SlideShare a Scribd company logo
1
Hardware Description Language (HDL)
 What is the need for Hardware Description Language?
 Model, Represent, And Simulate Digital Hardware
 Hardware Concurrency
 Parallel Activity Flow
 Semantics for Signal Value And Time
 Special Constructs And Semantics
 Edge Transitions
 Propagation Delays
 Timing Checks
2
VERILOG HDL
 Basic Unit – A module
 Module
 Describes the functionality of the design
 States the input and output ports
 Example: A Computer
 Functionality: Perform user defined computations
 I/O Ports: Keyboard, Mouse, Monitor, Printer
3
Module
 General definition
module module_name ( port_list );
port declarations;
…
variable declaration;
…
description of behavior
endmodule
 Example
module HalfAdder (A, B, Sum Carry);
input A, B;
output Sum, Carry;
assign Sum = A ^ B;
//^ denotes XOR
assign Carry = A & B;
// & denotes AND
endmodule
4
Lexical Conventions
 Comments
// Single line comment
/* Another single line comment */
/* Begins multi-line (block) comment
All text within is ignored
Line below ends multi-line comment
*/
 Number
decimal, hex, octal, binary
unsized decimal form
size base form
include underlines, +,-
 String
" Enclose between quotes on a single line"
5
Lexical Conventions (cont.)
 Identifier
A ... Z
a ... z
0 ... 9
Underscore
 Strings are limited to 1024 chars
 First char of identifier must not be a digit
 Keywords: See text.
 Operators: See text.
Verilog is case sensitive
6
Description Styles
 Structural: Logic is described in terms of Verilog gate
primitives
 Example:
not n1(sel_n, sel);
and a1(sel_b, b, sel_b);
and a2(sel_a, a, sel);
or o1(out, sel_b, sel_a);
sel
b
a
out
sel_n
sel_b
sel_a
n1
a1
a2
o1
7
Description Styles (cont.)
 Dataflow: Specify output signals in terms of input signals
 Example:
assign out = (sel & a) | (~sel & b);
sel
b
a
out
sel_n
sel_b
sel_a
8
Description Styles (cont.)
 Behavioral: Algorithmically specify the behavior of the
design
 Example:
if (select == 0) begin
out = b;
end
else if (select == 1) begin
out = a;
end
a
b
sel
out
Black Box
2x1 MUX
9
Structural Modeling
 Execution: Concurrent
 Format (Primitive Gates):
and G2(Carry, A, B);
 First parameter (Carry) – Output
 Other Inputs (A, B) - Inputs
10
Dataflow Modeling
 Uses continuous assignment statement
 Format: assign [ delay ] net = expression;
 Example: assign sum = a ^ b;
 Delay: Time duration between assignment from RHS to
LHS
 All continuous assignment statements execute
concurrently
 Order of the statement does not impact the design
11
Dataflow Modeling (cont.)
 Delay can be introduced
 Example: assign #2 sum = a ^ b;
 “#2” indicates 2 time-units
 No delay specified : 0 (default)
 Associate time-unit with physical time
 `timescale time-unit/time-precision
 Example: `timescale 1ns/100 ps
 Timescale
`timescale 1ns/100ps
 1 Time unit = 1 ns
 Time precision is 100ps (0.1 ns)
 10.512ns is interpreted as 10.5ns
12
Dataflow Modeling (cont.)
 Example:
`timescale 1ns/100ps
module HalfAdder (A, B, Sum, Carry);
input A, B;
output Sum, Carry;
assign #3 Sum = A ^ B;
assign #6 Carry = A & B;
endmodule
13
Dataflow Modeling (cont.)
14
Behavioral Modeling
 Example:
module mux_2x1(a, b, sel, out);
input a, b, sel;
output out;
always @(a or b or sel)
begin
if (sel == 1)
out = a;
else out = b;
end
endmodule
Sensitivity List
15
Behavioral Modeling (cont.)
 always statement : Sequential Block
 Sequential Block: All statements within the block are
executed sequentially
 When is it executed?
 Occurrence of an event in the sensitivity list
 Event: Change in the logical value
 Statements with a Sequential Block: Procedural
Assignments
 Delay in Procedural Assignments
 Inter-Statement Delay
 Intra-Statement Delay
16
Behavioral Modeling (cont.)
 Inter-Assignment Delay
 Example:
Sum = A ^ B;
#2 Carry = A & B;
 Delayed execution
 Intra-Assignment Delay
 Example:
Sum = A ^ B;
Carry = #2 A & B;
 Delayed assignment
17
Procedural Constructs
 Two Procedural Constructs
 initial Statement
 always Statement
 initial Statement : Executes only once
 always Statement : Executes in a loop
 Example:
…
initial begin
Sum = 0;
Carry = 0;
end
…
…
always @(A or B) begin
Sum = A ^ B;
Carry = A & B;
end
…
18
Event Control
 Event Control
 Edge Triggered Event Control
 Level Triggered Event Control
 Edge Triggered Event Control
@ (posedge CLK) //Positive Edge of CLK
Curr_State = Next_state;
 Level Triggered Event Control
@ (A or B) //change in values of A or B
Out = A & B;
19
Loop Statements
 Loop Statements
 Repeat
 While
 For
 Repeat Loop
 Example:
repeat (Count)
sum = sum + 5;
 If condition is a x or z it is treated as 0
20
Loop Statements (cont.)
 While Loop
 Example:
while (Count < 10) begin
sum = sum + 5;
Count = Count +1;
end
 If condition is a x or z it is treated as 0
 For Loop
 Example:
for (Count = 0; Count < 10; Count = Count + 1) begin
sum = sum + 5;
end
21
Conditional Statements
 if Statement
 Format:
if (condition)
procedural_statement
else if (condition)
procedural_statement
else
procedural_statement
 Example:
if (Clk)
Q = 0;
else
Q = D;
22
Conditional Statements (cont.)
 Case Statement
 Example 1:
case (X)
2’b00: Y = A + B;
2’b01: Y = A – B;
2’b10: Y = A / B;
endcase
 Example 2:
case (3’b101 << 2)
3’b100: A = B + C;
4’b0100: A = B – C;
5’b10100: A = B / C; //This statement is executed
endcase
23
Conditional Statements (cont.)
 Variants of case Statements:
 casex and casez
 casez – z is considered as a don’t care
 casex – both x and z are considered as don’t cares
 Example:
casez (X)
2’b1z: A = B + C;
2’b11: A = B / C;
endcase
24
Data Types
 Net Types: Physical Connection between structural
elements
 Register Type: Represents an abstract storage element.
 Default Values
 Net Types : z
 Register Type : x
 Net Types: wire, tri, wor, trior, wand, triand, supply0,
supply1
 Register Types : reg, integer, time, real, realtime
25
Data Types
 Net Type: Wire
wire [ msb : lsb ] wire1, wire2, …
 Example
wire Reset; // A 1-bit wire
wire [6:0] Clear; // A 7-bit wire
 Register Type: Reg
reg [ msb : lsb ] reg1, reg2, …
 Example
reg [ 3: 0 ] cla; // A 4-bit register
reg cla; // A 1-bit register
26
Restrictions on Data Types
 Data Flow and Structural Modeling
 Can use only wire data type
 Cannot use reg data type
 Behavioral Modeling
 Can use only reg data type (within initial and always
constructs)
 Cannot use wire data type
27
Memories
 An array of registers
reg [ msb : lsb ] memory1 [ upper : lower ];
 Example
reg [ 0 : 3 ] mem [ 0 : 63 ];
// An array of 64 4-bit registers
reg mem [ 0 : 4 ];
// An array of 5 1-bit registers
28
Compiler Directives
 `define – (Similar to #define in C) used to define global
parameter
 Example:
`define BUS_WIDTH 16
reg [ `BUS_WIDTH - 1 : 0 ] System_Bus;
 `undef – Removes the previously defined directive
 Example:
`define BUS_WIDTH 16
…
reg [ `BUS_WIDTH - 1 : 0 ] System_Bus;
…
`undef BUS_WIDTH
29
Compiler Directives (cont.)
 `include – used to include another file
 Example
`include “./fulladder.v”
30
System Tasks
 Display tasks
 $display : Displays the entire list at the time when
statement is encountered
 $monitor : Whenever there is a change in any argument,
displays the entire list at end of time step
 Simulation Control Task
 $finish : makes the simulator to exit
 $stop : suspends the simulation
 Time
 $time: gives the simulation
31
Type of Port Connections
 Connection by Position
parent_mod
32
Type of Port Connections (cont.)
 Connection by Name
parent_mod
33
Empty Port Connections
 If an input port of an instantiated module is empty, the
port is set to a value of z (high impedance).
module child_mod(In1, In2, Out1, Out2) module parent_mod(…….)
input In1;
input In2; child_mod mod(A, ,Y1, Y2);
output Out1; //Empty Input
output Out2; endmodule
//behavior relating In1 and In2 to Out1
endmodule
 If an output port of an instantiated module is left empty,
the port is considered to be unused.
module parent_mod(…….)
child_mod mod(A, B, Y1, ); //Empty Output
endmodule
34
Test Bench
`timescale 1ns/100ps
module Top;
reg PA, PB;
wire PSum, PCarry;
HalfAdder G1(PA, PB, PSum, PCarry);
initial begin: LABEL
reg [2:0] i;
for (i=0; i<4; i=i+1) begin
{PA, PB} = i;
#5 $display (“PA=%b PB=%b PSum=%b
PCarry=%b”, PA, PB, PSum, PCarry);
end // for
end // initial
endmodule
Test Bench
Design
Module
Apply Inputs
Observe Outputs
35
Test Bench - Generating Stimulus
 Example: A sequence of values
initial begin
Clock = 0;
#50 Clock = 1;
#30 Clock = 0;
#20 Clock = 1;
end
36
Test Bench - Generating Clock
 Repetitive Signals (clock)
Clock
 A Simple Solution:
wire Clock;
assign #10 Clock = ~ Clock
 Caution:
 Initial value of Clock (wire data type) = z
 ~z = x and ~x = x
37
Test Bench - Generating Clock (cont.)
 Initialize the Clock signal
initial begin
Clock = 0;
end
 Caution: Clock is of data type wire, cannot be used in an initial
statement
 Solution:
reg Clock;
…
initial begin
Clock = 0;
end
…
always begin
#10 Clock = ~ Clock;
end
forever loop can
also be used to
generate clock

More Related Content

PPT
Verilogforlab
PPT
Digital system design using vhdl and verilog
PPTX
Verilog Tutorial - Verilog HDL Tutorial with Examples
PPTX
System Verilog Tutorial - VHDL
PPTX
Verilog Final Probe'22.pptx
PPTX
Verilog presentation final
PDF
Verilog
PPT
Verilogforlab
Digital system design using vhdl and verilog
Verilog Tutorial - Verilog HDL Tutorial with Examples
System Verilog Tutorial - VHDL
Verilog Final Probe'22.pptx
Verilog presentation final
Verilog

Similar to verilog_tutorial1.pptx (20)

PPTX
HDL_verilog_unit_1 for engagement subjects and technology
PPTX
Domine specification section on VLSI.pptx
PPT
Introduction to verilog basic modeling .ppt
PPT
Coding verilog
PPTX
vlsi design using verilog presentaion 1
PDF
DLD5.pdf
PDF
Verilog_Overview.pdf
PPTX
PPT
Unit 3 - Styles of Modeling-1 for resource management techniques
PPTX
systemverilog and veriog presentation
PPTX
Verilog
PDF
The Verilog Hardware Description Language Donald E Thomas Philip R Moorby
PPT
VerilogHDL_Utkarsh_kulshrestha
PPTX
Sequential statements in Verilog (2).pptx
PPTX
gate level modeling
PPTX
a verilog presentation for deep concept understa
PPT
Crash course in verilog
PPT
Structural_Modelling Design DetailsExplaination
PDF
INTERVIEW QUESTIONS_Verilog_PART-2.pdf
PPT
Verilog tutorial
HDL_verilog_unit_1 for engagement subjects and technology
Domine specification section on VLSI.pptx
Introduction to verilog basic modeling .ppt
Coding verilog
vlsi design using verilog presentaion 1
DLD5.pdf
Verilog_Overview.pdf
Unit 3 - Styles of Modeling-1 for resource management techniques
systemverilog and veriog presentation
Verilog
The Verilog Hardware Description Language Donald E Thomas Philip R Moorby
VerilogHDL_Utkarsh_kulshrestha
Sequential statements in Verilog (2).pptx
gate level modeling
a verilog presentation for deep concept understa
Crash course in verilog
Structural_Modelling Design DetailsExplaination
INTERVIEW QUESTIONS_Verilog_PART-2.pdf
Verilog tutorial
Ad

Recently uploaded (20)

PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPT
Total quality management ppt for engineering students
PPTX
Fundamentals of Mechanical Engineering.pptx
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
UNIT - 3 Total quality Management .pptx
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
737-MAX_SRG.pdf student reference guides
PPT
introduction to datamining and warehousing
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Total quality management ppt for engineering students
Fundamentals of Mechanical Engineering.pptx
Safety Seminar civil to be ensured for safe working.
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
UNIT - 3 Total quality Management .pptx
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Fundamentals of safety and accident prevention -final (1).pptx
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Abrasive, erosive and cavitation wear.pdf
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Exploratory_Data_Analysis_Fundamentals.pdf
III.4.1.2_The_Space_Environment.p pdffdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
737-MAX_SRG.pdf student reference guides
introduction to datamining and warehousing
Ad

verilog_tutorial1.pptx

  • 1. 1 Hardware Description Language (HDL)  What is the need for Hardware Description Language?  Model, Represent, And Simulate Digital Hardware  Hardware Concurrency  Parallel Activity Flow  Semantics for Signal Value And Time  Special Constructs And Semantics  Edge Transitions  Propagation Delays  Timing Checks
  • 2. 2 VERILOG HDL  Basic Unit – A module  Module  Describes the functionality of the design  States the input and output ports  Example: A Computer  Functionality: Perform user defined computations  I/O Ports: Keyboard, Mouse, Monitor, Printer
  • 3. 3 Module  General definition module module_name ( port_list ); port declarations; … variable declaration; … description of behavior endmodule  Example module HalfAdder (A, B, Sum Carry); input A, B; output Sum, Carry; assign Sum = A ^ B; //^ denotes XOR assign Carry = A & B; // & denotes AND endmodule
  • 4. 4 Lexical Conventions  Comments // Single line comment /* Another single line comment */ /* Begins multi-line (block) comment All text within is ignored Line below ends multi-line comment */  Number decimal, hex, octal, binary unsized decimal form size base form include underlines, +,-  String " Enclose between quotes on a single line"
  • 5. 5 Lexical Conventions (cont.)  Identifier A ... Z a ... z 0 ... 9 Underscore  Strings are limited to 1024 chars  First char of identifier must not be a digit  Keywords: See text.  Operators: See text. Verilog is case sensitive
  • 6. 6 Description Styles  Structural: Logic is described in terms of Verilog gate primitives  Example: not n1(sel_n, sel); and a1(sel_b, b, sel_b); and a2(sel_a, a, sel); or o1(out, sel_b, sel_a); sel b a out sel_n sel_b sel_a n1 a1 a2 o1
  • 7. 7 Description Styles (cont.)  Dataflow: Specify output signals in terms of input signals  Example: assign out = (sel & a) | (~sel & b); sel b a out sel_n sel_b sel_a
  • 8. 8 Description Styles (cont.)  Behavioral: Algorithmically specify the behavior of the design  Example: if (select == 0) begin out = b; end else if (select == 1) begin out = a; end a b sel out Black Box 2x1 MUX
  • 9. 9 Structural Modeling  Execution: Concurrent  Format (Primitive Gates): and G2(Carry, A, B);  First parameter (Carry) – Output  Other Inputs (A, B) - Inputs
  • 10. 10 Dataflow Modeling  Uses continuous assignment statement  Format: assign [ delay ] net = expression;  Example: assign sum = a ^ b;  Delay: Time duration between assignment from RHS to LHS  All continuous assignment statements execute concurrently  Order of the statement does not impact the design
  • 11. 11 Dataflow Modeling (cont.)  Delay can be introduced  Example: assign #2 sum = a ^ b;  “#2” indicates 2 time-units  No delay specified : 0 (default)  Associate time-unit with physical time  `timescale time-unit/time-precision  Example: `timescale 1ns/100 ps  Timescale `timescale 1ns/100ps  1 Time unit = 1 ns  Time precision is 100ps (0.1 ns)  10.512ns is interpreted as 10.5ns
  • 12. 12 Dataflow Modeling (cont.)  Example: `timescale 1ns/100ps module HalfAdder (A, B, Sum, Carry); input A, B; output Sum, Carry; assign #3 Sum = A ^ B; assign #6 Carry = A & B; endmodule
  • 14. 14 Behavioral Modeling  Example: module mux_2x1(a, b, sel, out); input a, b, sel; output out; always @(a or b or sel) begin if (sel == 1) out = a; else out = b; end endmodule Sensitivity List
  • 15. 15 Behavioral Modeling (cont.)  always statement : Sequential Block  Sequential Block: All statements within the block are executed sequentially  When is it executed?  Occurrence of an event in the sensitivity list  Event: Change in the logical value  Statements with a Sequential Block: Procedural Assignments  Delay in Procedural Assignments  Inter-Statement Delay  Intra-Statement Delay
  • 16. 16 Behavioral Modeling (cont.)  Inter-Assignment Delay  Example: Sum = A ^ B; #2 Carry = A & B;  Delayed execution  Intra-Assignment Delay  Example: Sum = A ^ B; Carry = #2 A & B;  Delayed assignment
  • 17. 17 Procedural Constructs  Two Procedural Constructs  initial Statement  always Statement  initial Statement : Executes only once  always Statement : Executes in a loop  Example: … initial begin Sum = 0; Carry = 0; end … … always @(A or B) begin Sum = A ^ B; Carry = A & B; end …
  • 18. 18 Event Control  Event Control  Edge Triggered Event Control  Level Triggered Event Control  Edge Triggered Event Control @ (posedge CLK) //Positive Edge of CLK Curr_State = Next_state;  Level Triggered Event Control @ (A or B) //change in values of A or B Out = A & B;
  • 19. 19 Loop Statements  Loop Statements  Repeat  While  For  Repeat Loop  Example: repeat (Count) sum = sum + 5;  If condition is a x or z it is treated as 0
  • 20. 20 Loop Statements (cont.)  While Loop  Example: while (Count < 10) begin sum = sum + 5; Count = Count +1; end  If condition is a x or z it is treated as 0  For Loop  Example: for (Count = 0; Count < 10; Count = Count + 1) begin sum = sum + 5; end
  • 21. 21 Conditional Statements  if Statement  Format: if (condition) procedural_statement else if (condition) procedural_statement else procedural_statement  Example: if (Clk) Q = 0; else Q = D;
  • 22. 22 Conditional Statements (cont.)  Case Statement  Example 1: case (X) 2’b00: Y = A + B; 2’b01: Y = A – B; 2’b10: Y = A / B; endcase  Example 2: case (3’b101 << 2) 3’b100: A = B + C; 4’b0100: A = B – C; 5’b10100: A = B / C; //This statement is executed endcase
  • 23. 23 Conditional Statements (cont.)  Variants of case Statements:  casex and casez  casez – z is considered as a don’t care  casex – both x and z are considered as don’t cares  Example: casez (X) 2’b1z: A = B + C; 2’b11: A = B / C; endcase
  • 24. 24 Data Types  Net Types: Physical Connection between structural elements  Register Type: Represents an abstract storage element.  Default Values  Net Types : z  Register Type : x  Net Types: wire, tri, wor, trior, wand, triand, supply0, supply1  Register Types : reg, integer, time, real, realtime
  • 25. 25 Data Types  Net Type: Wire wire [ msb : lsb ] wire1, wire2, …  Example wire Reset; // A 1-bit wire wire [6:0] Clear; // A 7-bit wire  Register Type: Reg reg [ msb : lsb ] reg1, reg2, …  Example reg [ 3: 0 ] cla; // A 4-bit register reg cla; // A 1-bit register
  • 26. 26 Restrictions on Data Types  Data Flow and Structural Modeling  Can use only wire data type  Cannot use reg data type  Behavioral Modeling  Can use only reg data type (within initial and always constructs)  Cannot use wire data type
  • 27. 27 Memories  An array of registers reg [ msb : lsb ] memory1 [ upper : lower ];  Example reg [ 0 : 3 ] mem [ 0 : 63 ]; // An array of 64 4-bit registers reg mem [ 0 : 4 ]; // An array of 5 1-bit registers
  • 28. 28 Compiler Directives  `define – (Similar to #define in C) used to define global parameter  Example: `define BUS_WIDTH 16 reg [ `BUS_WIDTH - 1 : 0 ] System_Bus;  `undef – Removes the previously defined directive  Example: `define BUS_WIDTH 16 … reg [ `BUS_WIDTH - 1 : 0 ] System_Bus; … `undef BUS_WIDTH
  • 29. 29 Compiler Directives (cont.)  `include – used to include another file  Example `include “./fulladder.v”
  • 30. 30 System Tasks  Display tasks  $display : Displays the entire list at the time when statement is encountered  $monitor : Whenever there is a change in any argument, displays the entire list at end of time step  Simulation Control Task  $finish : makes the simulator to exit  $stop : suspends the simulation  Time  $time: gives the simulation
  • 31. 31 Type of Port Connections  Connection by Position parent_mod
  • 32. 32 Type of Port Connections (cont.)  Connection by Name parent_mod
  • 33. 33 Empty Port Connections  If an input port of an instantiated module is empty, the port is set to a value of z (high impedance). module child_mod(In1, In2, Out1, Out2) module parent_mod(…….) input In1; input In2; child_mod mod(A, ,Y1, Y2); output Out1; //Empty Input output Out2; endmodule //behavior relating In1 and In2 to Out1 endmodule  If an output port of an instantiated module is left empty, the port is considered to be unused. module parent_mod(…….) child_mod mod(A, B, Y1, ); //Empty Output endmodule
  • 34. 34 Test Bench `timescale 1ns/100ps module Top; reg PA, PB; wire PSum, PCarry; HalfAdder G1(PA, PB, PSum, PCarry); initial begin: LABEL reg [2:0] i; for (i=0; i<4; i=i+1) begin {PA, PB} = i; #5 $display (“PA=%b PB=%b PSum=%b PCarry=%b”, PA, PB, PSum, PCarry); end // for end // initial endmodule Test Bench Design Module Apply Inputs Observe Outputs
  • 35. 35 Test Bench - Generating Stimulus  Example: A sequence of values initial begin Clock = 0; #50 Clock = 1; #30 Clock = 0; #20 Clock = 1; end
  • 36. 36 Test Bench - Generating Clock  Repetitive Signals (clock) Clock  A Simple Solution: wire Clock; assign #10 Clock = ~ Clock  Caution:  Initial value of Clock (wire data type) = z  ~z = x and ~x = x
  • 37. 37 Test Bench - Generating Clock (cont.)  Initialize the Clock signal initial begin Clock = 0; end  Caution: Clock is of data type wire, cannot be used in an initial statement  Solution: reg Clock; … initial begin Clock = 0; end … always begin #10 Clock = ~ Clock; end forever loop can also be used to generate clock