SlideShare a Scribd company logo
Edward C. Jordan Memorial Offering of the First
Edward C. Jordan Memorial Offering of the First
Course under the Indo-US Inter-University
Course under the Indo-US Inter-University
Collaborative Initiative in Higher Education and
Collaborative Initiative in Higher Education and
Research: Electromagnetics for Electrical and
Research: Electromagnetics for Electrical and
Computer Engineering
Computer Engineering
by
by
Nannapaneni Narayana Rao
Nannapaneni Narayana Rao
Edward C. Jordan Professor of Electrical and Computer Engineering
Edward C. Jordan Professor of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA
Urbana, Illinois, USA
Amrita Viswa Vidya Peetham, Coimbatore
Amrita Viswa Vidya Peetham, Coimbatore
July 10 – August 11, 2006
July 10 – August 11, 2006
4.4
Wave Equation and
Solution for Material
Medium
4.4-3
Waves in Material Media
   
 
 
 
 
,
,
, ,
,
y
x
y x
x
x
y
y
x x x
H z t
E z t
z t
H z t E z t
E z t
z t
E
j H
z
H
E j E j E
z

 

   



 
 
 
 




   

4.4-4
Combining, we get
 
2
2
x
x
E
j j E
z
  

 

 
j j j
     
   
2
2
2
x
x
E
E
z




Define
Then
Wave equation
4.4-5
Solution:
 
   
 
 
 
, Re
Re
Re
cos
cos
z z
x
j t
x x
z z j t
j z j z j t j z j z j t
z
z
E z Ae Be
E z t E z e
Ae Be e
Ae e e e Be e e e
Ae t z
Be t z
 

  
       


  
  
 


 
 

 
 
  
 
 
 
 
 
 
  
  

4.4-6
 = attenuation constant, Np/m
 = phase constant, rad/m
 
  wave
cos
z
Ae t z

  
 

 

        
attenuation
 
  wave
cos
z
Be t z

  

 

       
1
= propagation constant, m
 
attenuation
4.4-7
   
, cos
z
f z t e t z

 

 
2
t 


4
t 


0
t 
z
2



f
1
- 1
0
4.4-8
   
, cos
z
g z t e t z

 
 
0
t 
g
4
t 


2
t 


- z
1
- 1
0
2



4.4-9
1
1
1
x
y
x
y
z z
z z
E
j H
z
E
H
j z
Ae Be
j z
Ae Be
 
 













 
 
 

 
 
 
where intrinsic impedance of the medium.
j
j


 
 

4.4-10
Summarizing,
conversely,
 
j
j j j
j
e
j

     

 
 
   
 

1
Re
1
Im
j
 






 



4.4-11
Example:
5
0 0
For dry earth, 10 s/m, 5 , and .
    

  
Let us compute , , , , and for 100 kHz.
p
v f
    
Solution:
 
5
8
1
1
2
2 10 5 1 0.36
3 10
j j
j j
j
j j
f
j j
   

 


 
 

 
 
 
 
 
 
 
 


4.4-12
0.004683 1.0628 19.8
j
   
0.004683 1.0309 9.9
j
    
 
0.004683 1.0155 0.1772
j j
 
0.00083 0.004756
j
 
0.00083 Np/m

 
0.004756 rad/m
 
4.4-13
5
8
2 10 1.321 10 m/s
0.004756
p
v  


   
2 2 1321.05 m
0.004756
 


  
j
j


 


1
1
j
j j

  



4.4-14
1
1 j j

  



120 1
5 1 0.36
j



 
161.1 28.1
j
  
1
168.6
1.0309 9.9

 
163.55 9.9
  

More Related Content

PPTX
Introduction to waves basic concepts.pptx
PPT
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
PPTX
Waveguiding Structures Part 1 (General Theory).pptx
PPTX
Notes 1 - Transmission Line Theory Theory
PDF
Electromagnetic.pdf
PPTX
Transmission Lines Part 1 (TL Theory).pptx
PDF
Electro magnetic waves
PPTX
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Introduction to waves basic concepts.pptx
UNIT IV - WAVE EQUATIONS AND THEIR SOLUTION
Waveguiding Structures Part 1 (General Theory).pptx
Notes 1 - Transmission Line Theory Theory
Electromagnetic.pdf
Transmission Lines Part 1 (TL Theory).pptx
Electro magnetic waves
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx

Similar to Wave Equation and Solution in a Material Medium.ppt (20)

PPT
Slide of computer networks introduction to computer networks
PDF
RF Circuit Design - [Ch1-2] Transmission Line Theory
PPT
UNIT I.ppt
PPTX
Electromagnetics UNIT III -- EMW Char-i.pptx
PPT
Chapter 3 wave_optics
PPTX
PPTX
The presence of material bodies complicates Maxwell’s equations. The fields i...
PPT
S14._WaveMotion.ppt
PDF
Nachman - Electromagnetics - Spring Review 2012
PPT
Lect14 handout
PDF
ch02.pdf
PPTX
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
PPT
Microwaves_hafta................... 2.ppt
PDF
EMFTAll2
PPTX
Notes 9 3317 Transmission Lines (Frequency Domain).pptx
PDF
tripple e 136 EMII2013_Chapter_10_P2.pdf
PPTX
Topic 4.3 - Wave characteristics IB HL CONTENT
PDF
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
 
PPTX
Applied physics engineering Lec 1.1.pptx
PPTX
Microwave waveguides 1st 1
Slide of computer networks introduction to computer networks
RF Circuit Design - [Ch1-2] Transmission Line Theory
UNIT I.ppt
Electromagnetics UNIT III -- EMW Char-i.pptx
Chapter 3 wave_optics
The presence of material bodies complicates Maxwell’s equations. The fields i...
S14._WaveMotion.ppt
Nachman - Electromagnetics - Spring Review 2012
Lect14 handout
ch02.pdf
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Microwaves_hafta................... 2.ppt
EMFTAll2
Notes 9 3317 Transmission Lines (Frequency Domain).pptx
tripple e 136 EMII2013_Chapter_10_P2.pdf
Topic 4.3 - Wave characteristics IB HL CONTENT
A Fast Algorithm for Solving Scalar Wave Scattering Problem by Billions of Pa...
 
Applied physics engineering Lec 1.1.pptx
Microwave waveguides 1st 1
Ad

More from Ankit988352 (12)

PPTX
LO 11.1.3 Intro to MW, WG,TE,TEM devices.pptx
PPT
Maxwell Theory and Equations Description.ppt
PPT
Maxwell-Equations Theory and Derivation.ppt
PPT
Curl and Divergence Theorems of a Vector.ppt
PPTX
Frequency Measurement in Microwave Engineering .pptx
PPTX
Isotropic noise in an antenna study .pptx
PPT
2.1.6 BEAM PATTERN SYNTHESIS OF ANTENNA.ppt
PPT
Beamforming antennas and system design.ppt
PPTX
Antenna Basics Numericals and Concept.pptx
PPT
Antennas Basic Parameters and Theory Techniquyes
PPT
Antenna and Wave propagation theory and techniques
PPTX
Antenna Wave Propagation and Basic Parameters
LO 11.1.3 Intro to MW, WG,TE,TEM devices.pptx
Maxwell Theory and Equations Description.ppt
Maxwell-Equations Theory and Derivation.ppt
Curl and Divergence Theorems of a Vector.ppt
Frequency Measurement in Microwave Engineering .pptx
Isotropic noise in an antenna study .pptx
2.1.6 BEAM PATTERN SYNTHESIS OF ANTENNA.ppt
Beamforming antennas and system design.ppt
Antenna Basics Numericals and Concept.pptx
Antennas Basic Parameters and Theory Techniquyes
Antenna and Wave propagation theory and techniques
Antenna Wave Propagation and Basic Parameters
Ad

Recently uploaded (20)

PPTX
Construction Project Organization Group 2.pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
web development for engineering and engineering
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
Sustainable Sites - Green Building Construction
PDF
Well-logging-methods_new................
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPT
Mechanical Engineering MATERIALS Selection
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Construction Project Organization Group 2.pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Operating System & Kernel Study Guide-1 - converted.pdf
web development for engineering and engineering
Lecture Notes Electrical Wiring System Components
Sustainable Sites - Green Building Construction
Well-logging-methods_new................
CYBER-CRIMES AND SECURITY A guide to understanding
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Automation-in-Manufacturing-Chapter-Introduction.pdf
Foundation to blockchain - A guide to Blockchain Tech
Mechanical Engineering MATERIALS Selection
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Wave Equation and Solution in a Material Medium.ppt

  • 1. Edward C. Jordan Memorial Offering of the First Edward C. Jordan Memorial Offering of the First Course under the Indo-US Inter-University Course under the Indo-US Inter-University Collaborative Initiative in Higher Education and Collaborative Initiative in Higher Education and Research: Electromagnetics for Electrical and Research: Electromagnetics for Electrical and Computer Engineering Computer Engineering by by Nannapaneni Narayana Rao Nannapaneni Narayana Rao Edward C. Jordan Professor of Electrical and Computer Engineering Edward C. Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Urbana, Illinois, USA Urbana, Illinois, USA Amrita Viswa Vidya Peetham, Coimbatore Amrita Viswa Vidya Peetham, Coimbatore July 10 – August 11, 2006 July 10 – August 11, 2006
  • 2. 4.4 Wave Equation and Solution for Material Medium
  • 3. 4.4-3 Waves in Material Media             , , , , , y x y x x x y y x x x H z t E z t z t H z t E z t E z t z t E j H z H E j E j E z                            
  • 4. 4.4-4 Combining, we get   2 2 x x E j j E z          j j j           2 2 2 x x E E z     Define Then Wave equation
  • 5. 4.4-5 Solution:             , Re Re Re cos cos z z x j t x x z z j t j z j z j t j z j z j t z z E z Ae Be E z t E z e Ae Be e Ae e e e Be e e e Ae t z Be t z                                                         
  • 6. 4.4-6  = attenuation constant, Np/m  = phase constant, rad/m     wave cos z Ae t z                    attenuation     wave cos z Be t z                 1 = propagation constant, m   attenuation
  • 7. 4.4-7     , cos z f z t e t z       2 t    4 t    0 t  z 2    f 1 - 1 0
  • 8. 4.4-8     , cos z g z t e t z      0 t  g 4 t    2 t    - z 1 - 1 0 2   
  • 9. 4.4-9 1 1 1 x y x y z z z z E j H z E H j z Ae Be j z Ae Be                               where intrinsic impedance of the medium. j j       
  • 10. 4.4-10 Summarizing, conversely,   j j j j j e j                    1 Re 1 Im j             
  • 11. 4.4-11 Example: 5 0 0 For dry earth, 10 s/m, 5 , and .          Let us compute , , , , and for 100 kHz. p v f      Solution:   5 8 1 1 2 2 10 5 1 0.36 3 10 j j j j j j j f j j                                
  • 12. 4.4-12 0.004683 1.0628 19.8 j     0.004683 1.0309 9.9 j        0.004683 1.0155 0.1772 j j   0.00083 0.004756 j   0.00083 Np/m    0.004756 rad/m  
  • 13. 4.4-13 5 8 2 10 1.321 10 m/s 0.004756 p v         2 2 1321.05 m 0.004756        j j       1 1 j j j       
  • 14. 4.4-14 1 1 j j        120 1 5 1 0.36 j      161.1 28.1 j    1 168.6 1.0309 9.9    163.55 9.9   