SlideShare a Scribd company logo
variational Fluids Coupling applications
A Fast Variational
Framework for
Accurate Solid-Fluid
Coupling
Christopher Batty
Florence Bertails
Robert Bridson
University of British Columbia
Motivation
• Goal: Simulate fluids coupled to objects.
• Extend the basic Eulerian approach:
– Advect fluid velocities
– Add forces (eg. gravity)
– Enforce incompressibility via pressure projection
• See eg. [Stam ‘99, Fedkiw et al. ‘01, Foster & Fedkiw ‘01,
Enright et al. ‘02, etc.]
Motivation
• Cartesian grid fluid simulation is great!
– Simple
– Effective
– Fast data access
– No remeshing needed
• But…
Motivation
• Achilles’ heel: Real objects rarely align with grids.
Overview
Three parts to our work:
1) Irregular static objects on grids
2) Dynamic & kinematic objects on grids
3) Improved liquid-solid boundary conditions
Previous Work
• First solution  Voxelize
– [Foster & Metaxas ’96]
• Easy!
• “Stairstep” artifacts
• Artificial viscosity
• Doesn’t converge under refinement!
Previous Work
• Better solution  Subdivide nearby
– [Losasso et al. ‘04]
• Stairs are smaller
• But problem remains
Previous Work
• Better yet  Mesh to match objects
– [Feldman et al. ‘05]
• Accurate!
• Needs remeshing
• Slower data access
• Trickier interpolation
• Sub-grid objects?
And now… back to the future?
• We’ll return to regular grids
– But achieve results like tet meshes!
Pressure Projection
• Converts a velocity field to be
incompressible (or divergence-free)
• No expansion or compression
• No flow into objects
Images courtesy of [Tong et al. ‘03]
Pressure Projection
• We want the “closest” incompressible velocity
field to the input.
• It’s a minimization problem!
Key Idea!
• Distance metric in the space of fluid velocity fields is
kinetic energy.
• Minimizing KE wrt. pressure is equivalent to the
classic Poisson problem!




fluid
n
n
2
1
1
2
1
KE u

Minimization Interpretation
• Fluid velocity update is:
• Resulting minimization problem is:
p
t
n






u
u ~
1
2
~
2
1
min
arg  


fluid
p
p
t

 u
What changes?
• Variational principle automatically enforces boundary
conditions! No explicit manipulation needed.
• Volume/mass terms in KE account for partial fluid cells.
– Eg.
• Result: Easy, accurate fluid velocities near irregular
objects.
  2
2
/
1
2
/
1
2
/
1
2
1
KE 

  i
i
i u
vol

Measuring Kinetic Energy
Discretization Details
• Normal equations always give an SPD linear system.
– Solve with preconditioned CG, etc.
• Same Laplacian stencil, but with new volume terms.
Classic:
Variational:
x
u
u
x
p
p
p i
i
i
i
i






 


 2
/
1
2
/
1
2
1
1 )
1
(
)
1
(
)
1
(
)
2
(
)
1
(
x
u
V
u
V
x
p
V
p
V
V
p
V i
i
i
i
i
i
i
i
i
i
i







 








 2
/
1
2
/
1
2
/
1
2
/
1
2
1
2
/
1
2
/
1
2
/
1
1
2
/
1 )
(
)
(
)
(
)
(
)
(
Object Coupling
• This works for static boundaries
• How to extend to…
– Two-way coupling?
• Dynamic objects fully interacting with fluid
– One-way coupling?
• Scripted/kinematic objects pushing the fluid
Object Coupling – Previous Work
• “Rigid Fluid” [Carlson et al ’04]
– Fast, simple, effective
– Potentially incompatible
boundary velocities, leakage
• Explicit Coupling [Guendelman
et al. ’05]
– Handles thin shells, loose
coupling approach
– Multiple pressure solves per
step, uses voxelized solve
Object Coupling – Previous Work
• Implicit Coupling [Klingner et al ‘06, Chentanez et al.’06]
– solves object + fluid motion simultaneously
– handles tight coupling (eg. water balloons)
– requires conforming (tet) mesh to avoid artifacts
A Variational Coupling Framework
Just add the object’s kinetic energy to the system.
Automatically gives:
– incompressible fluid velocities
– compatible velocities at object surface
 

fluid
solid V
M
V
u
*
2
1
2
1
KE
2

A Coupling Framework
Two components:
1) Velocity update:
How does the pressure force update the object’s
velocity?
2) Kinetic energy:
How do we compute the object’s KE?
Example: Rigid Bodies
1) Velocity update:
2) Kinetic Energy:
Discretize consistently with fluid, add to minimization, and solve.








solid
CM
solid
p
p
n
X
x
n
ˆ
)
(
Torque
ˆ
Force
2
2
2
1
2
1
KE Iω
v 
 m
Sub-Grid Rigid Bodies
Interactive Rigid Bodies
One Way Coupling
• Conceptually, object mass  infinity
• In practice: drop coupling terms from matrix
Paddle Video
Wall Separation
• Standard wall boundary condition is u·n = 0.
– Liquid adheres to walls and ceilings!
• Ideally, prefer u·n ≥ 0, so liquid can separate
– Analogous to rigid body contact.
Liquid Sticking Video
Wall Separation - Previous Work
• If ũ·n ≥ 0 before projection, hold u fixed.
– [Foster & Fedkiw ’01, Houston et al ’03, Rasmussen et al ‘04]
• Inaccurate or incorrect in certain cases:
Wall Separation
• Two cases at walls:
– If p > 0, pressure prevents penetration (“push”)
– If p < 0, pressure prevents separation (“pull”)
• Disallow “pull” force:
– Add p ≥ 0 constraint to minimization
– Gives an inequality-constrained QP
– u·n ≥ 0 enforced implicitly via KKT conditions
Liquid Peeling Video
Future Directions
• Robust air-water-solid
interfaces.
• Add overlapping ghost
pressures to handle
thin objects, à la [Tam
et al ’05]
Future Directions
• Explore scalable QP solvers for 3D wall-
separation.
• Extend coupling to deformables and other
object models.
• Employ linear algebra techniques to
accelerate rigid body coupling.
Summary
• Easy method for accurate sub-grid fluid
velocities near objects, on regular grids.
• Unified variational framework for coupling
fluids and arbitrary dynamic solids.
• New boundary condition for liquid allows
robust separation from walls.
Thanks!

More Related Content

PPTX
Cosmological Wave Mechanics
PPT
Fluid Mechanics Comprehensive Lecture Notes_1.ppt
PPTX
Wave Mechanics and Large-scale Structure
PPTX
Chapter7_Detailed_Reservoir_Simulation.pptx
PPTX
A novel approach for incorporation of capillary and gravity into streamline s...
PDF
Lecture3
PPTX
The Wave Mechanics of Large-scale Structure
PDF
10_1425_web_Lec_31_KineticTheoryGases.pdf
Cosmological Wave Mechanics
Fluid Mechanics Comprehensive Lecture Notes_1.ppt
Wave Mechanics and Large-scale Structure
Chapter7_Detailed_Reservoir_Simulation.pptx
A novel approach for incorporation of capillary and gravity into streamline s...
Lecture3
The Wave Mechanics of Large-scale Structure
10_1425_web_Lec_31_KineticTheoryGases.pdf

Similar to variational Fluids Coupling applications (20)

PPT
3814928.ppt
PPT
CFD_RIT.ppt
PPTX
Finite element method (matlab) milan kumar rai
PDF
FLUIDOS No Newtonianos
PPTX
What-is-a-Fluid-Lesson2-Fluid-Properties-Handouts-converted.pptx
PPTX
PresentationClass1 introdcuton to fluis flows
PPTX
Alternatives to Cold Dark Matter
PPT
viscoelasticity.ppt
PDF
Module4 s dynamics- rajesh sir
PDF
Module4 s dynamics- rajesh sir
PPTX
Hydraulics one chapter one and two lecture notes.pptx
PPTX
Gas Dynamics, Lecture 1.pptx
PDF
Mechanics of fluids note
PPT
Lecture 13 ideal gas. kinetic model of a gas.
PPT
EE394V_DG_Week6.ppt
PDF
Viscosity of Liquid Nickel
PDF
Piezoelectric Materials
PPT
Basic fluids
PPTX
03 darcys law
PDF
1. Fluid Mechanics - Introduction + Fluid Properties-1.pdf
3814928.ppt
CFD_RIT.ppt
Finite element method (matlab) milan kumar rai
FLUIDOS No Newtonianos
What-is-a-Fluid-Lesson2-Fluid-Properties-Handouts-converted.pptx
PresentationClass1 introdcuton to fluis flows
Alternatives to Cold Dark Matter
viscoelasticity.ppt
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
Hydraulics one chapter one and two lecture notes.pptx
Gas Dynamics, Lecture 1.pptx
Mechanics of fluids note
Lecture 13 ideal gas. kinetic model of a gas.
EE394V_DG_Week6.ppt
Viscosity of Liquid Nickel
Piezoelectric Materials
Basic fluids
03 darcys law
1. Fluid Mechanics - Introduction + Fluid Properties-1.pdf
Ad

Recently uploaded (20)

PPT
Your score increases as you pick a category, fill out a long description and ...
PPTX
1. introduction-to-bvcjdhjdfffffffffffffffffffffffffffffffffffmicroprocessors...
PPTX
capstoneoooooooooooooooooooooooooooooooooo
PPTX
IMMUNITY TYPES PPT.pptx very good , sufficient
PDF
Volvo EC300D L EC300DL excavator weight Manuals.pdf
PPTX
Gayatri Cultural Educational Society.pptx
PDF
computer system to create, modify, analyse or optimize an engineering design.
PDF
Presentation.pdf ...............gjtn....tdubsr..........
PDF
Delivers.ai: 2020–2026 Autonomous Journey
PDF
MANDIBLE (1).pdffawffffffffffffffffffffffffffffffffffffffffff
PPTX
laws of thermodynamics with complete explanation
PPTX
UNIT-2(B) Organisavtional Appraisal.pptx
PDF
Honda Dealership SNS Evaluation pdf/ppts
PDF
Caterpillar Cat 315C Excavator (Prefix ANF) Service Repair Manual Instant Dow...
PDF
Renesas R-Car_Cockpit_overview210214-Gen4.pdf
DOCX
lp of food hygiene.docxvvvvvvvvvvvvvvvvvvvvvvv
PPTX
TOEFL ITP Grammar_ Clausessssssssssssssssss.pptx
PDF
Physics class 12thstep down transformer project.pdf
PDF
higher edu open stores 12.5.24 (1).pdf forreal
PDF
Volvo EC290C NL EC290CNL Excavator Service Repair Manual Instant Download.pdf
Your score increases as you pick a category, fill out a long description and ...
1. introduction-to-bvcjdhjdfffffffffffffffffffffffffffffffffffmicroprocessors...
capstoneoooooooooooooooooooooooooooooooooo
IMMUNITY TYPES PPT.pptx very good , sufficient
Volvo EC300D L EC300DL excavator weight Manuals.pdf
Gayatri Cultural Educational Society.pptx
computer system to create, modify, analyse or optimize an engineering design.
Presentation.pdf ...............gjtn....tdubsr..........
Delivers.ai: 2020–2026 Autonomous Journey
MANDIBLE (1).pdffawffffffffffffffffffffffffffffffffffffffffff
laws of thermodynamics with complete explanation
UNIT-2(B) Organisavtional Appraisal.pptx
Honda Dealership SNS Evaluation pdf/ppts
Caterpillar Cat 315C Excavator (Prefix ANF) Service Repair Manual Instant Dow...
Renesas R-Car_Cockpit_overview210214-Gen4.pdf
lp of food hygiene.docxvvvvvvvvvvvvvvvvvvvvvvv
TOEFL ITP Grammar_ Clausessssssssssssssssss.pptx
Physics class 12thstep down transformer project.pdf
higher edu open stores 12.5.24 (1).pdf forreal
Volvo EC290C NL EC290CNL Excavator Service Repair Manual Instant Download.pdf
Ad

variational Fluids Coupling applications

  • 2. A Fast Variational Framework for Accurate Solid-Fluid Coupling Christopher Batty Florence Bertails Robert Bridson University of British Columbia
  • 3. Motivation • Goal: Simulate fluids coupled to objects. • Extend the basic Eulerian approach: – Advect fluid velocities – Add forces (eg. gravity) – Enforce incompressibility via pressure projection • See eg. [Stam ‘99, Fedkiw et al. ‘01, Foster & Fedkiw ‘01, Enright et al. ‘02, etc.]
  • 4. Motivation • Cartesian grid fluid simulation is great! – Simple – Effective – Fast data access – No remeshing needed • But…
  • 5. Motivation • Achilles’ heel: Real objects rarely align with grids.
  • 6. Overview Three parts to our work: 1) Irregular static objects on grids 2) Dynamic & kinematic objects on grids 3) Improved liquid-solid boundary conditions
  • 7. Previous Work • First solution  Voxelize – [Foster & Metaxas ’96] • Easy! • “Stairstep” artifacts • Artificial viscosity • Doesn’t converge under refinement!
  • 8. Previous Work • Better solution  Subdivide nearby – [Losasso et al. ‘04] • Stairs are smaller • But problem remains
  • 9. Previous Work • Better yet  Mesh to match objects – [Feldman et al. ‘05] • Accurate! • Needs remeshing • Slower data access • Trickier interpolation • Sub-grid objects?
  • 10. And now… back to the future? • We’ll return to regular grids – But achieve results like tet meshes!
  • 11. Pressure Projection • Converts a velocity field to be incompressible (or divergence-free) • No expansion or compression • No flow into objects Images courtesy of [Tong et al. ‘03]
  • 12. Pressure Projection • We want the “closest” incompressible velocity field to the input. • It’s a minimization problem!
  • 13. Key Idea! • Distance metric in the space of fluid velocity fields is kinetic energy. • Minimizing KE wrt. pressure is equivalent to the classic Poisson problem!     fluid n n 2 1 1 2 1 KE u 
  • 14. Minimization Interpretation • Fluid velocity update is: • Resulting minimization problem is: p t n       u u ~ 1 2 ~ 2 1 min arg     fluid p p t   u
  • 15. What changes? • Variational principle automatically enforces boundary conditions! No explicit manipulation needed. • Volume/mass terms in KE account for partial fluid cells. – Eg. • Result: Easy, accurate fluid velocities near irregular objects.   2 2 / 1 2 / 1 2 / 1 2 1 KE     i i i u vol 
  • 17. Discretization Details • Normal equations always give an SPD linear system. – Solve with preconditioned CG, etc. • Same Laplacian stencil, but with new volume terms. Classic: Variational: x u u x p p p i i i i i            2 / 1 2 / 1 2 1 1 ) 1 ( ) 1 ( ) 1 ( ) 2 ( ) 1 ( x u V u V x p V p V V p V i i i i i i i i i i i                   2 / 1 2 / 1 2 / 1 2 / 1 2 1 2 / 1 2 / 1 2 / 1 1 2 / 1 ) ( ) ( ) ( ) ( ) (
  • 18. Object Coupling • This works for static boundaries • How to extend to… – Two-way coupling? • Dynamic objects fully interacting with fluid – One-way coupling? • Scripted/kinematic objects pushing the fluid
  • 19. Object Coupling – Previous Work • “Rigid Fluid” [Carlson et al ’04] – Fast, simple, effective – Potentially incompatible boundary velocities, leakage • Explicit Coupling [Guendelman et al. ’05] – Handles thin shells, loose coupling approach – Multiple pressure solves per step, uses voxelized solve
  • 20. Object Coupling – Previous Work • Implicit Coupling [Klingner et al ‘06, Chentanez et al.’06] – solves object + fluid motion simultaneously – handles tight coupling (eg. water balloons) – requires conforming (tet) mesh to avoid artifacts
  • 21. A Variational Coupling Framework Just add the object’s kinetic energy to the system. Automatically gives: – incompressible fluid velocities – compatible velocities at object surface    fluid solid V M V u * 2 1 2 1 KE 2 
  • 22. A Coupling Framework Two components: 1) Velocity update: How does the pressure force update the object’s velocity? 2) Kinetic energy: How do we compute the object’s KE?
  • 23. Example: Rigid Bodies 1) Velocity update: 2) Kinetic Energy: Discretize consistently with fluid, add to minimization, and solve.         solid CM solid p p n X x n ˆ ) ( Torque ˆ Force 2 2 2 1 2 1 KE Iω v   m
  • 26. One Way Coupling • Conceptually, object mass  infinity • In practice: drop coupling terms from matrix
  • 28. Wall Separation • Standard wall boundary condition is u·n = 0. – Liquid adheres to walls and ceilings! • Ideally, prefer u·n ≥ 0, so liquid can separate – Analogous to rigid body contact.
  • 30. Wall Separation - Previous Work • If ũ·n ≥ 0 before projection, hold u fixed. – [Foster & Fedkiw ’01, Houston et al ’03, Rasmussen et al ‘04] • Inaccurate or incorrect in certain cases:
  • 31. Wall Separation • Two cases at walls: – If p > 0, pressure prevents penetration (“push”) – If p < 0, pressure prevents separation (“pull”) • Disallow “pull” force: – Add p ≥ 0 constraint to minimization – Gives an inequality-constrained QP – u·n ≥ 0 enforced implicitly via KKT conditions
  • 33. Future Directions • Robust air-water-solid interfaces. • Add overlapping ghost pressures to handle thin objects, à la [Tam et al ’05]
  • 34. Future Directions • Explore scalable QP solvers for 3D wall- separation. • Extend coupling to deformables and other object models. • Employ linear algebra techniques to accelerate rigid body coupling.
  • 35. Summary • Easy method for accurate sub-grid fluid velocities near objects, on regular grids. • Unified variational framework for coupling fluids and arbitrary dynamic solids. • New boundary condition for liquid allows robust separation from walls.