SlideShare a Scribd company logo
Visualizing Provenance
using Comics
Andreas Schreiber
German Aerospace Center (DLR)
Regina Struminski
University of Applied Science Düsseldorf
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 2
Introduction
Simulation and Software Technology, Cologne/Berlin
Head of Intelligent and Distributed Systems department
Institute of Data Science, Jena
Head of Secure Software Engineering group
Co-Founder
Data Scientist
Patient
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 3
Motivation – Use Cases
Quantified Self (n = 1 participant) Medical Trials (n > 1 participants)
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 4
Motivation – Use Cases
Telemedicine Medical experiments
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 5
Understand, how Quantified Self data has been produced, processed,
stored, accessed, …
Pictures from Breakout Session on Mapping Data Access (2014 QS Europe Conference, Amsterdam)
https://forum.quantifiedself.com/t/breakout-mapping-data-access/995
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 6
Example: Weight Tracking Workflow
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 7
Questions related to Quantified Self Data and Activities
Data
• What data about the user were created during the activity X?
• What data about the user were automatically generated?
• What data about the user were derived from manual input?
Apps and Services
• Which activities support visualization of the users data?
• In which activities can the user input data?
• What processes are communicating data?
Access and Privacy
• What parties were involved in generating data X?
• What parties got access on data X?
• Can other parties see user’s data X?
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 8
Provenance Model for Quantified Self
Sub models for basic Activities
• Input
• Sensing
• Export
• Request
• Aggregate
• Visualize
The activities generate or change data
that is associated or attributed to Agents
• Users
• Software
• Organizations
• Schreiber, A. (2016) A Provenance Model for Quantified
Self Data. In: Universal Access in Human-Computer
Interaction. Methods, Techniques, and Best Practices: 10th
International Conference, UAHCI 2016, Held as Part of HCI
International 2016, Toronto, ON, Canada, July 17-22, 2016,
Proceedings, Part I, Springer, 382-393
• Schreiber A., Seider D. (2016) Towards Provenance
Capturing of Quantified Self Data. In: Provenance and
Annotation of Data and Processes. IPAW 2016. Lecture
Notes in Computer Science, vol 9672. Springer, Cham
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 9
UserData
Input
User
wasGeneratedBy
wasAssociatedWith
wasAttributedTo
prov:startTime
prov:endTime
prov:type
prov:type
prov:label
prov:time
Software
type= prov:SoftwareAgent
prov:label
wasAssociatedWith
type=prov:Person
prov:label
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 10
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 11
UserData
Visualize
User
Graphic
used
wasGeneratedBy
wasDerivedFrom
type=prov:Person
prov:label
wasAttributedTo
prov:type
prov:label
prov:type
prov:label
prov:time
prov:time
prov:type
wasAttributedTo
Software
type= prov:SoftwareAgent
prov:label
wasAssociatedWith
prov:startTime
prov:endTime
prov:type
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 12
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 13
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 14
Standard Graph Visualizations and Textual Representations of
Provenance Data are not Easy to Understand by Non-experts
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 15
Idea: Provenance Visualization Using Comics
Provenance Comics
• Presenting the provenance of processes in visual representation that people can understand
without prior instructions or training (“Provenance for people”)
• Assumption
• People are familiar with comics from every day life
• See daily strips in newspapers etc.
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 16
Provenance Comics
Design considerations
• Data provenance has a temporal aspect: origin, manipulation, transformation,
and other activities happen sequentially over time
• The directed acyclic provenance graph guarantees that, while moving
through its nodes, one always moves linearly forward in time
• It’s possible to derive a temporal sequence of happenings from
the graph that can be narrated like a story
Mapping provenance graph to comics
• We generate a comic strip for each basic activity in the provenance graph
• Each strip consists of a varying number of panels, which are small drawings
that provide further details about the activity
• The complete set of comic strips shows the “story” of the data
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 17
First Sketches
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 18
First Sketches
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 19
Current Graphical Style
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 20
Single Comic Strip Shows a Single Data-related Action
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 21
Communicate to People Where Data is Stored
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 22
Understand How Data is Analyzed
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 23
Distinctive Features
• Shapes
• Colors
• Icons
• Letters
• Labels
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 24
Representation of PROV Elements
Agents
Entities
Activity-related
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 25
Collecting QS Provenance
Weight Tracking App
https://play.google.com/store/apps/details?id=de.medando.weightcompanion
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 26
Collecting QS Provenance
Visualization with Python Script
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 27
Date,Time,Weight,Waist,Hip,Device,Comment
"Jun 13, 2012",14:00,83.7,,,Withings,
"Jun 13, 2012",14:08,79.7,,,Withings,
"Jun 15, 2012",21:59,82.7,,,Withings,
"Jun 15, 2012",22:04,82.7,,,Withings,
"Jun 24, 2012",18:32,86.1,,,Withings,
"Jun 26, 2012",07:42,80.8,,,Withings,
"Jun 27, 2012",07:40,81.1,,,Withings,
"Jun 29, 2012",07:34,79.4,,,Withings,
"Jun 30, 2012",22:12,81.7,,,Withings,
"Jul 1, 2012",11:21,80.6,,,Withings,
"Jul 7, 2012",17:04,80.7,,,Withings,
"Jul 10, 2012",07:46,81.8,,,Withings,
"Jul 11, 2012",07:32,78.6,,,Withings,
"Jul 12, 2012",07:26,79.4,,,Withings,
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 28
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 29
PROV Comics
Web Application
http://provcomics.de
• Implemented in JavaScript
• Single page website
• Reads provenance graph from
PROVSTORE
• Uses PROVSTORE jQuery API
• Code:
http://github.com/DLR-SC/prov-
comics
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 30
Implementation Details
Additional attributes
agent(qs:app/stepcounter, [prov:type="prov:SoftwareAgent",
qs:device="smartphone", prov:label="StepCounter"])
agent(qs:service/fitbit,
[prov:type="prov:Organization", prov:label="Fitbit"])
wasGeneratedBy(userdata:activities/steps, method:request,
2016-12-01T16:06:22+00:00, [prov:role="uploading"])
http://provcomics.de/?username=rstruminski&docId=115547
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 31
Open Issues
Current implementation is a prototype with limitations
• Flexibility and generalization
• Handling of
• large provenance graphs
• incomplete provenance data
• branches and multiple data sources
• Expects a single PROV document
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 32
Future Work and Use Cases
Future Work Possible Use Cases
• Different comic styles
• Comparative user studies
• Quantitative comics
• Geographical information
• Glyph-based depiction
• Technical improvements
• Large Provenance graphs
• Provenance templates
• “Intelligent” generation of pictures
• Journalism
• Generation of handbooks
• Communicating incidents
> TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 33
Thank You!
Andreas Schreiber
www.DLR.de/sc/ivs
andreas.schreiber@dlr.de
@onyame

More Related Content

PPTX
Quantified Self Comics
PDF
News Production Workflows in Data- driven, Algorithmic Journalism: A Systema...
PDF
Social interactions and beyond
PDF
Research on data journalism: What is there to investigate? Insights from a st...
PDF
Making an Impact With Data Visualization
PPTX
Provenance-based Security Audits and its Application to COVID-19 Contact Trac...
PPTX
Visualization of Software Architectures in Virtual Reality and Augmented Reality
PPTX
Provenance as a building block for an open science infrastructure
Quantified Self Comics
News Production Workflows in Data- driven, Algorithmic Journalism: A Systema...
Social interactions and beyond
Research on data journalism: What is there to investigate? Insights from a st...
Making an Impact With Data Visualization
Provenance-based Security Audits and its Application to COVID-19 Contact Trac...
Visualization of Software Architectures in Virtual Reality and Augmented Reality
Provenance as a building block for an open science infrastructure

More from Andreas Schreiber (20)

PPTX
Raising Awareness about Open Source Licensing at the German Aerospace Center
PDF
Open Source Licensing for Rocket Scientists
PDF
Interactive Visualization of Software Components with Virtual Reality Headsets
PPTX
Provenance for Reproducible Data Science
PPTX
Nachvollziehbarkeit mit Hinblick auf Privacy-Verletzungen
PPTX
Reproducible Science with Python
PPTX
Python at Warp Speed
PPTX
A Provenance Model for Quantified Self Data
PPTX
Open Source im DLR
PDF
Tracking after Stroke: Doctors, Dogs and All The Rest
PPTX
High Throughput Processing of Space Debris Data
PDF
Bericht von der QS15 Conference & Exposition
PPTX
Telemedizin: Gesundheit, messbar für jedermann
PDF
Big Python
PDF
Quantified Self mit Wearable Devices und Smartphone-Sensoren
PDF
Example Blood Pressure Report of BloodPressureCompanion
PDF
Beispiel-Blutdruckbericht des BlutdruckBegleiter
PDF
Informatik für die Welt von Morgen
PDF
Python for High Performance and Scientific Computing
PDF
Requirements Engineering in Germany’s Research Center for Aeronautics and Space
Raising Awareness about Open Source Licensing at the German Aerospace Center
Open Source Licensing for Rocket Scientists
Interactive Visualization of Software Components with Virtual Reality Headsets
Provenance for Reproducible Data Science
Nachvollziehbarkeit mit Hinblick auf Privacy-Verletzungen
Reproducible Science with Python
Python at Warp Speed
A Provenance Model for Quantified Self Data
Open Source im DLR
Tracking after Stroke: Doctors, Dogs and All The Rest
High Throughput Processing of Space Debris Data
Bericht von der QS15 Conference & Exposition
Telemedizin: Gesundheit, messbar für jedermann
Big Python
Quantified Self mit Wearable Devices und Smartphone-Sensoren
Example Blood Pressure Report of BloodPressureCompanion
Beispiel-Blutdruckbericht des BlutdruckBegleiter
Informatik für die Welt von Morgen
Python for High Performance and Scientific Computing
Requirements Engineering in Germany’s Research Center for Aeronautics and Space
Ad

Recently uploaded (20)

PDF
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
PDF
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
PDF
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
PDF
wealthsignaloriginal-com-DS-text-... (1).pdf
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PDF
Wondershare Filmora 15 Crack With Activation Key [2025
PDF
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
PPTX
L1 - Introduction to python Backend.pptx
PPTX
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
PDF
How Creative Agencies Leverage Project Management Software.pdf
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 41
PDF
System and Network Administraation Chapter 3
PPTX
Essential Infomation Tech presentation.pptx
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
PDF
AI in Product Development-omnex systems
PPTX
Operating system designcfffgfgggggggvggggggggg
PDF
medical staffing services at VALiNTRY
PDF
Softaken Excel to vCard Converter Software.pdf
PDF
Understanding Forklifts - TECH EHS Solution
PPTX
CHAPTER 2 - PM Management and IT Context
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
wealthsignaloriginal-com-DS-text-... (1).pdf
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
Wondershare Filmora 15 Crack With Activation Key [2025
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
L1 - Introduction to python Backend.pptx
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
How Creative Agencies Leverage Project Management Software.pdf
Internet Downloader Manager (IDM) Crack 6.42 Build 41
System and Network Administraation Chapter 3
Essential Infomation Tech presentation.pptx
Navsoft: AI-Powered Business Solutions & Custom Software Development
AI in Product Development-omnex systems
Operating system designcfffgfgggggggvggggggggg
medical staffing services at VALiNTRY
Softaken Excel to vCard Converter Software.pdf
Understanding Forklifts - TECH EHS Solution
CHAPTER 2 - PM Management and IT Context
Ad

Visualizing Provenance using Comics

  • 1. Visualizing Provenance using Comics Andreas Schreiber German Aerospace Center (DLR) Regina Struminski University of Applied Science Düsseldorf
  • 2. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 2 Introduction Simulation and Software Technology, Cologne/Berlin Head of Intelligent and Distributed Systems department Institute of Data Science, Jena Head of Secure Software Engineering group Co-Founder Data Scientist Patient
  • 3. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 3 Motivation – Use Cases Quantified Self (n = 1 participant) Medical Trials (n > 1 participants)
  • 4. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 4 Motivation – Use Cases Telemedicine Medical experiments
  • 5. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 5 Understand, how Quantified Self data has been produced, processed, stored, accessed, … Pictures from Breakout Session on Mapping Data Access (2014 QS Europe Conference, Amsterdam) https://forum.quantifiedself.com/t/breakout-mapping-data-access/995
  • 6. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 6 Example: Weight Tracking Workflow
  • 7. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 7 Questions related to Quantified Self Data and Activities Data • What data about the user were created during the activity X? • What data about the user were automatically generated? • What data about the user were derived from manual input? Apps and Services • Which activities support visualization of the users data? • In which activities can the user input data? • What processes are communicating data? Access and Privacy • What parties were involved in generating data X? • What parties got access on data X? • Can other parties see user’s data X?
  • 8. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 8 Provenance Model for Quantified Self Sub models for basic Activities • Input • Sensing • Export • Request • Aggregate • Visualize The activities generate or change data that is associated or attributed to Agents • Users • Software • Organizations • Schreiber, A. (2016) A Provenance Model for Quantified Self Data. In: Universal Access in Human-Computer Interaction. Methods, Techniques, and Best Practices: 10th International Conference, UAHCI 2016, Held as Part of HCI International 2016, Toronto, ON, Canada, July 17-22, 2016, Proceedings, Part I, Springer, 382-393 • Schreiber A., Seider D. (2016) Towards Provenance Capturing of Quantified Self Data. In: Provenance and Annotation of Data and Processes. IPAW 2016. Lecture Notes in Computer Science, vol 9672. Springer, Cham
  • 9. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 9 UserData Input User wasGeneratedBy wasAssociatedWith wasAttributedTo prov:startTime prov:endTime prov:type prov:type prov:label prov:time Software type= prov:SoftwareAgent prov:label wasAssociatedWith type=prov:Person prov:label
  • 10. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 10
  • 11. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 11 UserData Visualize User Graphic used wasGeneratedBy wasDerivedFrom type=prov:Person prov:label wasAttributedTo prov:type prov:label prov:type prov:label prov:time prov:time prov:type wasAttributedTo Software type= prov:SoftwareAgent prov:label wasAssociatedWith prov:startTime prov:endTime prov:type
  • 12. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 12
  • 13. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 13
  • 14. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 14 Standard Graph Visualizations and Textual Representations of Provenance Data are not Easy to Understand by Non-experts
  • 15. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 15 Idea: Provenance Visualization Using Comics Provenance Comics • Presenting the provenance of processes in visual representation that people can understand without prior instructions or training (“Provenance for people”) • Assumption • People are familiar with comics from every day life • See daily strips in newspapers etc.
  • 16. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 16 Provenance Comics Design considerations • Data provenance has a temporal aspect: origin, manipulation, transformation, and other activities happen sequentially over time • The directed acyclic provenance graph guarantees that, while moving through its nodes, one always moves linearly forward in time • It’s possible to derive a temporal sequence of happenings from the graph that can be narrated like a story Mapping provenance graph to comics • We generate a comic strip for each basic activity in the provenance graph • Each strip consists of a varying number of panels, which are small drawings that provide further details about the activity • The complete set of comic strips shows the “story” of the data
  • 17. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 17 First Sketches
  • 18. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 18 First Sketches
  • 19. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 19 Current Graphical Style
  • 20. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 20 Single Comic Strip Shows a Single Data-related Action
  • 21. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 21 Communicate to People Where Data is Stored
  • 22. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 22 Understand How Data is Analyzed
  • 23. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 23 Distinctive Features • Shapes • Colors • Icons • Letters • Labels
  • 24. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 24 Representation of PROV Elements Agents Entities Activity-related
  • 25. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 25 Collecting QS Provenance Weight Tracking App https://play.google.com/store/apps/details?id=de.medando.weightcompanion
  • 26. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 26 Collecting QS Provenance Visualization with Python Script
  • 27. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 27 Date,Time,Weight,Waist,Hip,Device,Comment "Jun 13, 2012",14:00,83.7,,,Withings, "Jun 13, 2012",14:08,79.7,,,Withings, "Jun 15, 2012",21:59,82.7,,,Withings, "Jun 15, 2012",22:04,82.7,,,Withings, "Jun 24, 2012",18:32,86.1,,,Withings, "Jun 26, 2012",07:42,80.8,,,Withings, "Jun 27, 2012",07:40,81.1,,,Withings, "Jun 29, 2012",07:34,79.4,,,Withings, "Jun 30, 2012",22:12,81.7,,,Withings, "Jul 1, 2012",11:21,80.6,,,Withings, "Jul 7, 2012",17:04,80.7,,,Withings, "Jul 10, 2012",07:46,81.8,,,Withings, "Jul 11, 2012",07:32,78.6,,,Withings, "Jul 12, 2012",07:26,79.4,,,Withings,
  • 28. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 28
  • 29. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 29 PROV Comics Web Application http://provcomics.de • Implemented in JavaScript • Single page website • Reads provenance graph from PROVSTORE • Uses PROVSTORE jQuery API • Code: http://github.com/DLR-SC/prov- comics
  • 30. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 30 Implementation Details Additional attributes agent(qs:app/stepcounter, [prov:type="prov:SoftwareAgent", qs:device="smartphone", prov:label="StepCounter"]) agent(qs:service/fitbit, [prov:type="prov:Organization", prov:label="Fitbit"]) wasGeneratedBy(userdata:activities/steps, method:request, 2016-12-01T16:06:22+00:00, [prov:role="uploading"]) http://provcomics.de/?username=rstruminski&docId=115547
  • 31. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 31 Open Issues Current implementation is a prototype with limitations • Flexibility and generalization • Handling of • large provenance graphs • incomplete provenance data • branches and multiple data sources • Expects a single PROV document
  • 32. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 32 Future Work and Use Cases Future Work Possible Use Cases • Different comic styles • Comparative user studies • Quantitative comics • Geographical information • Glyph-based depiction • Technical improvements • Large Provenance graphs • Provenance templates • “Intelligent” generation of pictures • Journalism • Generation of handbooks • Communicating incidents
  • 33. > TaPP'17 > Andreas Schreiber, Regina Struminski • Visualizing Provenance using Comics > 23.06.2017DLR.de • Chart 33 Thank You! Andreas Schreiber www.DLR.de/sc/ivs andreas.schreiber@dlr.de @onyame