5.1 
Fundamental 
Identities 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 Identities 
 Basic Trigonometric Identities 
 Pythagorean Identities 
 Cofunction Identities 
 Odd-Even Identities 
 Simplifying Trigonometric Expressions 
 Solving Trigonometric Equations 
… and why 
Identities are important when working with trigonometric 
functions in calculus. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 2
Basic Trigonometric Identities 
Reciprocal Identites 
csc  
1 
sin 
sec  
1 
cos 
cot  
1 
tan 
sin  
1 
csc 
cos  
1 
sec 
tan  
1 
cot 
Quotient Identites 
tan  
sin 
cos 
cot  
cos 
tan 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 3
Pythagorean Identities 
2 2 
cos sin 1 
1 tan sec 
cot 1 csc 
  
  
2 2 
  
  
2 2 
   
 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 4
Example Using Identities 
Find sin and cos if tan  3 and cos  0. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 5
Example Using Identities 
Find sin and cos if tan  3 and cos  0. 
To find sin , use tan  3 
and cos  1 / 10. 
tan  
sin 
cos 
sin  cos tan 
sin  1 / 103 
sin  3 / 10 
1 tan2  sec2 
1 9  sec2 
sec   10 
cos  1 / 10 
Therefore, cos  1/ 10 and sin  3/ 10 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 6
Cofunction Identities 
Angle A: sin A  
y 
r 
tan A  
y 
x 
secA  
r 
x 
cosA  
x 
r 
cot A  
x 
y 
cscA  
r 
y 
Angle B: sin B  
x 
r 
tan B  
x 
y 
secB  
r 
y 
cosB  
y 
r 
cot B  
y 
x 
cscB  
r 
x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 7
Cofunction Identities 
  
    
        
    
    
        
    
    
        
    
sin cos cos sin 
    
2 2 
  
tan cot cot tan 
    
2 2 
  
sec csc csc sec 
    
2 2 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 8
Even-Odd Identities 
sin(x)   sin x cos(x)  cos x tan(x)   tan x 
csc(x)   csc x sec(x)  sec x cot(x)   cot x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 9
Example Simplifying by Factoring 
and Using Identities 
Simplify the expression cos3 x  cos x sin2 x. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 10
Example Simplifying by Factoring 
and Using Identities 
Simplify the expression cos3 x  cos x sin2 x. 
cos3 x  cos xsin2 x  cos x(cos2 x  sin2 x) 
 cos x(1) Pythagorean Identity 
 cos x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 11
Example Simplifying by Expanding 
and Using Identities 
Simplify the expression: 
csc x -1csc x 1 
cos2 x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 12
Example Simplifying by Expanding 
and Using Identities 
csc x 1csc x 1 
cos2 x 
 
csc2 x 1 
cos2 x 
(a  b)(a  b)  a2  b2 
 
cot2 x 
cos2 x 
Pythagorean Identity 
 
cos2 x 
sin2 x 
 
1 
cos2 x 
cot  
cos 
sin 
1 
 
sin2 x 
 csc2 x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 13
Example Solving a Trigonometric 
Equation 
Find all values of x in the interval 0,2  
that solve 
sin3 x 
cos x 
 tan x. 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 14
Example Solving a Trigonometric 
Equation 
sin3 x 
cos x 
 tan x 
sin3 x 
cos x 
 
sin x 
cos x 
Reject the posibility that cos2 x  0 
because it would make both 
sides of the original equation 
undefined. sin x  0 in the interval 
0  x  2 when x  0 and x   . 
sin3 x  sin x 
sin3 x  sin x  0 
sin x(sin2 x 1)  0 
sin x cos2  x 0 
sin x  0 or cos2 x  0 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 15
Quick Review 
Evaluate the expression. 
1. sin1 4 
5 
 
  
 
  
 
2. cos1  
12 
13 
  
 
  
Factor the expression into a product of linear factors. 
3. 2a2  3ab  2b2 
4. 9u2  6u 1 
Simplify the expression. 
5. 
2 
y 
 
3 
x 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 16
Quick Review Solutions 
Evaluate the expression. 
1. sin1 4 
5 
 
  
 
  
53.13o  0.927 rad 
 
2. cos1  
12 
13 
  
 
  
157.38o  2.747 rad 
Factor the expression into a product of linear factors. 
3. 2a2  3ab  2b2 2a  ba  2b 
4. 9u2  6u 1 3u 12 
Simplify the expression. 
5. 
2 
y 
 
3 
x 
2x  3y 
xy 
Copyright © 2011 Pearson, Inc. Slide 5.1 - 17

More Related Content

PPTX
Unit 5.4
PPTX
Unit 5.2
PPTX
Unit 5.6
PPTX
Unit 6.6
PPTX
Unit 4.6
PPTX
Unit .7
PPTX
Unit .5
PPTX
Unit .6
Unit 5.4
Unit 5.2
Unit 5.6
Unit 6.6
Unit 4.6
Unit .7
Unit .5
Unit .6

What's hot (20)

PPT
9.2 rational and irrational numbers day 2
PDF
PPTX
boolean algebra(continued)
PDF
Pc 5.5 notes
PPT
Chapter4.3
PPTX
Sign Sign 2
PPT
Lar calc10 ch01_sec5
PPT
Lar calc10 ch03_sec1
PPTX
Alg2 lesson 10-4 and 10-5
PPTX
Str8ts: Solution to Weekly Extreme Str8ts #29
PPT
Geometry 201 unit 2.6
PDF
Tenth class state syllabus-text book-em-ap-ts-mathematics
PDF
Belipse
PPT
Lecture 16 section 6.2 sum-difference identities
DOC
Mat 222 week 4 dq 1 solving quadratic equations (ash)
PPT
Hprec6 5
PPT
Rational expressions and equations
PDF
Str8ts: Basic and Advanced Strategies
9.2 rational and irrational numbers day 2
boolean algebra(continued)
Pc 5.5 notes
Chapter4.3
Sign Sign 2
Lar calc10 ch01_sec5
Lar calc10 ch03_sec1
Alg2 lesson 10-4 and 10-5
Str8ts: Solution to Weekly Extreme Str8ts #29
Geometry 201 unit 2.6
Tenth class state syllabus-text book-em-ap-ts-mathematics
Belipse
Lecture 16 section 6.2 sum-difference identities
Mat 222 week 4 dq 1 solving quadratic equations (ash)
Hprec6 5
Rational expressions and equations
Str8ts: Basic and Advanced Strategies
Ad

Viewers also liked (20)

PPTX
Unit 5.3
PPTX
Unit 5.5
PPTX
Unit 4.7
PPTX
Unit 4.4
PPTX
Unit 4.3
PPTX
Unit 4.2
PPTX
Unit 4.1
PPTX
Unit 4.8
PPTX
Unit 4.5
PDF
PPT
Proving Trigonometric Identities
PPTX
Unit 6.1
PPTX
Unit 6.3
PPTX
Unit 6.4
DOCX
Trik cepat translasi garis
PPTX
Unit 6.5
PPTX
Unit 6.2
KEY
0701 ch 7 day 1
KEY
0702 ch 7 day 2
PPTX
Math12 lesson 6
Unit 5.3
Unit 5.5
Unit 4.7
Unit 4.4
Unit 4.3
Unit 4.2
Unit 4.1
Unit 4.8
Unit 4.5
Proving Trigonometric Identities
Unit 6.1
Unit 6.3
Unit 6.4
Trik cepat translasi garis
Unit 6.5
Unit 6.2
0701 ch 7 day 1
0702 ch 7 day 2
Math12 lesson 6
Ad

Similar to Unit 5.1 (20)

PPTX
Precalculus 05 Analytic Trigonometry.pptx
PPTX
Unit 5.4
PDF
Module 5 circular functions
PPTX
Precalculus 05 Analytic Trigonometry (1).pptx
PPTX
PC Lesson 10 - Product-to-Sum and vv.pptx
DOCX
522020 MyOpenMathhttpswww.myopenmath.comassess2cid.docx
PPTX
Lesson-6-Trigonometric-Identities.pptx
PPT
Unit circle
DOCX
Trigonometry for class xi
PPTX
Proving trigonometric identities
PDF
circular trigonometric functions and practice
PPT
Section 6.3 properties of the trigonometric functions
PPT
Right triangle trigonometry
PDF
Lesson 2.4.1 Fundamental Trigonometric Identities.pdf
PPTX
Identities
PPTX
dfadfadagdadgaTopic01BasicTrigonometry-converted.pptx
PPT
14. trigo eqs.ppt
PPT
Trignometry
PPT
Trigonometry
Precalculus 05 Analytic Trigonometry.pptx
Unit 5.4
Module 5 circular functions
Precalculus 05 Analytic Trigonometry (1).pptx
PC Lesson 10 - Product-to-Sum and vv.pptx
522020 MyOpenMathhttpswww.myopenmath.comassess2cid.docx
Lesson-6-Trigonometric-Identities.pptx
Unit circle
Trigonometry for class xi
Proving trigonometric identities
circular trigonometric functions and practice
Section 6.3 properties of the trigonometric functions
Right triangle trigonometry
Lesson 2.4.1 Fundamental Trigonometric Identities.pdf
Identities
dfadfadagdadgaTopic01BasicTrigonometry-converted.pptx
14. trigo eqs.ppt
Trignometry
Trigonometry

More from Mark Ryder (20)

PPT
Geometry 201 Unit 4.1
PPT
Algebra 302 unit 11.4
PPT
Algebra 2 unit 10.6
PPT
Algebra 2 unit 10.7
PPT
Algebra 2 unit 10.5
PPT
Algebra 2 unit 10.4
PPT
Algebra 2 unit 10.3
PPT
Algebra 2 unit 10.2
PPT
11.1 combination and permutations
PPT
Unit 11.3 probability of multiple events
PPT
Unit 11.2 experimental probability
PPT
Unit 11.2 theoretical probability
PPT
11.1 11.1 combination and permutations
PPT
Geometry 201 unit 5.7
PPT
Geometry 201 unit 5.5
PPT
Geometry 201 unit 5.4
PPT
Geometry 201 unit 5.3
PPT
Geometry 201 unit 4.7
PPT
Geometry 201 unit 4.4
PPT
Geometry 201 unit 4.3
Geometry 201 Unit 4.1
Algebra 302 unit 11.4
Algebra 2 unit 10.6
Algebra 2 unit 10.7
Algebra 2 unit 10.5
Algebra 2 unit 10.4
Algebra 2 unit 10.3
Algebra 2 unit 10.2
11.1 combination and permutations
Unit 11.3 probability of multiple events
Unit 11.2 experimental probability
Unit 11.2 theoretical probability
11.1 11.1 combination and permutations
Geometry 201 unit 5.7
Geometry 201 unit 5.5
Geometry 201 unit 5.4
Geometry 201 unit 5.3
Geometry 201 unit 4.7
Geometry 201 unit 4.4
Geometry 201 unit 4.3

Recently uploaded (20)

PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PPTX
What’s under the hood: Parsing standardized learning content for AI
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Computer Architecture Input Output Memory.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Empowerment Technology for Senior High School Guide
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
Education and Perspectives of Education.pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Module on health assessment of CHN. pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Virtual and Augmented Reality in Current Scenario
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
What’s under the hood: Parsing standardized learning content for AI
Unit 4 Computer Architecture Multicore Processor.pptx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Computer Architecture Input Output Memory.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
What if we spent less time fighting change, and more time building what’s rig...
Empowerment Technology for Senior High School Guide
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Introduction to pro and eukaryotes and differences.pptx
Education and Perspectives of Education.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Module on health assessment of CHN. pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...

Unit 5.1

  • 1. 5.1 Fundamental Identities Copyright © 2011 Pearson, Inc.
  • 2. What you’ll learn about  Identities  Basic Trigonometric Identities  Pythagorean Identities  Cofunction Identities  Odd-Even Identities  Simplifying Trigonometric Expressions  Solving Trigonometric Equations … and why Identities are important when working with trigonometric functions in calculus. Copyright © 2011 Pearson, Inc. Slide 5.1 - 2
  • 3. Basic Trigonometric Identities Reciprocal Identites csc  1 sin sec  1 cos cot  1 tan sin  1 csc cos  1 sec tan  1 cot Quotient Identites tan  sin cos cot  cos tan Copyright © 2011 Pearson, Inc. Slide 5.1 - 3
  • 4. Pythagorean Identities 2 2 cos sin 1 1 tan sec cot 1 csc     2 2     2 2     Copyright © 2011 Pearson, Inc. Slide 5.1 - 4
  • 5. Example Using Identities Find sin and cos if tan  3 and cos  0. Copyright © 2011 Pearson, Inc. Slide 5.1 - 5
  • 6. Example Using Identities Find sin and cos if tan  3 and cos  0. To find sin , use tan  3 and cos  1 / 10. tan  sin cos sin  cos tan sin  1 / 103 sin  3 / 10 1 tan2  sec2 1 9  sec2 sec   10 cos  1 / 10 Therefore, cos  1/ 10 and sin  3/ 10 Copyright © 2011 Pearson, Inc. Slide 5.1 - 6
  • 7. Cofunction Identities Angle A: sin A  y r tan A  y x secA  r x cosA  x r cot A  x y cscA  r y Angle B: sin B  x r tan B  x y secB  r y cosB  y r cot B  y x cscB  r x Copyright © 2011 Pearson, Inc. Slide 5.1 - 7
  • 8. Cofunction Identities                                                   sin cos cos sin     2 2   tan cot cot tan     2 2   sec csc csc sec     2 2 Copyright © 2011 Pearson, Inc. Slide 5.1 - 8
  • 9. Even-Odd Identities sin(x)   sin x cos(x)  cos x tan(x)   tan x csc(x)   csc x sec(x)  sec x cot(x)   cot x Copyright © 2011 Pearson, Inc. Slide 5.1 - 9
  • 10. Example Simplifying by Factoring and Using Identities Simplify the expression cos3 x  cos x sin2 x. Copyright © 2011 Pearson, Inc. Slide 5.1 - 10
  • 11. Example Simplifying by Factoring and Using Identities Simplify the expression cos3 x  cos x sin2 x. cos3 x  cos xsin2 x  cos x(cos2 x  sin2 x)  cos x(1) Pythagorean Identity  cos x Copyright © 2011 Pearson, Inc. Slide 5.1 - 11
  • 12. Example Simplifying by Expanding and Using Identities Simplify the expression: csc x -1csc x 1 cos2 x Copyright © 2011 Pearson, Inc. Slide 5.1 - 12
  • 13. Example Simplifying by Expanding and Using Identities csc x 1csc x 1 cos2 x  csc2 x 1 cos2 x (a  b)(a  b)  a2  b2  cot2 x cos2 x Pythagorean Identity  cos2 x sin2 x  1 cos2 x cot  cos sin 1  sin2 x  csc2 x Copyright © 2011 Pearson, Inc. Slide 5.1 - 13
  • 14. Example Solving a Trigonometric Equation Find all values of x in the interval 0,2  that solve sin3 x cos x  tan x. Copyright © 2011 Pearson, Inc. Slide 5.1 - 14
  • 15. Example Solving a Trigonometric Equation sin3 x cos x  tan x sin3 x cos x  sin x cos x Reject the posibility that cos2 x  0 because it would make both sides of the original equation undefined. sin x  0 in the interval 0  x  2 when x  0 and x   . sin3 x  sin x sin3 x  sin x  0 sin x(sin2 x 1)  0 sin x cos2  x 0 sin x  0 or cos2 x  0 Copyright © 2011 Pearson, Inc. Slide 5.1 - 15
  • 16. Quick Review Evaluate the expression. 1. sin1 4 5        2. cos1  12 13      Factor the expression into a product of linear factors. 3. 2a2  3ab  2b2 4. 9u2  6u 1 Simplify the expression. 5. 2 y  3 x Copyright © 2011 Pearson, Inc. Slide 5.1 - 16
  • 17. Quick Review Solutions Evaluate the expression. 1. sin1 4 5       53.13o  0.927 rad  2. cos1  12 13      157.38o  2.747 rad Factor the expression into a product of linear factors. 3. 2a2  3ab  2b2 2a  ba  2b 4. 9u2  6u 1 3u 12 Simplify the expression. 5. 2 y  3 x 2x  3y xy Copyright © 2011 Pearson, Inc. Slide 5.1 - 17