SlideShare a Scribd company logo
4
Most read
16
Most read
19
Most read
USING LOG TABLES
FOR CALCULATION
using log tables
using log tables
All logarithms here are to the base 10
log(ab) = log a + log b
log (
𝑎
𝑏
) = log 𝑎 − log 𝑏
log (23.6827) has 2 parts the characteristic ie the part before the decimal point
and the mantissa ie the part after the decimal point
log 𝑎 𝑚 = 𝑚𝑙𝑜𝑔𝑎
log (23.6827) Characteristic = 1( no of digits before the decimal point -1)
log (236.82). Ch = 2
log (0.368). Ch = 1
log (2.368). Ch = 0
log ( 0.02368). Ch = 2
To calculate mantissa, we consider the first 4 significant digits
We look at 23 in the leftmost column ( it is actually 2.3)
Under column 6 it is 3729
In the same row look under column 8 in the extreme right
It is 15
Add 3729 + 15 = 3744
log(23.6827) = 1. 3744
log(0.2368) = 1. 3744
To calculate antilog (1.7682) in the antilog table look at .76 ander column 8
It is 5861
In the same row look under 2 in the extreme right . It is 3
5861+3 = 5864
Count the number of digits before 1.7682
Since it is 1, put the decimal point after 2 digits
Antilog (1.7682) = 58.64
antilog (2.7682)=586.4
using log tables
using log tables
Question 1
(23.87)(486.32)
Let y = 23.87(486.32)
log y = log 23.87 + log 486.32
=1.3781 + 2.6869
= 4.065
y = antilog 4.065
=11610
using log tables
using log tables
Question 2
Evaluate 23.87
486.32
Let y = 23.87
486.32
log y =log(23.87)-log (486.32)
=1.3781- 2.6869 = 2. 6912
1.3781
-2.6869
2. 6912
𝑦 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔 2. 6912
= 0.04911
Question 3
(0.7365)
1
3
Let y = (0.7365)
1
3
log y =
1
3
log(0.7365)
=
1
3
(1. 8672)
=
2 + 3. 8672
3
=
2
3
+ 1. 2890
= .6666 + 1. 2890
=
1. 9550
=.9016
𝑦 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔(1. 9550)

More Related Content

PPSX
Use of logarithmic tables
PPTX
Algebraic fractions
 
PPTX
square and square root class8.pptx
PPTX
Integers Class 6
PPT
Absolute Value Equations and Inequalities
PPTX
Integers
PPT
Arithmetic progression
PPTX
Lecture 5 (solving simultaneous equations)
Use of logarithmic tables
Algebraic fractions
 
square and square root class8.pptx
Integers Class 6
Absolute Value Equations and Inequalities
Integers
Arithmetic progression
Lecture 5 (solving simultaneous equations)

What's hot (20)

PPTX
Integers Class 7
PPTX
polynomials class 9th maths presentation
PPTX
Interesting Facts about Maths
PPTX
Algebra Rules - Addition and Subtraction
PPTX
surface area and volume ppt
PPT
Powers and Exponents
PPTX
Synthetic division
PPT
Lines and angles For Class 7, 8, 9
PDF
Simple equations
PPTX
quadratic equations.pptx
PDF
Factors and multiples
PDF
Usage of logarithms
PPT
ppt on circles
PPTX
Recurring decimals
PPT
Exponents and powers
PPTX
Presentation binomial theorem
PPT
Subtracting integers
PPTX
Graphing quadratic equations
PPTX
Maths polynomials
Integers Class 7
polynomials class 9th maths presentation
Interesting Facts about Maths
Algebra Rules - Addition and Subtraction
surface area and volume ppt
Powers and Exponents
Synthetic division
Lines and angles For Class 7, 8, 9
Simple equations
quadratic equations.pptx
Factors and multiples
Usage of logarithms
ppt on circles
Recurring decimals
Exponents and powers
Presentation binomial theorem
Subtracting integers
Graphing quadratic equations
Maths polynomials
Ad

Similar to using log tables (20)

PDF
Quicksort AlgorithmQuicksort is a divide and conquer algorithm. Q.pdf
PPT
Overview of Matrix - Intro to priciple of Robotics.ppt
PDF
Introduction to Logarithm
PDF
Ratio and Proportion, Indices and Logarithm Part 4
PPTX
MATRICES maths project.pptxsgdhdghdgf gr to f HR f
PDF
Matrix and its operations
PPT
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
PDF
1. matrix introduction
PPT
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
PPTX
5. Matrix Analysis12424214124124124.pptx
PPT
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
PPT
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
PPT
Matrices and Determinants............ppt
PPT
lecture_note.ppt
PDF
R.Ganesh Kumar
PPTX
Thomas algorithm
PPTX
algebralogarithm.pptx mathematics for intermediate
PDF
Calculus and matrix algebra notes
PPTX
Computer System Architecture lecyure 9 GLAU
PPT
Engineering Mathematics in matrices with problems
Quicksort AlgorithmQuicksort is a divide and conquer algorithm. Q.pdf
Overview of Matrix - Intro to priciple of Robotics.ppt
Introduction to Logarithm
Ratio and Proportion, Indices and Logarithm Part 4
MATRICES maths project.pptxsgdhdghdgf gr to f HR f
Matrix and its operations
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
1. matrix introduction
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
5. Matrix Analysis12424214124124124.pptx
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
Matrices and Determinants............ppt
lecture_note.ppt
R.Ganesh Kumar
Thomas algorithm
algebralogarithm.pptx mathematics for intermediate
Calculus and matrix algebra notes
Computer System Architecture lecyure 9 GLAU
Engineering Mathematics in matrices with problems
Ad

More from sumanmathews (20)

PDF
Angle measures-Trigonometry-1-Class XI-CBSE-ISC-Maths
PPTX
Introduction to Continuity - Class 12 Maths- ISC-CBSE
PPTX
Secrets of solving a PDE-College math
PPTX
Shares and dividend -Part 2-Class 10 math
PPTX
Shares and dividend _Class 10 mathematics_ICSE
PPTX
Prefix codes in graph theory-College math
PPTX
Trigonometry formulas for class 11
PPTX
Formulas for system of equations matrix form
PPTX
Reducing matrices to normal form: College math
PPTX
Relations and functions class 12 formulas
PPTX
Formulas of Probability :Class 12 maths
PPTX
Permutations formula for Class 11 maths
PPTX
Basic Concepts of Probability
PPTX
Permutations of distinct objects
PPTX
Newton's law of cooling and LR circuits/Engineering Maths
PPTX
Trigonometric functions of sums and differences/ class 11 maths
PPTX
Engineering maths/Exact Differential equations
PPTX
GRE QUANT: PROBLEMS ON MIXTURES ,HELPFUL TRICKS
PPTX
APPROXIMATIONS IN DERIVATIVES
PPTX
TYPES OF PARABOLA
Angle measures-Trigonometry-1-Class XI-CBSE-ISC-Maths
Introduction to Continuity - Class 12 Maths- ISC-CBSE
Secrets of solving a PDE-College math
Shares and dividend -Part 2-Class 10 math
Shares and dividend _Class 10 mathematics_ICSE
Prefix codes in graph theory-College math
Trigonometry formulas for class 11
Formulas for system of equations matrix form
Reducing matrices to normal form: College math
Relations and functions class 12 formulas
Formulas of Probability :Class 12 maths
Permutations formula for Class 11 maths
Basic Concepts of Probability
Permutations of distinct objects
Newton's law of cooling and LR circuits/Engineering Maths
Trigonometric functions of sums and differences/ class 11 maths
Engineering maths/Exact Differential equations
GRE QUANT: PROBLEMS ON MIXTURES ,HELPFUL TRICKS
APPROXIMATIONS IN DERIVATIVES
TYPES OF PARABOLA

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Week 4 Term 3 Study Techniques revisited.pptx
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Institutional Correction lecture only . . .
PDF
Insiders guide to clinical Medicine.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Classroom Observation Tools for Teachers
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Basic Mud Logging Guide for educational purpose
Week 4 Term 3 Study Techniques revisited.pptx
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Cell Types and Its function , kingdom of life
Anesthesia in Laparoscopic Surgery in India
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
O7-L3 Supply Chain Operations - ICLT Program
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
TR - Agricultural Crops Production NC III.pdf
Institutional Correction lecture only . . .
Insiders guide to clinical Medicine.pdf
PPH.pptx obstetrics and gynecology in nursing
Classroom Observation Tools for Teachers
Supply Chain Operations Speaking Notes -ICLT Program
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
STATICS OF THE RIGID BODIES Hibbelers.pdf
human mycosis Human fungal infections are called human mycosis..pptx

using log tables

  • 1. USING LOG TABLES FOR CALCULATION
  • 4. All logarithms here are to the base 10 log(ab) = log a + log b log ( 𝑎 𝑏 ) = log 𝑎 − log 𝑏 log (23.6827) has 2 parts the characteristic ie the part before the decimal point and the mantissa ie the part after the decimal point log 𝑎 𝑚 = 𝑚𝑙𝑜𝑔𝑎
  • 5. log (23.6827) Characteristic = 1( no of digits before the decimal point -1) log (236.82). Ch = 2 log (0.368). Ch = 1 log (2.368). Ch = 0
  • 6. log ( 0.02368). Ch = 2 To calculate mantissa, we consider the first 4 significant digits We look at 23 in the leftmost column ( it is actually 2.3) Under column 6 it is 3729 In the same row look under column 8 in the extreme right It is 15 Add 3729 + 15 = 3744
  • 7. log(23.6827) = 1. 3744 log(0.2368) = 1. 3744 To calculate antilog (1.7682) in the antilog table look at .76 ander column 8
  • 8. It is 5861 In the same row look under 2 in the extreme right . It is 3 5861+3 = 5864 Count the number of digits before 1.7682 Since it is 1, put the decimal point after 2 digits Antilog (1.7682) = 58.64
  • 12. Question 1 (23.87)(486.32) Let y = 23.87(486.32) log y = log 23.87 + log 486.32 =1.3781 + 2.6869
  • 13. = 4.065 y = antilog 4.065 =11610
  • 16. Question 2 Evaluate 23.87 486.32 Let y = 23.87 486.32 log y =log(23.87)-log (486.32) =1.3781- 2.6869 = 2. 6912 1.3781 -2.6869 2. 6912
  • 17. 𝑦 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔 2. 6912 = 0.04911 Question 3 (0.7365) 1 3 Let y = (0.7365) 1 3
  • 18. log y = 1 3 log(0.7365) = 1 3 (1. 8672) = 2 + 3. 8672 3 = 2 3 + 1. 2890
  • 19. = .6666 + 1. 2890 = 1. 9550 =.9016 𝑦 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔(1. 9550)