This document discusses neural networks and multilayer feedforward neural network architectures. It describes how multilayer networks can solve nonlinear classification problems using hidden layers. The backpropagation algorithm is introduced as a way to train these networks by propagating error backwards from the output to adjust weights. The architecture of a neural network is explained, including input, hidden, and output nodes. Backpropagation is then described in more detail through its training process of forward passing input, calculating error at the output, and propagating this error backwards to update weights. Examples of backpropagation and its applications are also provided.