8                          aLhul)ftLo cleJo~hs
                                            (Algebraic Expression)
                                                                                               kf7306L M 6

!=        kl/ro
          aLhul0ftLo cleJo~hsx¿nfO{ b'O{ jf ;f] eGbf a9L cleJo~hs jf kbx¿sf] u'0fgsf] ¿kdf JoQm
          ug]{ k|lqmofnfO{ v08Ls/0f elgG5 . o; PsfOdf ljleGg :j¿ksf aLhul0ftLo cleJo~hsx¿sf]
          v08Ls/0f ug]{ ljlwx¿ l;sfpg] k|of; ul/Psf] 5 .

@=        p2]Zo
          of] PsfOsf] cGTodf ljBfyL{x¿ lgDglnlvt s'/fx¿df ;Ifd x'g]5g M

          1.     a2 – b2 :j¿ksf aLhLo cleJo~hsx¿sf] v08Ls/0f ug{ .
          2.     a3 + b3 tyf a3 - b3 :j¿ksf cleJo~hsx¿sf] v08Ls/0f ug{ .
          3.     ax2 + bx + c :j¿ksf cleJo~hsx¿sf] v08Ls/0f ug{ .
          4.     a4 + a2b2 + b4 :j¿ksf cleJo~hsx¿sf] v08Ls/0f ug{ .

#=        z}lIfs ;fdu|L
          sf8{af]8{ k]k/, s}“rL, HofldtL afs;, a3 + b3 / a3 - b3 sf] df]8n, nfg]n af]8{, vfU;L, wfuf], ud,
          cleJo~hs n]lvPsf cfotfsf/ sf8{x¿

                x2 + 5x + 6        x2 - 5x + 6           x2 + x - 6          x2 - x - 6

               2x2 - 5x + 6        2x2 - 7x + 6

$=        lzIf0fl;sfO lqmofsnfk
1.        a2 – b2 :j¿ksf] cleJo~hssf] v08Ls/0f lgDgfg';f/ l;sfpg'xf]; M

          (i)   df]6f] sf8{af]8{ k]k/df kf7ok':tsdf lbOPsf] h:tf] Pp6f ju{ sf6g'xf]; / To;nfO{ tn b]vfOP
                h:tf] u/L sf6]/ k|To]s 6'qmfsf] k5fl8 vfU;Lsf] 6'qmf 6f“:g'xf]; .
          (ii) nfg]n af]8{df ;a} 6'qmfx¿ ldnfP/ 6f“:g'xf]; . ljBfyL{x¿nfO{ k|Zg ub}{ a2 af6 b2 sf]
                6'qmfnfO{ x6fO{ lbg'xf]; .
          (iii) ca af“sL /x]sf] efu a2 – b2 nfO{ cfotfsf/ agfO{ If]qkmn lgsfNg] af/]df 5nkmn ub{}{
                kf7ok':tsdf b]vfOPsf lrq cg';f/sf] 6'qmfx¿ ldnfP/ cfotfsf/ 6'qmfsf] nDafO{ a+b /
                rf}8fO{ a-b ePsf] lgisif{df k'¥ofpg'xf]; .

                                                    49                                    Ull0ft – (, lzIfs lgb]{lzsf

 
 


          (iv) ca cfotsf] If]qkmn A = l × b sf] ;"q cg';f/ cfotfsf/ 6'qmfsf] If]qkmn = (a+b) (a-b)
                  cfPsf] lgisif{df k'¥ofpg'xf]; .


2.        oxL tl/sfn] tn b]vfOP cg';f/sf 6'qmfx¿ Knfg]n af]8df 6f“;]/ 5nkmn ub} ;"qx¿ kQf nufpg
                                                            {
          nufpg'xf]; .


          5fof“ kfl/Psf] 6'qmfx¿ lgsfNbf,

                      Pp6f 6'qmfsf] If]qkmn = ab

                      csf]{ 6'qmfnfO[ klg a × b agfpg b2 yk
          ug'{k5{ .

          af“sL 6'qmfsf] If]qkmn = a2 – ab – ab + b2

          To;}n] (a-b)2 = a2 – 2ab + b2 eof] .

3.        kf7ok':tsf] k]h 74 sf] pbfx/0f 1, 2, 3, 4 nfO{ ;d"xdf 5nkmn u/fpg] -k|lt a]~rsf] ;d"x agfpg
          ;lsG5 _
4.        kf7ok':tsf] k]h 74 sf] cEof; 8.1.1 sf] g+= 1, 5 / 16 -jf cfjZostf cg';f/ cGo_ sIffsfo{sf]
          ¿kdf u/fO{ af“sL ;d:ofx¿ u[xsfo{sf] ¿kdf ug{ nufpg'xf]; .

5.         a3 + b3 / a3 - b3 :j¿ksf cleJo~hssf] v08Ls/0f

          a3 + b3 / a3 - b3 :j¿ksf] v08Ls/0f ug]{ ;DaGwdf kf7ok':tssf] cEof; 8.1.2 5nkmn ug]{ /
          pknAw ePdf tn b]vfOP cg';f/sf] df]8n k|of]u u/L ;"q k|dfl0ft ug{ nufpg]÷ u/]/ b]vfpg] .

          a3 + b3 sf] v08Ls/0f

          oxf“ l;ªuf] 3gsf] nDafO, rf}8fO / prfO ;a} a ;]=dL= 5
          cyf{t cfotg a3 5 . dWoefuaf6 b ;]=dL= lrGx nufO lrqdf
          b]vfOPcg';f/ sf6bf oxf“ klg cf7 6'qmf aGb5g . o;df 7"nf]
          3g a3 df Pp6f ;fgf] 3g b3 yk]/ 6'qmfx¿ ldnfp“b} hf“bf
          cGtdf prfO (a+b) ePsf] / cfwf/sf] If]qkmn a2 – ab / b2
          ePsf] 3gfsf/ j:t' tof/ x'G5 .

          ;j{kyd Ps ;fO8sf rf/cf]6f 6'qmfx¿ ;a} x6fpg'xf]; . o;/L x6fp“bf Pp6f r]K6f], b'Ocf]6f nfDrf]
              |
          / Pp6f 3gfsf/ 6'qmf lg:sG5 .


Ull0ft – (, lzIfs lgb]{lzsf                            50
 
 




    oL 6'qmfx¿ lgsflnPkl5 af“sL /x]sf] efu

    ca lgsflnPsf] Pp6f nfDrf]nfO{ lgsfn]/ af“sL /x]sf] efu dfly g} yKg'xf]; . o;f] ubf{ ;f]sf] prfO
    a+b aGg k'U5 .

    af“sL /x]sf] Pp6f nfDrf] / Pp6f 3gdf csf]{ 3g b3 yk]/ dflysf]
    glhs prfO a+b x'g] u/L 78ofP/ /fVg'xf]; .



    ca ;f] 3gfsf/ j:t'sf] prfO a+b / cfwf/sf] If]qkmn a2 – ab +
    b2 ePsf]n] cfotg (a+b)( a2 – ab + b2 ) eof] .




    a3 - b3 sf] v08Ls/0f

    oxf“ l;ªuf] 3gsf] nDafO, rf}8fO / prfO ;a} a ;]=dL= 5 cyf{t cfotg a3 5 . dWoefuaf6 b
    ;]=dL= lrGx nufO lrqdf b]vfOPcg';f/ sf6bf oxf“ klg cf7 6'qmf aGb5g . o;df 7"nf] 3g a3 df
    Pp6f ;fgf] 3g b3 yk]/ 6'qmfx¿ ldnfp“b} hf“bf cGtdf prfO (a-b) ePsf] / cfwf/sf] If]qkmn a2
    + ab / b2 ePsf] 3gfsf/ j:t' tof/ x'G5 .




                                              51                                  Ull0ft – (, lzIfs lgb]{lzsf

 
 




          ;j{k|yd l;ªuf] 3g a3 af6 ;fgf] 3g b3 x6fpg'xf]; . o;/L x6fp“bf a3 - b3 af“sL /xG5 .




          ca af“sL /x]sf] a3 - b3 sf] dfly kl§sf 6'qmfx¿ -b'O{cf]6f nfDrf] / Pp6f r]K6f]_ nfO{ lgsfn]/
          ;fO8df ldnfP/ /fVg'xf]; . o;f] ubf{ ;f]sf] prfO a-b aGg k'U5 .

          ca ;f] 3gfsf/ j:t'sf] prfO a-b        / cfwf/sf] If]qkmn a2 + ab + b2        ePsf]n] cfotg
          (a-b)( a2 +ab + b2 ) eof] .




6.        ax2 + bx + c :j¿ksf cleJo~hssf] v08Ls/0f

s_        ax2 + bx + c :j¿ksf cleJo~hssf] v08Ls/0f ug]{ k|lqmof ;'¿ ug'{eGbf klxn] kb ljR5]bg
          lgod (distributive law) sf] af/]df s]xL 5nkmn ug{ pko'Qm xf]nf . h:t} M a(b±c) = ab ± ac .
          o; ;DaGwL s]xL wf/0ff al;;s]kl5 To; ljR5]lbt kbx¿af6 cl3Nnf] l:yltdf Nofpg ;femf lng'kg]{
          l:yltsf] aofg ug]{, h:t} M ab± ac = a(b ± c)

          gf]6 M w]/}h;f] ljBfyL{x¿n] a(b × c) = ab × ac ug]{ x'“bf ;f] ug{ x'G5 jf x'“b}g . 5nkmn ug{
          nufpg'xf]; .

          dfly ;fdu|Lsf] g++ iii df pNn]v ul/Pcg';f/sf ;fdu|Lx¿ ljt/0f ul/;s]kl5 To;sf] aLhLo
          cleJo~hs n]Vg nufpg'xf]; . h;sf] ju{sf] nDafO÷rf}8fO x PsfO cfotsf] nDafO x rf}8fO 1
Ull0ft – (, lzIfs lgb]{lzsf                       52
 
 




     PsfO tyf ;fgf] ju{sf] nDafO÷rf}8fO 1/1 PsfOsf 5g . x2 +4x + 3 . tL cf7 6'qmf sfuhx¿af6
     Pp6f k"0f{ cfot agfpg nufpg'xf]; .-sfuhsf 6'qmfx¿ rnfP/_ . sIffdf k|ltof]lutf ug{
     nufpg'xf]; ls s;n] ;a}eGbf klxn] ;f] cfotsf] nDafO / rf}8fO eGg ;S5 . (x+3)(x+1) h'g
     To; cleJo~hssf] u'0fgv08x¿ x'g . lrq o; k|sf/ x'g]5 .

     gf]6M ;Dej ePdf To:t} u/L x2 + 2x – 3 sf] u'0fgv08x¿ kQf nufpg x e'hf ePsf juf{sf/
     sfuh ljt/0f u/L ;f] ju{df x × 1 PsfOsf cfotx¿ b'Ocf]6f hf]8]/ To; cfotaf6 1 × 1
                                                           {
     PsfOsf tLgcf]6f ju{x¿ 36fpg nufpg] .




     ca To; cfs[lt -5fof gkfl/Psf]_ af6 Pp6f k"0f{ cfot agfpg s] ug'{knf{ < 5nkmn ug{
     nufpg'xf]; .

     o;sf] nDafO (x + 3) / rf}8fO (x – 1) x'G5 .




v_   x2 – 3x +2 :j¿ksf] v08Ls/0f ug{ x2 sf ju{x¿ ljt/0f ul/;s]kl5 nDafO × PsfO / rf}8fO
     1 PsfOsf 3 cfotx¿ To; ju{af6 sf6g nufpg'xf]; / 1 × 1 PsfOsf ju{x¿ 2 cf]6f To;
     af“sL cfotdf hf]8g nufpg'xf]; . h;sf] :j¿k o;k|sf/ x'g]5 M




     o;nfO{ s;/L k"0f{ cfotsf] ¿kdf agfpg] xf], 5nkmn ug'{xf]; . lrqdf em}“ o;nfO{ nDafOlt/af6 /
     PsfO rf}8fO x'g] u/L sf6L cfot agfp“bf of] :j¿ksf] x'g]5 .

     o;sf] nDafO (x-3+2 = x – 1) / rf}8fO (x-2) x'G5 .

u_   o;/L k|of]ufTds tl/sfaf6 wf/0ff alg;s]kl5 v08Ls/0f ug]{ k|lqmofsf] nflu kf7ok':tssf] 8.1.3
     df lbOPsf] tl/sf tyf pbfx/0fx¿ 5nkmn ug{ nufpg] . cEof; 8.1.3 sf] g+= 1,2,3,4 / 5
     sIffsfo{ lbg] / g+= 9,11,15 / 23 ;d"xsfo{ lbg'xf]; . af“sL u[xsfo{ lbg] .

                                              53                                Ull0ft – (, lzIfs lgb]{lzsf

 
 



7.          a4 + a2b2 + b4 :j¿ksf cleJo~hssf] v08Ls/0f

-s_       a4 + a2b2 + b4 :j¿ksf cleJo~hssf] v08Ls/0f ug{ cl3Nnf] sIffdf a2 + ab + b2 :j¿ksf
          cleJo~hssf] k"0f{ ju{ agfpg ckgfOPsf] k|lqmofaf/] 5nkmn ug]{ .

          ca a4 + a2b2 + b4 df klxnf] / clGtd b'O{ kbx¿ ju{ kb ePsfn] k"0f{ ju{ agfpg ;lsg] s'/f
          af]w u/fpg] . lbPsf] cleJo~hs = (a2)2 + a2b2 +(b2)2 ln“bf o; cleJo~hsdf (a+b)2 sf] ;"q
          k|of]u x'gsf] nflu lgDgfg';f/ kb yk 36 u/L ldnfpg nufpg] / v08Ls/0fsf nflu cfjZos
          r/0fx¿ n]Vg ;xof]u ug]{ .

                     (a2)2 + 2(a2)(b2) +(b2)2 - a2b2 -oxf“ cleJo~hsnfO{ b'O{ ju{kbsf] cGt/sf] ¿kdf
                                                     nfg vf]lhPsf] 5 ._

               =     (a2 + b2)2 - (ab)2                       [(a2 + b2)2 = (a2)2 + 2a2b2 + (b2)2 ]

               =     [(a2 + b2) + ab] [(a2 + b2) - ab]                -a2 - b2 sf] ;"qsf] k|of]u_

                = (a2 + ab + b2) (a2 - ab + b2)               (a sf] 3ftfªssf] 36bf] qmddf /fvL ldnfp“bf_

              ∴ a4 + a2b2 + b4 = (a2 + ab + b2) (a2 - ab + b2)

          b|i6Jo M a4 - a2b2 + b4 cleJo~hsnfO{ k"0f{ ju{ agfpg ;lsP tfklg o;sf] :j¿k
          (a2 + b2)2 - (ab)2 x'G5 h;nfO{ v08Ls/0f ug{ g;lsg] x'“bf a4 - a2b2 + b4 :j¿ksf
          cleJo~hssf] v08Ls/0f ug{ ldNb}g egL a'emfpg] .



cEof; 8.1.4 sf s]xL ;d:ofx¿sf] xn

2.            p4 + 4

          = (p2)2 + (2)2                                      -b'j} kbx¿ k"0f{ju{ 5g _

          = (p2)2 + 2.p2. 2 + (2)2 - 2.p2. 2                  (2p2, 2 yKg] / 36fpg]_

          = (p2 + 2)2 – 4p2

          = (p2 + 2 + 2p)( p2 + 2 - 2p)

          = (p2 + 2p + 2)( p2 - 2p + 2)


Ull0ft – (, lzIfs lgb]{lzsf                              54
 
 


13.           x4 + 23x2 + 256

      = (x2)2 + 23x2 + (16)2

      = (x2)2 + 2.(x)2.16 + (16)2 – 9x2

      = (x2 + 16)2 – (3x)2

      = [(x2 + 16) + 3x] [(x2 + 16) - 3x]

      = (x2 + 16 + 3x) (x2 + 16 - 3x)                -b'O{ ju{kbsf] cGt/df n]lvof]_

      = (x2 + 3x + 16) (x2 - 3x + 16)




18.       x2 – 10x + 24 + 6y - 9y2           -oxf“ klg cleJo~hsnfO{ b'O{ ju{kbsf cGt/df JoQm
                                             ug'{kb{5_

      = x2 – 2x.5 + 25 -1 + 6y - 9y2

      = (x – 5)2 – (9y2 - 6y + 1)

      = (x – 5)2 – (9y – 1)2                   -b'O{ ju{kbsf] cGt/df n]lvof]_

      = [(x – 5) + (3y – 1)] [(x – 5) - (3y – 1)]

      = (x – 5 + 3y – 1) (x – 5 - 3y + 1)

      = (x + 3y – 6) (x - 3y – 4)




12               2

      =           2.   .

      ca ljBfyL{nfO{ ug{ nufpg] .

13.                    1


                                              55                                      Ull0ft – (, lzIfs lgb]{lzsf

 
 



          =                   7            1


          =                   2           .1     1       2        7


          =             1             9


          =             1                                             -b'O{ ju{kbsf] cGt/df n]lvof]_


          =             1                        1


          =                       1                      1

          b|i6Jo M cleJo~hsdf ;dfg¿ksf] ljleGg 3ftfªs ePsf] kb ePsf] cj:yfdf To:tf] ¿knfO{ gof“
          gfd /fv]/ v08Ls/0f ubf{ ;lhnf] x'G5 .

          h:t} M oxf“                 dfgf}“ .

          lbOPsf] cleJo~hs                 = x4 - 7x2 + 1

                                           = (x2)2 + 2.(x)2.1 +1 -2x2 - 7x2

                                           = (x2 + 1)2 – 9x2

                                           = (x2 + 1)2 – (3x)2

                                           = (x2 + 1 + 3x) (x2 + 1 - 3x)

                                           = (x2 + 3x + 1) (x2 - 3x + 1)

          k'gM                dfg kmsf{p“bf,

                    7                                3                   3
                                  1                          1                   1


17.          a8 – b8
          = (a4)2 - (b4)2
Ull0ft – (, lzIfs lgb]{lzsf                                  56
 
 


     = (a4 + b4)( a4 - b4)
     = (a4 + b4)[(a2)2 - (b2)2]
     ca ;"q k|of]u ug{ nufO{ ljBfyL{x¿nfO{ ;dfwfg ug{ nufpg] .

%=   d"Nofªsg

     lqmofsnfksf] cfwf/df d"Nofªsg ug]{ .




                                             57                  Ull0ft – (, lzIfs lgb]{lzsf

 

More Related Content

PDF
Aksharica - 004 (अक्षरिका - ००४)
PDF
Aksharica - 109 (अक्षरिका - १०९)
PDF
Aksharica - 107 (अक्षरिका - १०७)
PDF
Aksharica - 086 (अगस्त - ०८६)
PDF
Nepal study on judgment execution
PDF
38 poster earthquake preparedness
PDF
Nepal pokhara armala sinkhole investigation final-report
PDF
Women rights in constitution of Nepal (Nepali)
Aksharica - 004 (अक्षरिका - ००४)
Aksharica - 109 (अक्षरिका - १०९)
Aksharica - 107 (अक्षरिका - १०७)
Aksharica - 086 (अगस्त - ०८६)
Nepal study on judgment execution
38 poster earthquake preparedness
Nepal pokhara armala sinkhole investigation final-report
Women rights in constitution of Nepal (Nepali)

What's hot (20)

PDF
Aksharica - 096 (अक्षरिका - ०९६)
PDF
Nepal faecal sludge management and regulatory framework 2074
PDF
Nepal- Total sanitation guidelines 2073 ministry of water supply and sanitat...
PDF
Aksharica - 088 (अक्षरिका - ०८८)
PDF
Ne paricya
PDF
Disability Rights in Nepal: NAPD Magazine
PDF
Parenting education for better care of children (Manual)
PDF
Dp net constitution april 2k7
PDF
aaha sanchar weekly 8, rukum
PDF
Aksharica - 097 (अक्षरिका - ०९७)
PDF
Annual Report 2070 Nepali
PDF
Ne what is_islam_zarabozo
PDF
महिला हिंसा विरुद्धको वर्ष पुस्तक “अन्वेषी”
PDF
Pairabi WOREC Newsletter
PDF
Ram Sharan Mehta jiwani Nepali
PDF
Aksharica - 104 (अक्षरिका - १०४)
PDF
Dashatwa ko Bato (Road to Serfdom in Nepali)
PDF
Basic of Monitoring Evaluation and Supervision in Nepali
PDF
Ne freedom
Aksharica - 096 (अक्षरिका - ०९६)
Nepal faecal sludge management and regulatory framework 2074
Nepal- Total sanitation guidelines 2073 ministry of water supply and sanitat...
Aksharica - 088 (अक्षरिका - ०८८)
Ne paricya
Disability Rights in Nepal: NAPD Magazine
Parenting education for better care of children (Manual)
Dp net constitution april 2k7
aaha sanchar weekly 8, rukum
Aksharica - 097 (अक्षरिका - ०९७)
Annual Report 2070 Nepali
Ne what is_islam_zarabozo
महिला हिंसा विरुद्धको वर्ष पुस्तक “अन्वेषी”
Pairabi WOREC Newsletter
Ram Sharan Mehta jiwani Nepali
Aksharica - 104 (अक्षरिका - १०४)
Dashatwa ko Bato (Road to Serfdom in Nepali)
Basic of Monitoring Evaluation and Supervision in Nepali
Ne freedom
Ad

Viewers also liked (6)

PDF
The real cost of adwords
PPT
O Carnaval Das Marcas
PDF
Gamma sag semi ti spaces in topological spaces
PDF
Theoretical study of the effect of hydroxy subgroup on the electronic and spe...
PPTX
Pmp session 4
PPTX
Pmp session 6
The real cost of adwords
O Carnaval Das Marcas
Gamma sag semi ti spaces in topological spaces
Theoretical study of the effect of hydroxy subgroup on the electronic and spe...
Pmp session 4
Pmp session 6
Ad

Similar to Unit 8 edited (20)

PDF
Aksharica - 081 (अक्षरिका - ०८१)
PDF
South asia women speak out on cca
PDF
Aksharica - 035 (अक्षरिका - ०३५)
PPT
Presentation By Nabaraj Mahatara about situation of Journalism in Karnali
PDF
Aksharica - 085 (अक्षरिका - ०८५)
PDF
Aksharica - 062 (अक्षरिका - ०६२)
PDF
Aksharica - 106 (अक्षरिका - १०६)
PDF
Aksharica - 016 (अक्षरिका - ०१६)
PPT
आलु खेति.ppt
PPTX
unit-5-Heat in nepali medium .pptx
PPTX
unit - 5-Heat.pptx grade 10 science nepal
PDF
Ram sharan mehta jiwani pdf rs mehta
PDF
PDF
Aksharica - 078 (अक्षरिका - ०७८)
PDF
Coneptual Local Area Plan of Ward 22 Kathmandu
 
PDF
बंगुरपालन ब्यवसाय पुस्तिका
PPTX
selection of dairy cattle.pptx mnasbckjb
PDF
Aksharica - 070 (अक्षरिका - ०७०)
PDF
Aksharica - 056 (अक्षरिका - ०५६)
Aksharica - 081 (अक्षरिका - ०८१)
South asia women speak out on cca
Aksharica - 035 (अक्षरिका - ०३५)
Presentation By Nabaraj Mahatara about situation of Journalism in Karnali
Aksharica - 085 (अक्षरिका - ०८५)
Aksharica - 062 (अक्षरिका - ०६२)
Aksharica - 106 (अक्षरिका - १०६)
Aksharica - 016 (अक्षरिका - ०१६)
आलु खेति.ppt
unit-5-Heat in nepali medium .pptx
unit - 5-Heat.pptx grade 10 science nepal
Ram sharan mehta jiwani pdf rs mehta
Aksharica - 078 (अक्षरिका - ०७८)
Coneptual Local Area Plan of Ward 22 Kathmandu
 
बंगुरपालन ब्यवसाय पुस्तिका
selection of dairy cattle.pptx mnasbckjb
Aksharica - 070 (अक्षरिका - ०७०)
Aksharica - 056 (अक्षरिका - ०५६)

Unit 8 edited

  • 1.   8  aLhul)ftLo cleJo~hs (Algebraic Expression) kf7306L M 6 != kl/ro aLhul0ftLo cleJo~hsx¿nfO{ b'O{ jf ;f] eGbf a9L cleJo~hs jf kbx¿sf] u'0fgsf] ¿kdf JoQm ug]{ k|lqmofnfO{ v08Ls/0f elgG5 . o; PsfOdf ljleGg :j¿ksf aLhul0ftLo cleJo~hsx¿sf] v08Ls/0f ug]{ ljlwx¿ l;sfpg] k|of; ul/Psf] 5 . @= p2]Zo of] PsfOsf] cGTodf ljBfyL{x¿ lgDglnlvt s'/fx¿df ;Ifd x'g]5g M 1. a2 – b2 :j¿ksf aLhLo cleJo~hsx¿sf] v08Ls/0f ug{ . 2. a3 + b3 tyf a3 - b3 :j¿ksf cleJo~hsx¿sf] v08Ls/0f ug{ . 3. ax2 + bx + c :j¿ksf cleJo~hsx¿sf] v08Ls/0f ug{ . 4. a4 + a2b2 + b4 :j¿ksf cleJo~hsx¿sf] v08Ls/0f ug{ . #= z}lIfs ;fdu|L sf8{af]8{ k]k/, s}“rL, HofldtL afs;, a3 + b3 / a3 - b3 sf] df]8n, nfg]n af]8{, vfU;L, wfuf], ud, cleJo~hs n]lvPsf cfotfsf/ sf8{x¿ x2 + 5x + 6 x2 - 5x + 6 x2 + x - 6 x2 - x - 6 2x2 - 5x + 6 2x2 - 7x + 6 $= lzIf0fl;sfO lqmofsnfk 1. a2 – b2 :j¿ksf] cleJo~hssf] v08Ls/0f lgDgfg';f/ l;sfpg'xf]; M (i) df]6f] sf8{af]8{ k]k/df kf7ok':tsdf lbOPsf] h:tf] Pp6f ju{ sf6g'xf]; / To;nfO{ tn b]vfOP h:tf] u/L sf6]/ k|To]s 6'qmfsf] k5fl8 vfU;Lsf] 6'qmf 6f“:g'xf]; . (ii) nfg]n af]8{df ;a} 6'qmfx¿ ldnfP/ 6f“:g'xf]; . ljBfyL{x¿nfO{ k|Zg ub}{ a2 af6 b2 sf] 6'qmfnfO{ x6fO{ lbg'xf]; . (iii) ca af“sL /x]sf] efu a2 – b2 nfO{ cfotfsf/ agfO{ If]qkmn lgsfNg] af/]df 5nkmn ub{}{ kf7ok':tsdf b]vfOPsf lrq cg';f/sf] 6'qmfx¿ ldnfP/ cfotfsf/ 6'qmfsf] nDafO{ a+b / rf}8fO{ a-b ePsf] lgisif{df k'¥ofpg'xf]; . 49 Ull0ft – (, lzIfs lgb]{lzsf  
  • 2.   (iv) ca cfotsf] If]qkmn A = l × b sf] ;"q cg';f/ cfotfsf/ 6'qmfsf] If]qkmn = (a+b) (a-b) cfPsf] lgisif{df k'¥ofpg'xf]; . 2. oxL tl/sfn] tn b]vfOP cg';f/sf 6'qmfx¿ Knfg]n af]8df 6f“;]/ 5nkmn ub} ;"qx¿ kQf nufpg { nufpg'xf]; . 5fof“ kfl/Psf] 6'qmfx¿ lgsfNbf, Pp6f 6'qmfsf] If]qkmn = ab csf]{ 6'qmfnfO[ klg a × b agfpg b2 yk ug'{k5{ . af“sL 6'qmfsf] If]qkmn = a2 – ab – ab + b2 To;}n] (a-b)2 = a2 – 2ab + b2 eof] . 3. kf7ok':tsf] k]h 74 sf] pbfx/0f 1, 2, 3, 4 nfO{ ;d"xdf 5nkmn u/fpg] -k|lt a]~rsf] ;d"x agfpg ;lsG5 _ 4. kf7ok':tsf] k]h 74 sf] cEof; 8.1.1 sf] g+= 1, 5 / 16 -jf cfjZostf cg';f/ cGo_ sIffsfo{sf] ¿kdf u/fO{ af“sL ;d:ofx¿ u[xsfo{sf] ¿kdf ug{ nufpg'xf]; . 5. a3 + b3 / a3 - b3 :j¿ksf cleJo~hssf] v08Ls/0f a3 + b3 / a3 - b3 :j¿ksf] v08Ls/0f ug]{ ;DaGwdf kf7ok':tssf] cEof; 8.1.2 5nkmn ug]{ / pknAw ePdf tn b]vfOP cg';f/sf] df]8n k|of]u u/L ;"q k|dfl0ft ug{ nufpg]÷ u/]/ b]vfpg] . a3 + b3 sf] v08Ls/0f oxf“ l;ªuf] 3gsf] nDafO, rf}8fO / prfO ;a} a ;]=dL= 5 cyf{t cfotg a3 5 . dWoefuaf6 b ;]=dL= lrGx nufO lrqdf b]vfOPcg';f/ sf6bf oxf“ klg cf7 6'qmf aGb5g . o;df 7"nf] 3g a3 df Pp6f ;fgf] 3g b3 yk]/ 6'qmfx¿ ldnfp“b} hf“bf cGtdf prfO (a+b) ePsf] / cfwf/sf] If]qkmn a2 – ab / b2 ePsf] 3gfsf/ j:t' tof/ x'G5 . ;j{kyd Ps ;fO8sf rf/cf]6f 6'qmfx¿ ;a} x6fpg'xf]; . o;/L x6fp“bf Pp6f r]K6f], b'Ocf]6f nfDrf] | / Pp6f 3gfsf/ 6'qmf lg:sG5 . Ull0ft – (, lzIfs lgb]{lzsf 50  
  • 3.   oL 6'qmfx¿ lgsflnPkl5 af“sL /x]sf] efu ca lgsflnPsf] Pp6f nfDrf]nfO{ lgsfn]/ af“sL /x]sf] efu dfly g} yKg'xf]; . o;f] ubf{ ;f]sf] prfO a+b aGg k'U5 . af“sL /x]sf] Pp6f nfDrf] / Pp6f 3gdf csf]{ 3g b3 yk]/ dflysf] glhs prfO a+b x'g] u/L 78ofP/ /fVg'xf]; . ca ;f] 3gfsf/ j:t'sf] prfO a+b / cfwf/sf] If]qkmn a2 – ab + b2 ePsf]n] cfotg (a+b)( a2 – ab + b2 ) eof] . a3 - b3 sf] v08Ls/0f oxf“ l;ªuf] 3gsf] nDafO, rf}8fO / prfO ;a} a ;]=dL= 5 cyf{t cfotg a3 5 . dWoefuaf6 b ;]=dL= lrGx nufO lrqdf b]vfOPcg';f/ sf6bf oxf“ klg cf7 6'qmf aGb5g . o;df 7"nf] 3g a3 df Pp6f ;fgf] 3g b3 yk]/ 6'qmfx¿ ldnfp“b} hf“bf cGtdf prfO (a-b) ePsf] / cfwf/sf] If]qkmn a2 + ab / b2 ePsf] 3gfsf/ j:t' tof/ x'G5 . 51 Ull0ft – (, lzIfs lgb]{lzsf  
  • 4.   ;j{k|yd l;ªuf] 3g a3 af6 ;fgf] 3g b3 x6fpg'xf]; . o;/L x6fp“bf a3 - b3 af“sL /xG5 . ca af“sL /x]sf] a3 - b3 sf] dfly kl§sf 6'qmfx¿ -b'O{cf]6f nfDrf] / Pp6f r]K6f]_ nfO{ lgsfn]/ ;fO8df ldnfP/ /fVg'xf]; . o;f] ubf{ ;f]sf] prfO a-b aGg k'U5 . ca ;f] 3gfsf/ j:t'sf] prfO a-b / cfwf/sf] If]qkmn a2 + ab + b2 ePsf]n] cfotg (a-b)( a2 +ab + b2 ) eof] . 6. ax2 + bx + c :j¿ksf cleJo~hssf] v08Ls/0f s_ ax2 + bx + c :j¿ksf cleJo~hssf] v08Ls/0f ug]{ k|lqmof ;'¿ ug'{eGbf klxn] kb ljR5]bg lgod (distributive law) sf] af/]df s]xL 5nkmn ug{ pko'Qm xf]nf . h:t} M a(b±c) = ab ± ac . o; ;DaGwL s]xL wf/0ff al;;s]kl5 To; ljR5]lbt kbx¿af6 cl3Nnf] l:yltdf Nofpg ;femf lng'kg]{ l:yltsf] aofg ug]{, h:t} M ab± ac = a(b ± c) gf]6 M w]/}h;f] ljBfyL{x¿n] a(b × c) = ab × ac ug]{ x'“bf ;f] ug{ x'G5 jf x'“b}g . 5nkmn ug{ nufpg'xf]; . dfly ;fdu|Lsf] g++ iii df pNn]v ul/Pcg';f/sf ;fdu|Lx¿ ljt/0f ul/;s]kl5 To;sf] aLhLo cleJo~hs n]Vg nufpg'xf]; . h;sf] ju{sf] nDafO÷rf}8fO x PsfO cfotsf] nDafO x rf}8fO 1 Ull0ft – (, lzIfs lgb]{lzsf 52  
  • 5.   PsfO tyf ;fgf] ju{sf] nDafO÷rf}8fO 1/1 PsfOsf 5g . x2 +4x + 3 . tL cf7 6'qmf sfuhx¿af6 Pp6f k"0f{ cfot agfpg nufpg'xf]; .-sfuhsf 6'qmfx¿ rnfP/_ . sIffdf k|ltof]lutf ug{ nufpg'xf]; ls s;n] ;a}eGbf klxn] ;f] cfotsf] nDafO / rf}8fO eGg ;S5 . (x+3)(x+1) h'g To; cleJo~hssf] u'0fgv08x¿ x'g . lrq o; k|sf/ x'g]5 . gf]6M ;Dej ePdf To:t} u/L x2 + 2x – 3 sf] u'0fgv08x¿ kQf nufpg x e'hf ePsf juf{sf/ sfuh ljt/0f u/L ;f] ju{df x × 1 PsfOsf cfotx¿ b'Ocf]6f hf]8]/ To; cfotaf6 1 × 1 { PsfOsf tLgcf]6f ju{x¿ 36fpg nufpg] . ca To; cfs[lt -5fof gkfl/Psf]_ af6 Pp6f k"0f{ cfot agfpg s] ug'{knf{ < 5nkmn ug{ nufpg'xf]; . o;sf] nDafO (x + 3) / rf}8fO (x – 1) x'G5 . v_ x2 – 3x +2 :j¿ksf] v08Ls/0f ug{ x2 sf ju{x¿ ljt/0f ul/;s]kl5 nDafO × PsfO / rf}8fO 1 PsfOsf 3 cfotx¿ To; ju{af6 sf6g nufpg'xf]; / 1 × 1 PsfOsf ju{x¿ 2 cf]6f To; af“sL cfotdf hf]8g nufpg'xf]; . h;sf] :j¿k o;k|sf/ x'g]5 M o;nfO{ s;/L k"0f{ cfotsf] ¿kdf agfpg] xf], 5nkmn ug'{xf]; . lrqdf em}“ o;nfO{ nDafOlt/af6 / PsfO rf}8fO x'g] u/L sf6L cfot agfp“bf of] :j¿ksf] x'g]5 . o;sf] nDafO (x-3+2 = x – 1) / rf}8fO (x-2) x'G5 . u_ o;/L k|of]ufTds tl/sfaf6 wf/0ff alg;s]kl5 v08Ls/0f ug]{ k|lqmofsf] nflu kf7ok':tssf] 8.1.3 df lbOPsf] tl/sf tyf pbfx/0fx¿ 5nkmn ug{ nufpg] . cEof; 8.1.3 sf] g+= 1,2,3,4 / 5 sIffsfo{ lbg] / g+= 9,11,15 / 23 ;d"xsfo{ lbg'xf]; . af“sL u[xsfo{ lbg] . 53 Ull0ft – (, lzIfs lgb]{lzsf  
  • 6.   7. a4 + a2b2 + b4 :j¿ksf cleJo~hssf] v08Ls/0f -s_ a4 + a2b2 + b4 :j¿ksf cleJo~hssf] v08Ls/0f ug{ cl3Nnf] sIffdf a2 + ab + b2 :j¿ksf cleJo~hssf] k"0f{ ju{ agfpg ckgfOPsf] k|lqmofaf/] 5nkmn ug]{ . ca a4 + a2b2 + b4 df klxnf] / clGtd b'O{ kbx¿ ju{ kb ePsfn] k"0f{ ju{ agfpg ;lsg] s'/f af]w u/fpg] . lbPsf] cleJo~hs = (a2)2 + a2b2 +(b2)2 ln“bf o; cleJo~hsdf (a+b)2 sf] ;"q k|of]u x'gsf] nflu lgDgfg';f/ kb yk 36 u/L ldnfpg nufpg] / v08Ls/0fsf nflu cfjZos r/0fx¿ n]Vg ;xof]u ug]{ . (a2)2 + 2(a2)(b2) +(b2)2 - a2b2 -oxf“ cleJo~hsnfO{ b'O{ ju{kbsf] cGt/sf] ¿kdf nfg vf]lhPsf] 5 ._ = (a2 + b2)2 - (ab)2 [(a2 + b2)2 = (a2)2 + 2a2b2 + (b2)2 ] = [(a2 + b2) + ab] [(a2 + b2) - ab] -a2 - b2 sf] ;"qsf] k|of]u_ = (a2 + ab + b2) (a2 - ab + b2) (a sf] 3ftfªssf] 36bf] qmddf /fvL ldnfp“bf_ ∴ a4 + a2b2 + b4 = (a2 + ab + b2) (a2 - ab + b2) b|i6Jo M a4 - a2b2 + b4 cleJo~hsnfO{ k"0f{ ju{ agfpg ;lsP tfklg o;sf] :j¿k (a2 + b2)2 - (ab)2 x'G5 h;nfO{ v08Ls/0f ug{ g;lsg] x'“bf a4 - a2b2 + b4 :j¿ksf cleJo~hssf] v08Ls/0f ug{ ldNb}g egL a'emfpg] . cEof; 8.1.4 sf s]xL ;d:ofx¿sf] xn 2. p4 + 4 = (p2)2 + (2)2 -b'j} kbx¿ k"0f{ju{ 5g _ = (p2)2 + 2.p2. 2 + (2)2 - 2.p2. 2 (2p2, 2 yKg] / 36fpg]_ = (p2 + 2)2 – 4p2 = (p2 + 2 + 2p)( p2 + 2 - 2p) = (p2 + 2p + 2)( p2 - 2p + 2) Ull0ft – (, lzIfs lgb]{lzsf 54  
  • 7.   13. x4 + 23x2 + 256 = (x2)2 + 23x2 + (16)2 = (x2)2 + 2.(x)2.16 + (16)2 – 9x2 = (x2 + 16)2 – (3x)2 = [(x2 + 16) + 3x] [(x2 + 16) - 3x] = (x2 + 16 + 3x) (x2 + 16 - 3x) -b'O{ ju{kbsf] cGt/df n]lvof]_ = (x2 + 3x + 16) (x2 - 3x + 16) 18. x2 – 10x + 24 + 6y - 9y2 -oxf“ klg cleJo~hsnfO{ b'O{ ju{kbsf cGt/df JoQm ug'{kb{5_ = x2 – 2x.5 + 25 -1 + 6y - 9y2 = (x – 5)2 – (9y2 - 6y + 1) = (x – 5)2 – (9y – 1)2 -b'O{ ju{kbsf] cGt/df n]lvof]_ = [(x – 5) + (3y – 1)] [(x – 5) - (3y – 1)] = (x – 5 + 3y – 1) (x – 5 - 3y + 1) = (x + 3y – 6) (x - 3y – 4) 12 2 = 2. . ca ljBfyL{nfO{ ug{ nufpg] . 13. 1 55 Ull0ft – (, lzIfs lgb]{lzsf  
  • 8.   = 7 1 = 2 .1 1 2 7 = 1 9 = 1 -b'O{ ju{kbsf] cGt/df n]lvof]_ = 1 1 = 1 1 b|i6Jo M cleJo~hsdf ;dfg¿ksf] ljleGg 3ftfªs ePsf] kb ePsf] cj:yfdf To:tf] ¿knfO{ gof“ gfd /fv]/ v08Ls/0f ubf{ ;lhnf] x'G5 . h:t} M oxf“ dfgf}“ . lbOPsf] cleJo~hs = x4 - 7x2 + 1 = (x2)2 + 2.(x)2.1 +1 -2x2 - 7x2 = (x2 + 1)2 – 9x2 = (x2 + 1)2 – (3x)2 = (x2 + 1 + 3x) (x2 + 1 - 3x) = (x2 + 3x + 1) (x2 - 3x + 1) k'gM dfg kmsf{p“bf, 7 3 3 1 1 1 17. a8 – b8 = (a4)2 - (b4)2 Ull0ft – (, lzIfs lgb]{lzsf 56  
  • 9.   = (a4 + b4)( a4 - b4) = (a4 + b4)[(a2)2 - (b2)2] ca ;"q k|of]u ug{ nufO{ ljBfyL{x¿nfO{ ;dfwfg ug{ nufpg] . %= d"Nofªsg lqmofsnfksf] cfwf/df d"Nofªsg ug]{ . 57 Ull0ft – (, lzIfs lgb]{lzsf