in in s s mid in n in n n n in in s ip in s ip in ip ip in in ip p p s s n n p p p s s s s n s n ip p p s s n n n n n s s s s n s n in − − − +          +  =  +        =  =  − + = + + = + + = + +         − + − = + +         + + − =                    Model reduction – Bird’s eye view 7 ( ) ( ) p p p ip ip p p p ip p p in in p p n n n in ip s n s n ip n n in n n n s n n s in n n j l a t q dt dq D l l dt dq l j l a t q dt dq D l l l dt dq D l D l l l + + − + =         − + − + − =         + +         + + 1 3 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2             p p p R j dt c d 3 1 − = 2 2 1 1 1 2 45 30 n n n rn n rn R j R c D dt c d − = + 2 2 1 1 1 2 45 30 p p p rp p rp R j R c D dt c d − = + n n n R j dt c d 3 1 − = 1. Two coupled ODEs for the interfacial fluxes, obtained by volume averaging and profile based approximations. 2. Quartic diffusion approximations for diffusion within active material spheres. Two coupled ODEs for each electrode. 3. Rest are algebraic expressions 5. Model reduction achieved with uniform reaction rate approximation: 10 coupled PDEs to 6 linear ODEs. 4. ROM predicts the internal field profiles too, not just the cell voltage. Negative Positive 2 ODEs 4 ODEs
  • 8. 1C discharge prediction by uniform rate ROM 8 Fig. 1 Max abs error  9 mV Fig. 2 Fig. 3 Max % error  0.27 %
  • 9. Max % error  0.2% Fig. 4 Fig. 2 Voltage recovery at the beginning of rest periods are predicted well. Fig. 3 Max abs error  10 mV 2000 s 1C discharge, Then 300 s rest, Then 2000s 1C charge, Then rest till 8000 s. 1C pulse prediction by uniform rate ROM 9 Fig. 1
  • 10. 7C discharge prediction by uniform rate ROM 10 Model enhancement underway to reduce errors at high current discharge & charge. Fig. 1 Max abs error  80 mV Fig. 2 Fig. 3 Max % error  3.2%
  • 11. Max % error  2% Fig. 4 Model enhancement underway to reduce errors at high current discharge & charge. Fig. 2 Max abs error  80 mV Voltage recovery at the beginning of rest periods are predicted well. Fig. 3 10 s 7C discharge, Then 40 s rest, Then 10s 7C charge, Then 60 s rest. 7C pulse prediction by uniform rate ROM 11 Fig. 1
  • 12. Back up: Detailed derivation 12
  • 13. Electro-chemical reactions in a Lithium Metal Oxide cell e- e- Separator Lithium Metal Oxide Graphite - + LiC6 →x Li++Li1-xC6+x e- x Li++ LiMO2 +x e- → Li1+xMO2 Li+ Discharge of a Lithium Metal Oxide cell “Current” Loss of electrons  Oxidation  Anode Gain of electrons  Reduction  Cathode Load e- e- Separator Lithium Metal Oxide Graphite - + x Li++Li1-xC6+x e- → LiC6 Li1+xMO2 → x Li++ LiMO2 +x e- Li+ Charge of a Lithium Metal Oxide cell “Current” Loss of electrons  Oxidation  Anode Gain of electrons  Reduction  Cathode Charger Compound Oxidation state of M Check LiMO2 +3 +1+3-2*2 = 0 Li2MO2 +2 +1*2+2-2*2 = 0 Li1+xMO2 y = +3-x +1*(1+x)+y-2*2 = 0 M: Co, Ni, Mn Manganese can have +2 to +7 oxidation states LiMn2O4  Mn+3.5 , KMnO4  Mn+7 Basic mnemonics LEO – Loss of Electron is Oxidation GER – Gain of Electron is Reduction AnOx – Anode is where Oxidation occurs RedCat – Cathode is where Reduction occurs Process – Electrode Energy consumer Energy producer Reduction – Cathode - + Oxidation - Anode + - 13
  • 14. (I) Solid phase current balances in n & p regions 14 n s p
  • 15. Solid phase current balance equations e- e- Separator Lithium Metal Oxide Graphite - + Li+ “Current” x=0 x=ln x=ln+ls x=L=ln+ls+lp 15 Positive electrode Negative electrode 0 and : BCs 1 1 0 1 1 1 1 =    − =    − − =          −   = = n l x n x n n n n x I x Fj a x x    I x x Fj a x x L x p l l x p p p p s n =    − =    − − =          −   = + = 1 1 1 1 1 1 and 0 : BCs    Convention: Discharge current is positive. Subscripts Notation: n – Negative electrode p – Positive electrode s – Separator 1- solid phase 2- liquid phase ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ρ S E J E E J R V V A I D m 1 m m V/m A/m2 : Continuum : 1 1 -  =   − =   − = =   − =  =   =      • Cell reactions generate or consume electrons. Hence the gradient of current is proportional to the reaction rate.                     − =                −   s m mol j mol C F m m a m A x x 2 3 2 3 1  Separator has ionic conduction only.
  • 16. 16 Volume averaging of solid phase current balances Negative electrode: 0 and : BCs 1 1 0 1 1 1 1 =    − =    − − =          −   = = n l x n x n n n n x I x Fj a x x    ( ) ( ) n n n n n n n n n l x n l x n n l x n Fl a t I t j l j F a I l j F a x dx j F a x d n n n =  = − =          −  − =          − = = =   0 1 1 0 0 1 1   Positive electrode: I x x Fj a x x L x p l l x p p p p s n =    − =    − − =          −   = + = 1 1 1 1 1 1 and 0 : BCs    ( ) ( ) p p p p p p p p p l l l l l x p l l l l l x p p l l l l l x p Fl a t I t j l j F a I l j F a x dx j F a x d p s n s n p s n s n p s n s n − =  − = − =          −  − =          − + + + = + + + = + + + =   1 1 1 1   e- e- Separator LMO Graphite - + Li+ “Current” x=0 x=ln x=ln+ls x=L=ln+ls+lp ( ) ( ) ( ) ( )     + = + = = = = = = = L l l x p p L l l x p l x n n l x n s n s n n n dx x f l Al dx x f A f dx x f l Al dx x f A f 1 1 0 0 ( ) ( ) ( ) ( ) ( ) ( ) 0 = + − = = t j l a t j l a F t I t j l a F t I t j l a p p p n n n p p p n n n Volume averaging results are exact, but information on spatial variations are lost. No accumulation of electrons. Hence average rates are coupled at any instant.
  • 17. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) I x x l l t I x t f l l t I x t f x l t I x l t I t j F a x x Fj a x x t j t x j Fl a t I t j x n n n n n n l x n n n n n n n n n n n n n n n n =    − − =    − + − =  =    − + − =    − − = −           −   − =          −    = = = 0 1 1 1 1 1 1 1 1 1 1 1 1 Satisfies 0 0 , : ion approximat rate reaction Uniform       17 Solid phase current in electrodes ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )   ( ) t I x l l x l t I x t f l l l t I x t f x l t I x l t I t j F a x x Fj a x x t j t x j Fl a t I t j L x p s n p p s n p l l x p p p p p p p p p p p p p p p s n =    − + − =    − + + =  =    − + =    − = −           −   − =          −    − = = + = 1 1 1 1 1 1 1 1 1 1 1 1 Satisfies 0 0 , : ion approximat rate reaction Uniform       Uniform reaction rate approximation will recover the volume average evolution equations. It decouples the potential and concentration fields, enabling a step-by-step solution of all the fields. The volume average contributions give the leading order transient solution, which contains the steady state solution within it. It is possible to derive corrections by introducing the deviations from volume average. Corrections will be attempted in future. ( ) ( ) ( ) t x j t j t x j d n n n , , + =
  • 18. (II) Liquid phase mass balances in n, s, & p regions 18 n s p
  • 19. Liquid phase mass balance (or electrolyte diffusion) equations ( ) ( ) ( )   ( ) 0 and , , : BCs , 0 , : IC 1 2 2 2 2 2 2 2 20 2 2 2 2 2 =   − =   − = + = − +           =   = + = + + + L x p ip l l x p ip s n p p p p x c D q x c D c t l l c c x c j t a x c D x t c s n  Positive electrode ( ) ( ) ( ) , , , 0 : BCs , 0 , : IC 1 2 2 2 2 2 0 2 2 20 2 2 2 2 2 in l x n in n x n n n n n q x c D c t l c x c D c x c j t a x c D x t c n =   − = =   − = − +           =   − = − = +  Negative electrode ( ) 20 2 2 2 2 2 0 , : IC c x c x c D x t c s s =           =    Separator e- e- Separator Lithium Metal Oxide Graphite - + Li+ “Current” x=0 x=ln x=ln+ls x=L=ln+ls+lp 19 Concentration and flux continuity conditions at N-S interface ( ) ( )   ( ) . , , , , , : BCs 2 2 2 2 2 2 2 2 2 2 ip l l x s ip s n in l x s in n q x c D c t l l c q x c D c t l c s n n =   − = + =   − = − + + = − = + Continuity conditions at N-S interface Continuity conditions at S-P interface Concentration and flux continuity conditions at S-P interface Electrolyte concentration is a continuous field through negative electrode, separator and positive electrode regions.
  • 20. Volume averaged Li mass balance in electrolyte phase 20 ( ) ( )   = = = = n n l x n n l x n dx x f l Al dx x f A f 0 0 1 ( ) ( ) ( ) ( ) ( ) ( ) p p p ip p p p ip in s s s n n n in n n n n n n in n n l x n n n n n l x n n n l x n n l x n n l x n n n n n j l a t q dt c d l q q dt c d l j l a t q dt c d l j t a l q j t a x c D l j t a dx x c D x l RHS dt c d dx c l dt d dx t c l dx j t a x c D x t c l n n n n n + + + + = + = = = = + − + = − = − + − = − + − = − +         = − +           = =         =   =       − +           =       1 1 1 1 1 1 1 1 LHS 1 1 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 0 2 2 2 0 2 0 2 2 0 2 2 2 2        `` Negative electrode Positive electrode Separator e- e- Separator Lithium Metal Oxide Graphite - + Li+ “Current” x=0 x=ln x=ln+ls x=ln+ls+lp ( ) 0 : balance e electrolyt Overall 2 2 2 2 2 2 20 2 2 2 2 2 2 2 2 2 = + + + + = + + dt c d l dt c d l dt c d l c l l l A c Al c Al c Al p p p s s s n n n p p s s n n p p p s s s n n n          Interfacial fluxes appear in the volume averaged equations, hence they are identified as physically relevant variables. 0 0 0 0 0 : discharge For 0 2 0 2    − =    =  = = t p p p p t n n n n dt c d Fl a I j dt c d Fl a I j I 0 = + p p p n n n j l a j l a
  • 21. 21 Lowest order approximation in negative electrode ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t f l D l q c l x t f x D l q t x c x D l q x c x c x l q x c D t f t f l l q q l x t f x l q x c D l q x c D x l q x c D x j l a t q dt c d l j t a x c D x t c n n n in in n n n in n n in x n in n n n in in n n in n n in n n in n n n n in n n n n n n n + − = = + − = − =   =    − =   =  + − = − = + − =   −            −            − + − = − +           =   = + + 2 : @ 2 , 0 Satisfies 0 : @ 1 1 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n in in n n n in n n in n n in n n in n in n n n n in in n n n n l x n n n n n in in j l a t q dt dq D l dt dc l dt dq D l dt dc dt c d D q l c c l D l q c t x c l l l x dx x f l f x l D l t q t c t x c n + = − + − = + + = + = + = = =  = − + =  1 3 3 balance. e electrolyt overall the in later used be Will 3 3 2 2 , 3 3 1 1 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 0 2 2 2 2 2 2   n s p
  • 22. Lowest order approximation in positive electrode ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t f l D l q c l l x t f x L D l q c x L D l q x c q x c D x L l q x c D t f L l q L x t f x l q x c D l q x c D x l q x c D x j l a t q dt c d l j t a x c D x t c p p p ip ip s n p p ip p p ip ip l l x p p ip p p ip p ip p p ip p p ip p p p p ip p p p p p p p s n + = + = + − = − − =   =   −  − − =   + = = + =                         − + = − +           =   + = + + 2 : @ 2 Satisfies 0 : @ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   ( ) ( ) ( ) ( )   ( ) ( ) ( ) ( ) p p p ip ip p p p ip p p ip p p ip p p ip p ip p p p p ip ip p p L l l x p p p p p ip ip j l a t q dt dq D l dt dc l dt dq D l dt dc dt c d D q l c c l D l q c t x c l x L dx x f l f x L l D l t q t c t x c s n + + = − + = − − = − = − = = −  = − − − =  1 3 3 3 3 2 2 , 3 1 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   n s p 22
  • 23. Electrolyte concentration profile in the separator 23 ( ) ( ) ( ) ( ) ( ) ( ) ( ) t f l D q c l x t f l x D l q q x D q c l x l D q q D q x c q x c D l x l q q q x c D t f l l q q q l x t f x l q q x c D l q q x c D x l q q x c D x q q dt c d l x c D x t c n s in in n n s s ip in s in n s s ip in s in ip l l x s n s ip in in s n s ip in in n s ip in s s ip in s s ip in s ip in s s s s s s n + − = = + −         − + − = −         − + − =   =   −  −         − + − =   +         − = − = +         − =   −             −            − =           =   + = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 : @ 2 Satsifies : @   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ip in ip s s s in s s s in s s ip s s in s s in s s ip s s in s in s s ip in s s in s in s s s s s n s s s s n l l l x s s s ip in s ip in s ip s s in s in ip s ip in s s in s in ip s n n s s ip in n s in in q q dt dq D l dt dq D l dt dc l dt dq D l dt dq D l dt dc dt c d D q l D q l c c D q q l D q l c c l l l l x l l l l x dx x f l f D q q l c c D q l D q l c c D q q l D q l c c l l x l x D l q q l x D q c t x c s n n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 3 6 3 6 3 6 2 3 3 1 , 2 2 1 1 2 2 2 2 : @ 2 , − = − − − − = − − = − + − = = = − = = −  = + = − − − = − + − = + = −         − + − − =  + =    n s p An inter-relationship between the four internal variables, at any time.
  • 24. Overall electrolyte balance – Lowest order approximation 24 ( ) ( ) ( ) 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 2 2 2 2 2 2 2 2 2 6 3 3 3 3 ; 6 3 ; 3 c l l l q D l D l c l q D l D l c l l D q l c c D q l D q l c c D q l c c c l l l c l c l c l p p s s n n ip s s s p p p ip p p in s s s n n n in s s n n p ip p ip p s ip s s in s in s n in n in n p p s s n n p p p s s s n n n                 + + =         + − +         − + + − = − − = + = + + = + + `` ( ) ( ) ( ) ( ) ( ) 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 3 3 3 2 1 3 1 3 c l l l q D l D l c l q D l D l c l l D q q l c c j l a t q dt dq D l dt dc l j l a t q dt dq D l dt dc l p p s s n n ip s s s p p p ip p p in s s s n n n in s s n n s ip in s ip in p p p ip ip p p p ip p p n n n in in n n n in n n               + + =         + − +         − + + + = − − + = − − + − = + + + Four unknowns & Four equations ( ) ( ) ( ) ( ) t q t c t q t c ip ip in in 2 2 2 2 , , ,
  • 25. (4 unknowns x 4 equations) → (2 unknowns x 2 equations) 25 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) p p p ip ip p p p ip p p in in p p n n n in ip s n s n ip n n in n n n s n n s in n n ip s s ip in s s in in ip s s in s s ip in ip ip in in ip p p s s n n p p p s s s s n s n ip p p s s n n n n n s s s s n s n in ip ip in in ip p p s s n n ip s s s p p p ip p p in s s s n n n in s s n n s ip in s ip in s ip in s ip in p p p ip ip p p p ip p p n n n in in n n n in n n j l a t q dt dq D l l dt dq l j l a t q dt dq D l l l dt dq D l D l l l dt dq D l dt dq D l dt dc dt dq D l dt dq D l dt dc dt dc dt dq dt dq dt dc l l l D l D l D l l l l l D l D l D l l q q c c c l l l q D l D l c l q D l D l c l l D q q l c c D q q l c c j l a t q dt dq D l dt dc l j l a t q dt dq D l dt dc l + + + + − + =         − + − + − =         + +         + +         + +         + =  + + = + = + +         − + − = + +         + + − = + + = + + =         + − +         − + + + + =  + = − − + = − − + − = + 1 3 1 2 3 2 2 2 2 2 1 3 3 2 ; 1 3 6 2 6 3 3 3 2 2 1 3 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                               `` ( ) ( ) ( ) ( ) t q t c t q t c ip ip in in 2 2 2 2 , , , ( ) ( ) t q t q ip in 2 2 ,
  • 26. (III) Total current balances in n, s, & p regions 26 n s p
  • 27. Total current balance Positive electrode Negative electrode Separator e- e- Separator Lithium Metal Oxide Graphite - + Li+ “Current” x=0 x=ln x=ln+ls x=L=ln+ls+lp ( ) ( ) ( ) ( ) t I x t t l x I x c t F RT x x in l x n in n x n n n n n 2 2 2 2 2 0 2 2 2 2 2 2 1 1 and , , 0 : BCs ln 1 2 =    −  =  =    − =   − +    −    − = = +      ( ) ( ) ( )+ − + − + = + = = = +    − =    −    − =    − =   − +    − s n s n n n l l x p l l x s l x s l x n s s x x x x I x c t F RT x 2 2 2 2 2 2 2 2 2 2 2 2 and : BCs ln 1 2       ( ) ( ) ( ) 0 and : BCs ln 1 2 2 2 2 2 2 2 2 2 2 2 1 1 =    −    − =    − =   − +    −    − = + = + = + + − L x p l l x p l l x s p p p x x x I x c t F RT x x s n s n       27 0 : Newman Reference, 2 / 2 =  + = s n l l x Ohmic current Migrational current Diffusional current 0 : Venkat 0 : Comsol : styles Reference Other 2 0 1 =  =  = = L x x Electrolyte potential is a continuous field through the three regions. Hence, liquid potential and migrational current continuities apply at the interfaces. ( ) + − =  t F RT 1
  • 28. Liquid potential in the separator 28 ( ) ( ) ( )   ( ) ( ) ( ) ( )             + − −        =  +       + −  =       +    + −  =  −    =    =    +    − + = 2 , ln 2 , 2 ln 2 0 , 2 0 : Reference ln 2 , ln 2 ln 2 2 2 2 2 2 2 2 2 2 / 2 2 2 2 2 2 2 2 2 2 2 s n s mid s n s mid s n mid l l x s s s s l l x I t c t x c t x t f l l I t c t l l c c t f x I c t x I x c x I x c x s n       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t c t q D t I x t I t c t q D t I x t I x c c I x ip ip s s l l x s ip in in s s l x s in s s s n n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2  + =    − =  + =    − =    − =    − + = =       Liquid current & potential continuities ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) s s mid ip s n ip s s mid in n in l t I t c t c t l l t l t I t c t c t l t 2 2 2 2 2 2 2 2 2 2 2 ln 2 , 2 ln 2 ,   −        = +  =  +        =  =  ( ) ( ) ( ) ( ) ip s s in s s in s n mid n s s ip in n s in in q D l q D l c t l l c t c l x D l q q l x D q c t x c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 8 3 , 2 2 , − − =       + = −         − + − − =
  • 29. Liquid potential in the negative electrode 29 ( ) ( )   ( ) ( )   ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n in in n n n n n in in n in n in n n n n n n n n n n n n n n n n n n n n brug n n n brug n n l t I t c t x c t t x x l l t I x l t I t c t x c t t x t f l t I c l x t f Ix c x l l t I I c x l l t I x I x c x x l l t I x x l l t I x I x c x x t c t t x c t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 , 0 ln 2 , 0 2 , ln 2 , ln 2 : At ln 2 2 ln 2 2 ln 2 2 ln 2 ,                      +         =  +  = =  − − − +          +  =  + =  +  − = + =  +  − − − =        +  − − −   =    +    −       − −   − =    − =    +    −    −    =
  • 30. Liquid potential in the positive electrode 30 ( ) ( )   ( ) ( )   ( ) ( ) ( )   ( ) ( )   ( ) ( ) ( )   ( ) ( ) ( )   ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ( ) ( )   ( ) ( ) ( ) ( ) ( ) p p ip ip s n p p s n p ip ip s n ip p ip p s n p p s n p p p s n p p p s n p s n p p p p p brug p p p brug p p l t I t c t L x c t t L x l l x l t I l l x t I t c t x c t t x t f l l t I c l l x t f x t I c l l x l t I t I c l l x l t I x t I x c x l l x l t I x l l x l t I x t I x c x x t c t t x c t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 , ln 2 , 2 , ln 2 , ln 2 : At ln 2 2 ln 2 2 ln 2 2 ln 2 ,                      −         =  +  = =  + − + + − −          +  =  + + =  +  − + = + =  +  − + − =            +  − + −   =    +    −           + −   + − =    − =    +    −    −    =
  • 31. (IV) Diffusion approximations & Solid phase potential in n & p regions 31 n s p
  • 32. Solid state diffusion within the electrode particles ( ) k r r k k r k k k k k k k j r c D r c D c r c p n k r c D r r r t c k =   − =   − = =           =   = = 1 1 0 1 1 0 1 1 1 1 2 2 1 and 0 : BCs , 0 , : IC . , ; 1 32 e- e- Separator Lithium Metal Oxide Graphite - + Li+ “Current” x=0 x=ln x=ln+ls x=ln+ls+lp Negative and Positive electrodes Volume averaged diffusion eqns ( ) ( )   = = = = k k r r k k r r dr r f r r r dr r f r f 0 2 3 3 0 2 3 3 4 4   flux. averaged volume electrode with particle electrode an in ion concentrat average of Evolution 3 : averaging volume electrode with However, . of functions are and general In 3 3 3 1 3 3 3 1 1 1 0 1 1 2 3 0 2 1 1 2 2 3 1 0 1 2 3 0 2 1 3 k k k k k k k k k k r r k k k r r k k k k r r k k r r k k r j dt c d x j c r j dt c d r j r c D r r dr r r c D r r r r RHS dt c d dr c r r t dr r t c r LHS k k k k − = − = − =         =           = =   =   = = = = =   
  • 33. Solid diffusion – Parabolic approx 33 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 5 3 0 2 2 3 2 0 2 3 2 2 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 3 1 1 2 3 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 5 3 5 3 3 3 2 2 2 : @ 2 0 0 : 0 @ 3 3 3 3 1 3 1 k k k r r k r r k k k k k sk k k k k k sk k k k k k sk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k r r r dr r r r r dr r f r r f r r r D j c c r r r D j c c t f r r D j c r r t f r r D j c r r D j r c r r D j r c r r j r c D r t f r t f r r j r c D r r r j r c D r r r j r c D r r r r j r c D r r r k k = = =  = − + = − = − + − = = + − =  − =   − =    − =   + − = = + − =   − =           −            − =             = = ( ) ( ) k k k k k k k k k sk k k k sk k k k k k sk k k k k k k sk k r j dt c d t j t x j D r j c c D r j c c r r D j c c r r r D j c c 3 , 5 5 5 2 2 5 3 2 1 1 1 1 1 2 1 1 2 2 1 1 − =  − = + =       + =       − + =
  • 34. Solid diffusion – Quartic approx (I) 34 ( ) ( ) earlier. as Same . 5 3 3 5 3 : @ 5 3 5 3 0 0 : 0 @ 5 3 3 5 3 1 5 3 5 3 3 1 3 1 2 3 2 3 1 1 2 5 3 1 1 2 2 5 3 1 1 2 2 4 2 1 1 2 1 1 2 2 2 5 3 0 2 2 3 2 2 2 1 1 2 2 1 1 2 2 B A r j r r B r A j r r r r B r A r c D r r B r A r c D r t f r t f r r B r A r c D r r r B Ar r c D r r r j B A r c D r r r r r r dr r r r r r r B A r c D r r r r j r c D r r r k k k k k k k k k k k k k k k k k k k k k k k k k k r r k k k k k k k k k + = − + = − = + =   + =   + − = = + + =   + =           − = + =           = = = + =           − =           = kr k k k k kr k k k k kr k k k k k k kr k k k k k k k k k k k kr k kr k k k r r k k k k r r k k k k k k k k c r D j r B c r D j r A B c r D j r B A j r B A c r D D Br D Ar r r D B r D A c r c c r r r dr r r r r r r r dr rr r r r r D B r D A r c r r B r A r c D k k 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 3 6 3 0 2 3 3 3 4 3 0 2 3 3 2 1 1 1 2 3 1 1 20 15 12 6 5 1 4 3 5 3 3 5 2 4 10 4 2 1 5 4 3 3 2 1 6 3 3 4 3 4 3 3 5 3 5 3 − − = + = = − − + = − + = + = + =    = = = = = = + =   + =     = =
  • 35. Solid diffusion – Quartic approx (II) 35 ( ) ( ) ( ) ( ) ( ) ( ) B D r A D r c c r r r D B r r D A c c r r r dr r r r r r r r dr r r r r r r r D B r r D A c c r r r D B r r D A c c t f r r D B r D A c r r t f r r D B r D A c r r D B r D A r c r r B r A r c D k k k k sk k k k k k k k k sk k k k k r r k k k k r r k k k k k k sk k k k k k k sk k k k k k k sk k k k k k k k k k k k k k k 1 2 1 2 1 4 4 2 1 2 2 1 1 4 7 3 0 2 4 3 4 2 5 3 0 2 2 3 2 4 4 2 1 2 2 1 1 4 4 2 1 2 2 1 1 4 2 1 2 1 4 2 1 2 1 1 3 2 1 1 1 2 3 1 1 35 15 7 3 20 5 3 6 7 3 7 3 3 5 3 5 3 3 20 6 20 6 20 6 : @ 20 6 5 3 5 3 − − =       − −       − − = = = = = = = − − − − = − − − − = − + + = = + + = + =   + =     = = r c r j D r c c r c r j D r c c r c r D j r D r c c r c r D j r B A r c r D j r B r c r D j r B r c r D j r A B A D r c c k k k k k k sk k k k k k sk k k k k k k k k sk k k k k k k k k k k k k k k k k k k k k k k k sk k   + − =   − + =           + − − =   + − = +   − − =   − − =   + =       + − = 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 35 8 35 35 8 35 7 24 7 3 15 7 24 7 3 7 3 7 60 7 45 7 3 20 15 12 6 7 3 15
  • 36. Solid diffusion – Quartic approx (III) 36 k kr k k k k k k k k r r k k k k k k k k k k k k k k k k k k k r B dt c d r r B r c dt d r r B r c t r r r dr rr r r r r B r c t r r B r c D r r r r r r B A r c D r r r r c D r r r r r c t t c r r c D r r r t c r r c D r r r t c k 2 3 4 3 2 2 4 3 4 3 3 2 2 1 1 1 1 1 1 2 1 2 1 4 3 0 2 3 2 1 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 1 = =           =           = = = =           =                   + =                             =           =                           =               =   = k k kr k k kr k k k k k k k k k k k k k k k k k k k k j r c r D dt c d r c r D j r r c dt d r c r D j r B r r c dt d r B r c dt d r c r D j r B 2 1 2 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 45 30 30 2 45 30 2 45 2 3 2 3 20 15 − = +   − − =             − − = =           =             − − =
  • 37. Uniform rate ROM – Model overview 37 ( ) ( ) ( ) n n n n Fl a t I t j t j =  ( ) ( ) ( ) p p p p Fl a t I t j t j − =  ( ) ( ) ( ) ( )         + =  + = =          = −  −        −  −  = − = − − 0 1 2 1 0 1 2 1 2 1 0 5 . 0 2 5 . 0 5 . 0 max 0 2 sinh 2 , 0 , 0 2 sinh 2 2 sinh 2 n n n n n n n n n sn sn n s n n j j F RT t x U t x j j F RT U U RT F j j c c c c k j 2 2 1 1 1 2 45 30 n n n rn n rn r j r c D dt c d − = + n n n rn n n sn D r j c r c c 1 1 1 35 35 8 − + = p p p r j dt c d 3 1 − = 2 2 1 1 1 2 45 30 p p p rp p rp r j r c D dt c d − = + p p p rp p p sp D r j c r c c 1 1 1 35 35 8 − + = ( ) ( ) ( ) ( )         + =  + = =          = −  −        −  −  = − = − − 0 1 2 1 0 1 2 1 2 1 0 5 . 0 2 5 . 0 5 . 0 max 0 2 sinh 2 , , 2 sinh 2 2 sinh 2 ; p p p p p p p p p sp sp p s p p j j F RT t L x U t L x j j F RT U U RT F j j c c c c k j Positive electrode Negative electrode Diffusion approximations ( ) ( ) ( ) n n n n sn D r t j t c t c 1 1 5 − = ( ) ( ) ( ) p p p p sp D r t j t c t c 1 1 5 − = Parabolic Quartic Parabolic Quartic n n n r j dt c d 3 1 − =