SlideShare a Scribd company logo
Modified Vine-Building Shortest Paths Algorithm Ikki Kim
MVA and Multi-path Algorithm : Example Network 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 3 : turning penalty 3 : link cost
MVA Algorithm : Vine Searching Process 1 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 Label : node (cost,  back node,  back-back) 7(18,6,8) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 7(907,9,8) 1 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 Label : node (cost,  back node,  back-back) 7(18,6,8) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 7(907,9,8) 7(9,9,10)
MVA Algorithm : Backward Tracing Process 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-)
MVA Algorithm : The Final Result 9 3 2 4 5 1 S   6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-)
Generating Multiple Paths (I) : Upper Rational Boundary 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 3(22,4,7) 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 3(22,4,7) 3(28,4,1)
Generating Multiple Paths (II) : Upper Rational Boundary 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost,  back node,  back-back) 3(21,4,5) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4(22,5,10)
Generating Multiple Paths (III):  Mark and save, then back-tracing repeatedly 9 3 2 4 5 1 S   6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S   6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S   6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S   6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S   6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node
Generating Multiple Paths : Final result in case of loose boundary S   R S   R S   R S   R S   R S   R Cost = 23 Cost = 24 Cost = 28 Cost = 30 Cost = 32 Cost = 33
Generating Multiple Paths : Final result in case of tight boundary 1 1 9 1 3 2 4 5 1 S   6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) Path Path Path Cost 23 24 28
Thank you for your Attention ! Any Questions Or Comments ?

More Related Content

PDF
5year lahore board xi
PDF
hw2_prob2
PDF
aiboのAI:DeepLearning認識
PDF
Debugging TV Frame 0x0F
PDF
タイムインターメディア 会社紹介
PDF
著作権法改正 新第47条の4 ver.β1
PPTX
Slides thumbs
PDF
16 cuerpos
5year lahore board xi
hw2_prob2
aiboのAI:DeepLearning認識
Debugging TV Frame 0x0F
タイムインターメディア 会社紹介
著作権法改正 新第47条の4 ver.β1
Slides thumbs
16 cuerpos

What's hot (7)

PDF
PDF
Sesión de aprendizaje de Radicación Algebra pre u ccesa007
PDF
AR勉強会第4回part2
PPTX
Nois de la Torre. Tots els castells. 1975-2017
PDF
AR勉強会第4回part1
PDF
Webセミナー「海外で対等に渡り合えるビジネス英語を習得するには?」
PPTX
20121224 meeting standard cell routing via boolean satisfiability_mori ver
Sesión de aprendizaje de Radicación Algebra pre u ccesa007
AR勉強会第4回part2
Nois de la Torre. Tots els castells. 1975-2017
AR勉強会第4回part1
Webセミナー「海外で対等に渡り合えるビジネス英語を習得するには?」
20121224 meeting standard cell routing via boolean satisfiability_mori ver
Ad

Similar to Vine shortest example (20)

DOC
Branch and bound
PPTX
Branch and bounding : Data structures
PPT
Tsp branch and bound
PPT
dynamic programming Rod cutting class
DOCX
Tsp bn b
PPTX
Data structures and algorithms
DOC
Unit 3 daa
PDF
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
PDF
travelingsalesmanproblem-170122053648.pdf
PPTX
Traveling salesman problem
PPTX
Traveling salesman problem
PPT
Unit-2 Branch & Bound Design of Algorithms.ppt
PPTX
A star
DOC
algorithm Unit 3
PPT
8783733
PPTX
Data structure and algorithm
PPT
Chap07alg
PPT
Chap07alg
PPTX
Travelling Salesman
PPTX
Dynamic Programming in design and analysis .pptx
Branch and bound
Branch and bounding : Data structures
Tsp branch and bound
dynamic programming Rod cutting class
Tsp bn b
Data structures and algorithms
Unit 3 daa
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
travelingsalesmanproblem-170122053648.pdf
Traveling salesman problem
Traveling salesman problem
Unit-2 Branch & Bound Design of Algorithms.ppt
A star
algorithm Unit 3
8783733
Data structure and algorithm
Chap07alg
Chap07alg
Travelling Salesman
Dynamic Programming in design and analysis .pptx
Ad

Recently uploaded (20)

PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Architecture types and enterprise applications.pdf
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Hybrid model detection and classification of lung cancer
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
WOOl fibre morphology and structure.pdf for textiles
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
Tartificialntelligence_presentation.pptx
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Architecture types and enterprise applications.pdf
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
Group 1 Presentation -Planning and Decision Making .pptx
TLE Review Electricity (Electricity).pptx
Hybrid model detection and classification of lung cancer
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
WOOl fibre morphology and structure.pdf for textiles
observCloud-Native Containerability and monitoring.pptx
Developing a website for English-speaking practice to English as a foreign la...
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Zenith AI: Advanced Artificial Intelligence
Tartificialntelligence_presentation.pptx
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
O2C Customer Invoices to Receipt V15A.pptx
Final SEM Unit 1 for mit wpu at pune .pptx
NewMind AI Weekly Chronicles - August'25-Week II
Getting started with AI Agents and Multi-Agent Systems
NewMind AI Weekly Chronicles – August ’25 Week III

Vine shortest example

  • 1. Modified Vine-Building Shortest Paths Algorithm Ikki Kim
  • 2. MVA and Multi-path Algorithm : Example Network 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 3 : turning penalty 3 : link cost
  • 3. MVA Algorithm : Vine Searching Process 1 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 Label : node (cost, back node, back-back) 7(18,6,8) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 7(907,9,8) 1 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 Label : node (cost, back node, back-back) 7(18,6,8) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 7(907,9,8) 7(9,9,10)
  • 4. MVA Algorithm : Backward Tracing Process 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-)
  • 5. MVA Algorithm : The Final Result 9 3 2 4 5 1 S 6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-)
  • 6. Generating Multiple Paths (I) : Upper Rational Boundary 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 3(22,4,7) 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 3(22,4,7) 3(28,4,1)
  • 7. Generating Multiple Paths (II) : Upper Rational Boundary 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) Label : node (cost, back node, back-back) 3(21,4,5) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4(22,5,10)
  • 8. Generating Multiple Paths (III): Mark and save, then back-tracing repeatedly 9 3 2 4 5 1 S 6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S 6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S 6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S 6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node 9 3 2 4 5 1 S 6 7 8 R 10 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7 ) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) 4 : Branching at-node
  • 9. Generating Multiple Paths : Final result in case of loose boundary S R S R S R S R S R S R Cost = 23 Cost = 24 Cost = 28 Cost = 30 Cost = 32 Cost = 33
  • 10. Generating Multiple Paths : Final result in case of tight boundary 1 1 9 1 3 2 4 5 1 S 6 7 8 R 10 4 2 1 5 3 4 3 2 2 1 9 1 2 2 2 2 6 900 6 3 900 3 s(23,3,4) 3(21,4,5) 4(12,7,9) 4(24,1,2) 4(17,5,2) 1(13,4,7) 1(22,2,5) 2(14,1,4) 2(20,5,10) 5(16,2,1) 5(18,10,9) 7(18,6,8) 7(9,9,10) 10(6,9,8) 9(5,8,R) 9(7,10,9) 6(13,8,R) 8(3,R,-) R(0,-,-) Path Path Path Cost 23 24 28
  • 11. Thank you for your Attention ! Any Questions Or Comments ?