SlideShare a Scribd company logo
Week 2 Individual Assignment 2: Quantitative Analysis of
Credit -
Solution
s
This assignment is based on the data we used during our two
live sessions, but it has been updated to include a splitting
variable (credit2.xlsx). In the spreadsheet under the tab “Data,"
you will find data
pertaining to 1,000 personal loan accounts. The tab “Data
Dictionary” contains a description of what the various variables
mean.
As a part of a new credit application, the company collects
information about the applicant. The company then decides an
amount of the credit extended (the variable
CREDIT_EXTENDED). For these 1,000 accounts, we also have
information on how profitable each account turned out to be
(the variable NPV). A negative value indicates a net loss, and
this typically happens when the debtor defaults on his/her
payments.
The goal in this assignment is to investigate how one can use
this data to better manage the bank's credit extension program.
Specifically, our goal is to develop a classification model to
classify a new credit account as “profitable” or “not profitable."
Secondly we want to compare its performance in the context of
decision support to a linear regression model that predicts NPV
directly.
Please answer all the questions. Supply supporting
documentation and show calculations as
needed. Please submit a single, well-formatted PDF or Word
file. The instructor should not need to go searching for your
answers! In addition, please upload an Excel file with your
model outputs – the file will not be graded, but will help the
instructor give you feedback, if your model differs substantially
from the solutions.
For extra assistance, you may want to access the tutorials
located on the course resource center page.Data Preparation
The data preparation repeats the steps from the live session:
a) The goal is to predict whether or not a new credit will result
in a profitable account. Create a new variable to use as the
dependent variable.
b) Create dummy variables for all categorical variables with
more than 2 values (or if you prefer, you can sort your variables
into numerical and categorical when you run the model).
c) Split the data into 2 parts using the splitting variable that has
been added to the data set. This is to ensure a more balanced
split between the validation and training samples. Note that
Analytic Solver Data Mining only allows 50 columns in the
analysis, so leave out your base dummies (if you created them)
when partitioning. After the data partition, you should have 666
rows in your training data and 334 in your validation data.
The Assignment
1. Applying Logistic Regression
If one fits a Logistic Regression Model using all the
independent variables, one observes a) a gap in the
classification performance between the training data and the
validation data, and b) very
high p-values for some of the variables. The performance gap
between the training and validation may be a sign of overfitting,
and the high p-values may be a sign of “useless” variables in
the model, or of multicollinearity.
a) Our goal is to classify credit requests into “profitable” and
“not profitable." To that end, select to run “forward selection,"
and set FIN down to 1.5 (this lowers the threshold for a variable
to enter the model, resulting in more models to choose from).
Select one of the forward selection models based on the
principles discussed in the book and/or the tutorials on the
course resource center and run it.
Note: Exclude Credit Extended and any other variables not
appropriate for the analysis.
Include the model (the variables and the corresponding
regression coefficients) as an Exhibit.
Predictor
Estimate
Intercept
-0.1409
AGE
0.0350
NUM_CREDITS
-0.3472
DURATION
-0.0208
INSTALL_RATE
-0.4070
GUARANTOR
0.8746
OTHER_INSTALL
-0.6841
OWN_RES
0.5299
REAL_ESTATE
0.4792
AMOUNT_REQUESTED
-0.0001
GENDER_F
0.3894
CHK_ACCT_1
0.7863
CHK_ACCT_2
1.3594
CHK_ACCT_3
2.1811
SAV_ACCT_4
0.8059
HISTORY_4
0.6811
PRESENT_RESIDENT_2
-0.4176
EMPLOYMENT_2
0.3505
EMPLOYMENT_3
0.7936
TYPE_2
1.9168
TYPE_3
0.5290
TYPE_4
0.6752
Please refer to the Excel solutions for additional details.
b) Why did you select this particular model?
From the feature selection output we chose to run the model
with 18 coefficients. This model was chosen because it has Cp
close to the number of coefficients in the model (and not
higher), it has probability above .05 and the improvement in
RSS if we expand the model further is relatively small.
c) Based on your model, and setting the cut-off value to 0.5,
please provide the following information (based on the
validation data):
· The sensitivity of the model: 0.88
· The specificity of the model: 0.495
In other words, at the default cut-off we correctly identify 88%
of the profitable customers, but include around 50% of the
unprofitable customers.
2. ROC Curves
a) We now want to compare the predictive performance of the
model on the training sample and on the validation sample.
Create a single figure that compares the ROC curves for both
the training sample and the validation sample. Please refer to
the ROC tutorials in the resource center as needed for a step-by-
step guide for creating an ROC curve. Alternatively, you can
combine the two curves that Analytical Solver Data Mining
provides into a single plot.
Include a clean figure as an Exhibit.
3. Finding the "best" cut-off
a) Create a data-table to calculate the total NPV (assuming we
extend credit to all classified as
“profitable” as a function of the cut-off based on the training
data. Select the best cut- off. Include the table as an Exhibit.
cut-off
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
NPV training
-56740
-26705
-2644
18771
45734
68023
88312
90200
84550
63883
0
NPV validation
-39141
-15636
-6309
13945
31128
36599
51636
51623
43999
32005
0
Please refer to the solutions for a more detailed table.
b) What is your selected cut-off? 0.725 (based on a more
detailed table in the Excel file)
c) Create the same table for the validation data. Include the
table as an Exhibit.
Refer to the table above
d) Apply the cut-off you selected based on the training data to
the validation data. What is the total profit on the validation
data? $51,330
e) Provide a figure that shows the cumulative NPV as a function
of the cut-off for both the training data and the validation data.
4. Comparison with linear regression
a) Repeat our model development from our first live session
(note you need to repeat the steps as we now have a new data
split). Rerun a variable selection model to find a "good model"
using the updated data.
Include the model (the variables and the corresponding
regression coefficients) as an Exhibit.
For my linear regression model I selected to run a stepwise
selection with the default
parameters. Note that this is not the only "correct" model, a
careful analysis would have included both backwards, forwards
and stepwise variable selection and the comparison of a couple
of candidate models, before selecting one based on their
performance (and you can define performance in multiple ways
as we have discussed). Hopefully your model’s performance
exceeds the performance of the model discussed here!
Predictor
Estimate
P-Value
Intercept
594.6747
<0.001
RENT
-288.596
0.010
INSTALL_RATE
-152.409
<0.001
AMOUNT_REQUESTED
-0.17395
<0.001
CHK_ACCT_1
327.4346
0.005
CHK_ACCT_2
396.0738
0.033
CHK_ACCT_3
563.3212
<0.001
SAV_ACCT_4
378.5465
0.001
TYPE_2
525.5611
<0.001
TYPE_5
-489.718
0.011
TYPE_6
-500.304
0.001
b) Create a data table that summarizes the total profit as a
function of the NPV cut-off for extending credit on the training
data (note that now your cut-off is in $ you will need to
investigate what is a good cut-off, for example -$50 or $50, or
something else). Select the best cut-off.
Include the table as an Exhibit.
Please refer to the Excel file for detailed information, the table
below shows some highlights.
total
training
NPV
validation
-750
74541
16890
-700
75131
19502
-650
73680
24582
-600
71729
27223
-550
79911
28620
-500
77482
30658
-450
80913
30622
-400
89518
33657
-350
86859
41614
-300
78862
41014
-250
84718
41885
-200
85475
44566
-150
81744
39188
-100
80865
36418
-50
75280
31917
0
71269
31705
50
64194
29323
100
62314
27407
150
59080
19587
200
52279
19844
250
50432
19938
300
46356
20864
350
40465
16292
400
33020
18002
450
25780
16046
500
22455
13862
550
16736
9610
600
12651
8478
650
9394
6152
700
9235
6167
750
8759
5329
c) What is your selected cut-off? -$400
d) Create the same table for the validation data and include it as
an Exhibit.
Please refer to the table above
e) Apply the cut-off you found to the validation data. What is
the total profit on the validation data? $33,657
f) Provide a figure that shows the cumulative NPV as a function
of the cut-off for both the training data and the validation data.
5. Model comparison
a) Compare the performance of the logistic regression model
and the linear regression model. How does the total profit
compare for the two models? Which model would you select as
the foundation of a decision support system and why?
When we compare the performance as measured by the total
NPV is higher for both the training and the validation sample,
as a result I would select my Logistic Regression model over
the Linear Regression model (although it may be worth the
effort to try to improve on the linear regression model).
Classification Trees and k-NN applied to Bank Credit
This assignment concludes the analysis of the credit data,
exploring whether we can improve on our earlier analysis that
utilized linear and logistic regression. Please refer to the earlier
assignments for the data description, and repeat if needed the
data preparation steps, using the credit2.xlsx data:
In the spreadsheet under the tab “Data," you will find data
pertaining to 1,000 personal loan accounts. The tab “Data
Dictionary” contains a description of what the various variables
mean.
As a part of a new credit application, the company collects
information about the applicant. The company then decides an
amount of the credit extended (the variable
CREDIT_EXTENDED). For these 1,000 accounts, we also have
information on how profitable each account turned out to be
(the variable NPV). A negative value indicates a net loss, and
this typically happens when the debtor defaults on his/her
payments.
1. Create a categorical variable that indicates whether or not a
new credit extension will result in a positive NPV.
2. Create dummy variables for all categorical variables with
more than two values (if appropriate).
3. Split the data into two parts using the splitting variable that
is a part of the data set[footnoteRef:1]. This is to ensure a more
balanced split between the validation and training samples.
After the data partition you should have 666 rows in your
training data and 334 in your validation data. [1: If you run
into issues that your # of columns exceeds 50, you may leave
out the employment variable.]
Please answer all questions. Supply supporting documentation
and show calculations as needed. Please submit a single well-
formatted Word file. In addition, please upload an Excel file
with your model outputs .
Classification trees
Classify customers as profitable/not profitable with a
classification tree
1. Run the Classification Tree algorithm using all the relevant
independent variables (excluding as before Credit Extended,
Obs# etc. ) including all the dummy variables (recall that one
does not exclude base values when running classification trees),
with the profitable/not profitable as the output variable. Use the
validation data to prune back the tree, and select to use the best
pruned tree for scoring.
a. Include the classification confusion matrix for the validation
sample and a figure of the best pruned tree as Exhibits.
2. Analyze the output.
a. How many decision nodes are in the best pruned tree?
b. What is the error rate for i) the training data and ii) the
validation data in the best pruned tree?
c. What explains the difference in the error rate?
d. Which applicants for credit will get rejected by the model
(using the best pruned tree)? (Describe the type of customers
using the English language.)
3. Using the model for decision making.
a. Consider a 27-year-old domestic student that has $100 in her
checking account but no savings account. The student has one
existing credits, which has so far been paid back duly. The
credit duration is 12 months. The applicant has been renting her
current place for less than 12 months, does not own any real
estate, just started graduate school (the present employment
variable is set to 1 and nature of job to 2). The applicant has no
dependents and no guarantor. The applicant wants to buy a used
car and has requested $4,500 in credit, and therefore the
installment rate is quite high, or 2.25%. However, the applicant
does not have other installment plan credits. Finally, the
applicant has a phone in her name.
How would the best pruned tree classify the student?
k-NN
Classify customers as profitable/not profitable with k-NN
4. Run the k-NN algorithm for classification, testing all values
of k from 1 to 10, selecting to score the data on the
best k (remember to standardize/normalize the data). Request
detailed output for both the training and validation data.
a. Using the search log, plot the %Error of the validation
sample. Include the plot in your assignment.
b. What is the best value of k?
c. Briefly explain why the % Error is zero for the training
sample when k=1, but not for the validation sample.
5. Analyze the output.
a. What some of the main differences are between the customers
identified as most likely to be profitable and the customers that
are identified as least likely to be profitable? Briefly discuss.
Method comparisons
You have now run three different classification algorithms on
this data; logistic regression, classification tree and k-NN.
Compare their performance in two ways. First using statistical
measures and second using their possible impact on the credit
extension process. Feel free to take advantage of the solutions
to Individual Assignment 2 as a starting point.
Hint: Below is a potential set-up to measure the business
impact. First, collect the predicted probability of being
profitable for both the training and validation data as well as
the true NPV into a single spreadsheet. Perhaps similar to this:
Then select a cell for a cut-off (in my case I used E1). Then for
each method and each sample we can calculate the cumulative
profit, for a specific cut-off using the sumifs() function in
Excel. Specifically, the following formula sums up the NPV of
all credit extensions that are made using the training sample and
logistic regression:
You then need to extend this approach to both data samples and
all three methods. Perhaps similarly to this:
You can then create data tables to investigate the best cut-off
for each method and the corresponding NPV on the validation
data.
DataOBS#AGECHK_ACCTSAV_ACCTNUM_CREDITSDURA
TIONHISTORYPRESENT_RESIDENTEMPLOYMENTJOBNU
M_DEPENDENTSRENTINSTALL_RATEGUARANTOROTHE
R_INSTALLOWN_RESTELEPHONEFOREIGNREAL_ESTATE
TYPEAMOUNT_REQUESTEDCREDIT_EXTENDEDNPVSplitt
ing
Variable1671026444210400110141,1691,052243v22521112211
211300000011,2951,165-
473v3480139442210400110012,1341,920268t436241182312103
01110161,9131,721416t53003130224310401100042,3331,16623
5t62920124321110401100032,3331,866480v7272119212210201
110161,391695118t83001136222210101100028,1336,5061,407v
94400224211210100110045,9435,943-
1,826v10560111244421040010014618556163v11410212424411
1400000111,4691,322376t12312226324220101100061,4491,304
252t132511221222210300110141,835917-
508t142420148223210100100018,4875,092976t1527341622101
02001011170949693t16420216244220201010041,3461,076295t
173602124444220300110142,8722,584744t18331121503422140
000001950570-188t192801236311210100100069,5726,700-
4,386t205404324232310200110064,5914,131-
2,912t2152032942421040011005936842198t2233002942222010
0100143,0742,151262t2326211122111104111001462537590t24
2631136222210400100044,2102,526-
816v25291012422421040110001915915-
337t263914264431103001101166646667t272711112222210200
100131,6571,491429v283200118233210400101012,6621,86348
5t292304215444211300010023,3682,694414t302601112222210
200111161,076645114t3154011624001010011011672470116t32
4020148240010301010005,3815,3811,768t33282123042031040
0100014,2492,549-
1,157t347511224440310200010026,6153,307379t352421224441
210200010055,7434,020674t36230119241211100010101,23674
1140t376120118242210400000051,239867194t38360013624221
0400100113,0792,771811t393910120243210400110032,2122,21
2611t403001118222310200110011,8201,820542v413901118241
210300110141,4731,473430t422021124244210400110041,9671,
376301t432004115233211200000013,1863,186862v4474011524
3110100100163,4483,103824t453901112244310400110011,884
1,507415t4630001364223104001100211,0547,7371,640v473711
136222220110100033,6201,810334t48222212422121130001004
3,0921,546-
790t492321112412110100100143,5732,501590v5026012124242
10200100041,9341,547282t512711124211210400100013,1232,4
98-1,330v52261111222321040010011759531-
305t534401224444210300000005,5074,956848v5432212362132
20300100052,2731,818350t552321112211211100000141,53492
0-
415t5623002124432104001001099649868t57491012424422040
1010022,9642,9641,012t582311124241111400010133,2343,234
-1,151t593021218434210311100111,056950-
388t6058114124331104001101438530819t61452117211210110
100142,3291,397277t62221211223021040010000741518-
192t632721221433210200100063,6522,191337t6428111242422
10200100043,6602,928805t65271111821001040010015750525-
403t665011148213310400010057,4765,9801,585t672331112242
211300000141,297648137t682702224432110300110064,1393,3
11551t69560116221210100100051,5381,230364v702511215432
2102001000397558588t712903112242111400000031,1231,010-
535v7232032184343104011100462944056t73343129021310400
110041,3371,203-
479t743321124321210100100046,4033,841696t7532121241332
10201100012,3251,627356t764911162142102011100342834299
v775900115444210100110015,0453,027507t7826101242442112
00000122,8121,406198t792521239423210210100144,9333,946-
2,365t803921121244220200100061,188594-
446v815401224444220400000051,5971,597401t8226211822121
030011016907816248t832701212222210300110111,101990198
v844403224322220400110062,3751,425148t8529111362232104
00100035,1794,143-
2,232t863311220422211411001012,2351,341-
603t872704224422210400100125,8044,643956v8840032363432
10200110037,6784,606682t893801124233310300110027,8147,0
322,237t904311427444320401110062,4421,709-
10t914311116444211211010012,6252,625-
1,254v923401236342210400100144,4543,117397t93280121842
2210400100031,8171,453207t942411124211110400101031,747
1,572457v954500112231320200110013,5272,468522v96402131
8430020300110063,5902,872343t97300126424211200000141,7
401,218168t982222115222210410100101,5141,211296v994921
130423210200100038,3868,386-
3,751t1003700212411120200100053,5652,852553v1012221148
222210200100145,9515,355-
3,080v1022411148241211300000064,3084,308-
2,807t103441316232221200000142,6472,647770v10427111242
22210201100034,0203,618879t1052623112212210300110041,1
58926253v1063021227324310100110025,9655,9651,508t10750
20215444210410110141,5371,383291t108460027424111400010
0473051185v1094703115234210401110041,2131,091261t11054
11112434210400100121,4091,268318t111242113624321140000
0042,3231,393296t11223311152412114000100539235291t1134
101224424311400010023,8682,707372v1142911136332210401
110056,8876,198-
4,715t1153021136211310400110044,7953,356805t11638011102
42210100111041,9241,539381v1173001218411210400100011,0
55844164t118260111221221040011013763610175t1193021236
322310201110164,4554,455-
2,746t1203422148043120400000063,8443,075-
2,447t1212711112232110400100111,168934251t122450013624
4110200110143,8352,301458t1232310112242211401010051,20
01,080299t124510319244110200000012,5071,504262t12551011
6223220300100041,5951,595534v126463111222211010010003
2,2511,575349t1275511124244210400100041,603961195v1283
703112443211300010031,4021,261397t12950011122222104001
00131,5741,416446t1302821136241311100010029,3986,578-
2,415v1314221136012210400110043,8042,282-
1,051v1322502124212210401100035,5113,306723t1333211124
231210400100041,9381,550-
696v1343002218422210400100151,8641,491-
1,183t1352611121243111100000033,5992,159426t13629211922
221010010103959479-
247v1373730112234310200100043,3992,039493t138330121844
4210300110046,0704,249758t13938211182403103000100212,9
766,488-
3,587v140192411224111110000013983589141t1412820218442
210401100161,8871,698312v1423501233423310300110027,253
5,077730t1433020112222210400100022,0281,825518v1442921
2242323102011100011,3287,929-
4,440v1453011112232210200100031,620972200t146290116212
21030010014518466135t1473611115231210200100111,721860
163t14823111624121040010005448268-
220t1492621124211210400100011,201720165v1504221227044
310200010068,3187,486-
5,624v1514211136244220200000025,4934,3941,032t152320113
6222310200010024,6862,343378v153241111822221020010014
3,1901,914-1,031t1542822215242211200010012,6311,315-
459t1556001224344210400010012,0321,219125t156450316144
120201100041,7501,050229v1572411124143111411000041,546
1,546-
813t1583801130423210300100045,9544,167835t159492121243
1120101100113,1243,124616t1604220224342211400010011,96
51,572307v16130211921221040010003918734-
284v1624832110244120100000011,240744-
409t1633201218422210301100011,5301,377-
653t1644411118132210401100031,553931-
366t1653821215244110400100001,30878478t166372111222211
0400100031,9221,345-
494t167231011222221040010001900900-
491t1683102236223210200110065,7425,7421,198t16937001122
42210400010042,2791,595426v1702522115222110300100102,6
311,841457t1714611248444210400010026,3315,697-
2,024t172351116144210400000051,198838-
590t17324241612122140100005433389-
328t1742111124242121200000141,9871,192-
693t1752321110142110401100141,048838186t17623111182211
1010010001976683-
300t1772411218442211400000132,1241,486-
587v1782511236422310300110058,0654,839-
3,043t1796004124444210400110111,9401,746466t18041001242
44320300110026,3136,3132,196v1814821218444111311010141
,7951,615282v1822821162331103111001448433871v18324311
12212210300100043,0162,412567t184231111823121140001001
1,216729-
266v1852801221322110301100122,9932,095359t186430022444
3210300110024,0422,425301t1872801118322210400110062,16
91,952-
1,355t188463126444220100101111,34380584t18948001242422
10200010029,2775,566981t1904601215444210400110041,8291,
829464t1914400220441210200110113,4852,788456t192252112
4441110201100034,7364,262-
1,718v19337031483133104001100412,74912,7493,442t1942221
19221210400110041,6701,503-
488v1953101110222120300101111,5461,236286v19624112363
13210200110062,1451,072-
673v1974721221342210100100012,3532,117405t198430112424
2120100100017,3934,435767t1993301148220311301010064,84
43,390-
2,152t2003402115144120401100041,569941158t201490111243
3120200100152,0961,467383t2022221112212210100110041,56
71,096241v2034811210431121100001112,2411,568258t204302
2218222210200110015,8662,933225v205442111834212020011
0106,2044,9631,229t2062501112222210300100041,2621,00927
5t2076121136044310400010061,9531,562-
976t208511128444320301010001,16469887v209240211824211
1300000061,5681,254363t210330011243412040110004797717-
302t21124011632221030010014932652167t2122821118233111
300000116,2603,756708t2132401112222111300000131,7681,23
7300v2142701215231110201100032,7081,354151t21527111272
22310300100043,4163,074922t2162431136212210400100045,8
484,093896t2173603215233210400110001,26275772t21834211
24320310300110032,0641,651-
882t2194010221122120400100011,6471,152-
610v2203621127222220400110063,9151,957-
1,448t2212601227343210300100065,1173,581647t22250112270
40210201110065,2934,763-
4,064v22330012122222104011001470756590v22435021122132
10300100042,1411,712445t2252411248044220300000024,6053,
684-1,645t2262421130222210411100012,1501,720-
683t2273611318444310200010015,3024,771564v228362014814
03104000100112,1697,3011,522t2294930118143110401100041,
4451,011235t2304411224444320200010026,4194,493763t23137
30224423120401100111,344806-
348v2322631124241210200100033,7492,624612v23334111242
13310200010022,9101,455306t2342422160221310400100017,4
085,926-
3,545v2352523118231211100000143,2131,927434t2363800118
440310200110023,2293,2291,119t237363121232221020111001
2,2471,797338t2382301210431211100000132,1461,716320v239
2500122243211400000011,283898215t24039111362433202010
10013,2492,599564t2412701224321210201110068,6486,918-
4,433t2424201212420310401110062,2922,292-
1,437t243472121243312020010011958670105t24436113644031
0400010031,8721,497155t2452921220332210201110002,6291,5
77258v2463401212044210200100032,7592,207421t2473421112
211311300000133,0172,715656t24828111923211040010001654
457-
188t2495714230244211400010033,6222,173302v250270226412
210100100041,2371,113195v251493219244210200100141,1265
6392v2522631115243211200010062,6872,687791t25353112480
42220300000037,1195,695-
2,010t2544101112342211400000121,5031,503427t25531101302
44210400100036,3503,810-
1,837t2563411248213210110110146,9994,899-
1,881t2572931163112102011000468334149t2582600124240311
200010025,4334,8891,312v259260119222211400000131,3881,2
49366t2603604121244110401100161,5721,100265t2613421124
143110401000051,8371,102-
822t2622914121221210401100043,3572,685766v263380014822
2210401100163,9142,348-
1,440t2642320115211210400100041,4441,010194t26540021152
22310300110054,6232,773-
2,096t2664511124214210400100112,3032,072-
968t2675001221224210400100132,2411,792343t268420116024
43102001100110,3667,2561,522v2693301215332210401100141
,4781,330255t2702922124211210200100042,8962,027390v2714
732124224210400010041,377688143v272460012124431040011
0122,4761,733453t2732411112222110400100111,228736-
376v27444211822311041010014760608135t2754100121234210
400110043,1602,212429t27623221122431112000001684184124
9t2772411112232110400100042,2141,328266t27836011214443
10100110023,2753,275880v2793121112022110200110101,4108
46161t280270026422210100100031,221854148t2812411220444
210100100034,2724,2721,000t2822411236443210400110029,62
95,777-1,853v2834111136224220201100032,7121,627-
603t28429112450442112000000611,8167,089-
4,581t2852301118241210400100101,9431,360-
792t2863501215442210400010041,47188285v28735111242412
10400110142,4392,195-
1,208t2882612224413210400110161,382967141t289362023044
4210400100112,1811,962319v2903811212442110401101012,17
11,519261t29142002364442102000000210,4775,238604v29225
20130244210200100042,9912,691802v29322111924121130000
0041,3661,092-
502v294300129412210300100111,2241,101221t2953100124223
21040111003929557123v2962823124241211300000024,1132,8
79-
1,160v2972900115222210300100013,5562,844632v2982911224
140011100000011,193954-
424t2992832121212310101110012,9231,753357t300231021824
3111200000041,9361,936504t3014511142243220210000037,88
24,729792v3026011224444110400100011,199959-
289v3034422112441210300100021,8041,623407t304570011244
4111400000061,2641,137275v3052412230443211100000026,18
74,949997t3063100118212210200110023,3782,026389v307252
11480222102001100614,42110,094-
7,360t3084121242413110201100165,9544,7631,000t309581112
4244110410110101,7551,053211t3102030224444211400000033
,6172,170265v311352119433211400010031,9191,535328v3122
501236422210401110117,8554,713-
1,659t31363312104442104000100178139031v31447012182422
10401000031,9841,785405v3152211118222210200100032,4621
,231-
464v3162924124444211200000027,7584,654900v31770211102
40310201010017,3086,5772,059t318332118222210410101141,4
14848194v3195004124442210400110133,7772,266492v320290
116223211200000142,1081,897606t32121111122432114000000
0902902-273t3226631130344310400110161,9081,526-
1,279v3233200224342220400110162,9782,978797v3242521118
22211041010014866779199t3252701212422210300100161,185
59273t3263502224332210200100034,1512,490413v3275701312
444110201000052,7481,648115v3282821248243210400100143,
0601,836-
836v3296300115444210400100031,5201,064225t330563114244
4210400000024,7963,357764t3314911210433210400110011,03
8830126v332252111223311020110001685685-
256t3332814118222210400100032,6591,329238t334240224844
21112010000211,59011,590-
4,476t3353321118214310101110164,4393,551950t33628112120
22211400010046,1993,719-
1,466t337210116222211100000031,7661,766567t338630016044
43102010100113,7568,2531,802v3392631112211210400100111
,330798181t340311116443210100100041,9571,369292t3412701
21432211040010001802802165t3424003110222121300001011,
5971,277343v3433402221333310400100131,5911,431249v3443
301224422210400110102,0581,646253t34541011122441204011
0005719431-
280t3463501124244310400110022,6701,869424v347382021224
42104001000075445275v348360016240320400110001,2387421
37t349300421532321030010003960960195t3503820162442104
001000436825763v3513822224441220401100041,216972-
481t35220212123422114000001458552691t3532302124243210
300100023,4881,744359t3542602124233210400110041,3111,04
8306t3553431118212120200100132,8641,718-
559t3562722112411210400100011,9951,795579v357372013624
22101000100112,3898,672-
3,366t358221111524211040010006806725226t35933211362111
11400000002,3841,907-
594v3602021124242111300010012,7181,630-
831t3612801136222310400110033,3492,344-
1,215t3622211124142211111001023,6322,179392t36322111122
11211400000031,8581,486409v364190129221211200000031,98
01,188-
398v3653301224423210410110041,8511,665365t366422243634
4310200110018,0864,043-
1,774t367352126310310401110031,05073588t36824031642221
0100100012,0801,872568t3694701324431210300010045,1034,5
92439t370441026431120100100114,7164,244747v37141222303
24210401100062,5032,002313t372251129442110400100141,13
8682103t37366231923211040010014790553143t374280412424
2211200010022,6031,822365t3752213124142210401110132,48
32,234565v3762501230423210400100045,7715,1931,122v3773
0001214443104000100112,6806,340-
2,703t3785202224444210401100042,2231,333188t37923221122
2111040110001836501-
192v3805131124244210300000032,8922,313589t381350021244
42104001000497648852t3825411148242210300100003,0511,83
0-
555v3834711284441104001001173143842t38442201242442102
00110045,0843,558936t3855001124143210401110061,5591,091
237v3863211218143120400000011,4421,009-
573t3873204227421120401110134,5264,073784v388240011521
121040010010874611125t3896501218440010400100041,09865
890t3903421236442210300110025,8004,640651t391400011522
2211400010141,386693150t3922804111224210100110162,1421
,499344v3933021112243221300010012,0021,801465v39442032
124442204001100452226136t395420134413120200100111,455
1,455176t39626012362203104001100310,9746,584-
2,944t3973503224224210301110042,3971,677-
538t3983611160244211400000067,2973,648-
2,507t3992611136222220200100028,2296,583-
2,272t4003011136230310400110033,9593,167916t40153112243
42220300000014,8702,922-
1,742v4022811115242211200000011,4031,122257t4032600210
412210200101032,0691,862428v4043331112211310401110031,
4741,474454v4055811248444110401000026,1433,685-
1,770t4065721236344210401010012,2251,780-
747t4072601124241210400110043,1812,544598v408401013624
4310400110051,9771,383-
961t4095211110244110300100142,3152,083648t410542411224
4210400110111,3181,186348t4112600112241211200010022,44
52,445654v4123513112214210300100141,6801,344349t413272
0118231211400000131,9241,924-
843t41421021602432102001101410,1448,1152,159v415230112
1441210400110032,2881,830389t4163622124343311400010066
,9674,876989v417360313624421040010001909727192t4182611
221311210200100053,4142,048-
1,278t419362111844422040111001884442-
134v4202122145242211410000043,0312,424-
997t4213801212414120400100111,4951,196181t422510013642
4210400110043,3422,673725v4233001115222210300110024,65
74,1911,287t424420134413120200100141,5441,23594t4253503
112132120400100103,4472,412509t42624201921321020011003
2,0301,827499t4273201210444120300101111,231984151v4283
4111302111101001100011,99810,798-
4,141v4293722124421210400110013,8782,326563t4304600248
424320401100067,6296,103863t43144031484222102010000110
,1276,076-
2,454t432293014221120100101111,4941,344411t433360121843
2210400100111,028925153t4342311224044221301000034,1103
,699-
2,183v4353731110211120110100013,9493,159925v4364603110
24421040001005727508136v4372511118210010400100032,473
1,978-1,048t43860222601443103010100014,7827,391-
2,656v4392602230322110200100064,2722,563249t4403101194
30310200100032,4061,924437t4414320118344220400100012,8
992,609826v4423510124222210400100011,3811,242-
443t4432520112224210101110032,7621,657-
638t444251119222210300100132,1361,708481t4453021148432
310200110035,0964,076-
1,739t4463111124233210200110014,8172,890-
1,679v4473401218213210401110061,9501,170160v4483321118
422210400100041,245996-
453t4494403112442210400110111,163814193t45039112124221
21300001112,1221,061133v4512411124241211400000011,2078
44-
375t4525400124211210400100012,2551,804423v453262111824
2120410100141,1131,113371t4542500224221210400100043,10
53,105708t4556101212444110400100111,25562787t456672129
243310400110051,1991,079215v4573720224322310401110064,
7123,298437t458272129244110400100041,082973215t4595200
112244310400010012,1331,919600t46040101241343104011100
01,358950-
376v4612331110221210400100031,275765156t4622201118313
210400100131,8081,265-
751v4636511218242210400000042,6001,560-
557t4642521124241110300110011,355948-
325t4653211218413310400110041,8801,316219v466350122443
3210400110022,3461,407222t467503116442110200100051,047
52373t4684103121321120401100162,5801,290-
805t4693122236333120100110069,8576,8991,312t47028011242
23210400110042,2841,827525t4713221127211220400110062,5
281,769424t47227211602233104001100114,0277,013-
2,463v4732101127232211300000112,5701,799-
1,039v474370114413220100100113,3802,704589v47530102394
433104001100314,1797,089662v4765504212344220400000001,
555933-
545t4772702224433210400110012,4632,463658v478663331244
0010201000011,4801,03662t4796020120240310100110126,468
6,4682,006t4803203124234211400010033,0621,531317v481242
0112220011100000117,4725,2301,339t48246111482432204000
00013,9313,537-
1,985v4833501218421310300110033,7801,890231t4842531115
231110200100142,3272,327-
772v4854701318244220401110033,4223,079322t486450123632
42202001100110,8757,6121,341t4872501110222111201000132,
2101,989-
948v4882911112222120200100033,5903,231881v48943211242
33210300110034,0572,839-
918t4902900218432210400110041,16970170v49136011242143
10400110141,2781,022247t4923111124122211400010063,1613,
161-2,801t4935511124111210201110036,8726,184-
2,721v4942311112212210401100041,4981,498439v4954611115
211211410000031,8451,660426t4962911112242210410110011,
8931,514363t4972221162111103001000045436381t4983301130
422210400110042,8312,264535t4993001224423110200100032,
0281,419217t5005000112234210400110012,3902,151652v5013
500136242120200010059,0555,4331,032t502321212422211040
0100041,282769-
352t503361116222110101110131,374961251t504252124542111
0400100044,7463,322-
1,100t5053501211441310400100011,39383593v5062600161221
2011110011783626163t5074800427244220400110005,1905,190
424t5086611212444310400000021,5261,526318t509290121242
2310410110161,412988181v51058211540412113000100615,94
57,972-6,114t51139212244323202001100011,9388,356-
3,313v5124700148414210400110143,5782,862720t5133011212
422210400100012,1211,908349v5143800212424210400110141,
240868130t5153022148123210400100063,5662,139481v516201
1112242211200000031,282769-
302v517320316222210100110032,9782,978996t5185300130110
310401110127,4855,988-
2,232v5193101215422210400100041,3601,088217t5203421294
34310200110051,5011,200-
764t52138113304443203000100210,6236,373373t52239202643
31101001000093265278t5232701236022210400100002,6132,61
3673t5243011124220320401100041,8231,093-
648v5252501124213210400110161,258754178t5262720160312
110100100147,4185,1921,304t527372111523422040010004802
561-
263v528320119222220100100142,6971,887390t5293511147211
1101001101110,7229,6492,569t5302621148221210100110039,9
607,968-
2,393t531330416222210400100131,5431,234341v53231111361
44210401100032,7462,196-
989v533391128443110100101113,3983,398819v534441116442
311100010133,3843,384-
1,846t5354301115422110400100041,4591,021258t53623211242
21110401100111,2461,121-
569v5373601112243210200110061,542925163v5383711148143
211210000067,6854,611-
3,379v5392501218412210200100042,2381,342149v5403222139
3332112000100511,7607,0561,248v54122211242112101001100
42,0391,631-
926v5423501236424220200110025,8424,089666t543212111823
2211100010022,7791,667394t5442520112212210200110141,48
4890-
456t545410029444111400000051,244995138v54629011242113
10400110022,6791,339281v5476311124242220311110022,9242
,046488t5482611118041211100000033,1142,802-
1,133v549472116340310400110011,209967-
475t5502010124242210200100032,9962,696-
1,242t5512700110242110410100011,309785-
396v55237112643321040010101609609119t5533021226231210
200100027,9664,779456v5543331121411211200000052,3191,1
59-874v5554311224320220400000111,333799-
474t5562221112211210201100041,331798-
277t5572322224323211300010041,5531,242193v558240121543
3210201100032,7882,230401v5592011118242211101000132,03
91,223-517t56032221611111010110001931744-
441t5612213124142210401110132,8281,696334t562482014802
23102011100612,20412,2043,488t563350011522421040010004
1,9791,781445t5644701312244220401110051,3931,393210v565
2700236341211400010067,9805,586-
3,503t5662211114240210100000013,9732,781536t56727012244
20310401110006,3145,6821,096t5682601130443311400010044,
5302,718593t5693400160242220400010016,5276,5272,161t570
500316242211200000021,236988243t571350311524421010000
0015,3243,194629v5726300230444210100100027,5964,557658t
5734104264221102011001125015022t574292013612101030110
0003,9903,9901,326v5752811213411110301100061,797898115
v5763210124243211400000011,2851,156-
424t5774021212234110311100141,1551,039187v578251012424
2211400000111,3711,096-
388t5793524118222110400110061,9411,358359v580220219241
211200000032,3012,301722t5812411136213210200110019,271
6,489-
3,149t5825421136322211200000017,4324,459801t58330112214
34210400110011,602961124v5844811212042210401100011,08
2757-
337t5853520121233210200110033,9763,9761,113v5863302124
231210400110111,474737154t5872003115242211200000032,22
11,554400t5884024211442210400100011,3221,322345t5895311
11224121040010005795477-
413v5903100136323320301110028,9476,2621,377t5912011112
222321200010141,107885208t59232211480223101011110018,4
2412,896-6,960v593461121212121040111001697348-
173t5943022230331310401100041,9191,535-
892t5953023248011210100100018,3587,5221,804t59657142244
44311400010041,23173876t5972620130212210400100041,7151
,029240t5985733124232110300100041,2581,006250v59925112
15432211400000031,433859128t6003101112243110300100131,
7361,388339t6015303124244210300100032,8351,984411t60253
00224444210400100042,4241,212151t603390116044110400100
04426383117v6043101148432210101010056,1104,8881,392t60
53903136244210400100042,2992,069597t606522011221031020
0110046,4684,527-
2,129t6072901112221210201100042,1711,953592t60834111422
31210400100043,9652,775-
1,203v6092721218411210400100031,29577782v610610011242
3210400100052,0121,207215v6113901218144320201110016,45
86,458-2,804v6123010142233310400110047,1745,739-
3,167t61340111122221104001001470142093t614270422732221
0200100028,6137,7511,442t61539112644421010011001860688
111t616481229444220310101101,2881,159252v6173311118220
210400100031,131678-
313t6184211112212210200100032,5772,061502v619742119144
320201010025,1293,077-
1,488v620280126412210100110041,3821,243237t62143013124
44210400110131,9351,548124t6223111118013210301110063,1
042,483724v62327242482232101011100410,9617,672-
3,241t6242320162200101001100114,55511,644-
5,406t62552013124442104001001471757379t626350122442211
0400100142,6841,342106t6273600236444210400100166,3044,4
12681t6282601218422210200100042,4041,923380t6292611148
233220400100024,7882,394472t6302000112241211100000024,
6752,805673t6312400130243111201000024,8113,8481,076t632
381111223212021010003708708242t6334900112444211200010
035,8013,480747t6342321113241110210100042,1012,101688v6
3523212134412104101001488244160v636490011244421010011
0142,3311,165228v6372701218413210300100023,8502,695324t
6383401218330210200100142,3202,088348t6392100118221211
400010141,126675120t6405511112240310300000032,5781,546
318t6414300224443220400110022,1971,098139t642331111221
1120400100112,5792,321-
1,291t6432901228424210400100042,7432,194392t64423031624
311120000010660660200v6453411136241210400110011,8421,
289-
599v6463611211422221200000113,9053,514636t647291112432
1111400010041,6591,493-
819v6482403139242210400100022,5692,312557v64952011122
42210200110043,0772,769674v6502922136211311400010039,0
347,227-
3,545t6513633115422210200110022,3601,652329t65240111644
1120200101111,3611,224291v6533102115432210400100051,53
2766126t654751016230310400110011,3741,374440t655370112
4442210400110012,0221,617446v656282221803121030010001
2,2781,822-868t6573611112233210200100011,3721,234-
428v6582721112213210200100142,9302,051492v65936112942
2221200000112,7991,399150t6602311224243211400000011,44
21,009-
595t6617401124422310300110164,5262,263336v662272016032
2310200000049,1579,1572,992t663413116222210200110132,11
61,692476t6642803124213210400100041,376963239t66532112
30022210210100134,5833,208534t666412111224412040110001
888799-
311t6673424130122220401110033,4962,796692t668330112444
4210400110035,1503,605876t6692730210423210400110041,34
7942173v6702921212233210410101141,103882123t671242214
8223210300100016,5605,904-
2,623v6724000230424220300110043,0771,538112t6734703215
422110200100041,316921135t67423212242423111000000211,5
609,248-
4,648t6752311115240211100000012,5111,757350v6767431364
12020100101111,299909109v6773111130241110200100033,10
82,797-
1,444t6783701236443210400110013,5353,181710v6794003122
244210300100042,6751,605289t6805110118244220100010027,
5115,257-
1,602t68126211623111030010114590413111t682620316242210
100100101,338936181t6833311318444211101010113,9663,569-
1,955v684210011222221040010004886797197t6856800218242
211200000016,7614,056-
1,421v686400011023321040011000894715162t6872711118211
210401100042,3892,150676t6883611118141310301010041,940
970141v6893420224433220400110062,8252,260405t690281112
1241311400010042,6062,084507v691241012122311020010111
3,7633,7631,324t6923202110222220100100122,8481,993396v6
932111118441211400000031,049944286t694283119222110300
10014745447-200v6953013124141220400010033,3492,009-
615t6964930230444110401100043,6563,290651t697232322742
2110400100042,5202,016-
647t6986421162322102101001475337669t69933312420112102
00100066,2893,144258v7004011130242310400110023,8573,47
11,057v7013521136222311200010026,9484,8631,231v7022510
330031210201100068,0725,650351v7034234212132211300000
1440932760t7043731118222210401100142,1001,890-
832t705231316220011100010021,352811141t706310123642221
0201100049,5667,6521,185t7072224112212210400100111,0078
05174t7085121111343210200100044,7713,816864t7094722136
2422201000100512,6126,306-
4,459t7103422118242210400100062,6222,359580t71132211122
23210200100016,0785,4701,702t7122710210431211200001132,
1321,492229t713302111222221040010000639639-
330t714662311223211040010014766689-
368v715510221243321040011001682682172t716451111211411
04011000033927159v7172024111211210400100131,577946170
v7185213264442104001000433820222v71968213164300102000
10011,17570534t720272241224121140100003951570-
263t7212621112433210400100001,4241,424390t722233113622
2210200110143,9133,130899t7235311112244310400010037,86
55,505-2,364t7246122221224111401000062,7672,490-
2,105v725350216012211401001011,204722147v726291111211
2210400000042,1492,149-
1,220t7273801124231210401110041,5331,379389t72849101122
44110200110031,2621,262436v7293122148340310200010007,5
826,0651,366v7304500110224110400101011,2871,158306t7313
31211223111040011004727654-
340t7324820124242110100110034,3513,045663t733340412423
3220400110011,5251,372347t7342410115222211400000001,27
5637-
222v7352323124240011100000043,7582,254384v73626012363
22310400110044,4633,124-
1,012t7372211118241211100000033,6502,920799t73836001734
42103000000484642377v7394021218440310401110037,3746,6
361,159t7404611236422210300110032,3481,408201t741271111
5221210400101141,053631119v7422310218322211100010058,
4714,235463t7434604218432210400100141,14980498t7443704
224444210400110111,2871,158280t74535211722221021010014
2,5762,318692t7463511112244210300010023,3863,047-
1,723t7473200248334220301100047,2385,790907t74825311242
23210401100045,1522,576377v7496201124244210400010013,7
572,629697v7504001224433210400100031,5851,268196t75134
22115120320100110016,8503,425-
1,718t7522301236441211200010037,1274,988-
1,596t753420124413120200100141,5031,202182t754372111844
4210300110033,6123,2501,045v7553201124213220301100041,
552931158t7562900221042210101110015,0033,502-
1,636v7573404124424210200100042,5781,289196t7583300224
422210300110051,9271,156193t7592111112212110410100031,
289773133t7603621324042110100110164,2413,816-
2,676t7615022136242210400000042,6712,136-
927t762371136432221100000113,6762,940308t7632922191332
10200100011,4371,005-
356v76421012603432102001100415,6537,826937v7652603112
222210200100011,3861,247-
605t76637001482332104011100410,2229,1992,951v767270114
8112210101100163,6092,165473v768242217222221020010004
5,5953,916-
2,321v7693022136334210400000012,8622,862782t7703801112
42001010010001926740163v7712521212031211400000032,969
1,484-
647t7723201118222310400010041,5051,354419t773251121824
2211401000041,8821,317-
576t7743512118242120300110014,3803,504783t775371111221
1110300100111,274637-
268t7763930215442210300010041,271762-
256t7773100110241211100000122,9011,740373t778251111821
3210410100143,5092,105502t7793800248434220400110022,75
11,925361v7802201212441111200000031,2581,006204t781650
04124442104001001493083749v782240126423211100010041,5
541,554346v7833601218022220201100064,1653,748-
3,135v78423011423112110000013601601191t78528011242212
10400100111,249749176v7862801115422210400010033,3431,6
71357t7874201112444210201100033,3312,331564t7882801136
224210400100043,5952,876790t78923211482222102001100615
,67214,104-
12,029v7903504112423210300101031,592955167t79127201362
22210200100053,7112,597521t7926811162443101011100114,8
9613,406-7,231t79339113482432204010100210,2977,207-
4,283t794302116231311400010042,0632,063659t795380011224
0310400110012,8592,287509t796372139444110200100141,154
69241v7975401115224311401010043,5683,5681,238t79842202
18324210400100062,4272,184485v79964021132402102001001
41,409845197v80038011122442104001000480440261t8016104
112243110200100143,0592,447540t80244211242243104000100
212,57910,063-
3,320t803342117222210310100142,4152,173578t804373111022
2210200110001,225612102t8053901211442110100100017,2286
,5051,165t8062331118224310300100011,9611,961659t8073701
136242210401010051,819909-
637v8083900154022120200100029,4367,5481,677t8093012118
233320400110012,2491,574421v8103621136444210400100142,
3372,337698t8113010124221210100111037,7214,632993v8122
313233442210100100034,2812,996-
1,312t8133421212420310400110021,8601,302211t81435203154
23210411110142,7282,728362v8152811236422210310100035,3
714,8331,137t8163822224233210201110013,5123,160561t8172
501124243211200010033,9722,383396t81831012122233214000
10041,9631,177172t819201211221321040010004674606-
211t8203620124244210401010022,7601,656394v821211112422
2110201100066,5685,9111,750v8222411124222111200000133,
0212,114402t823220119223210400100041,4781,034-
372t8243501212422210400100041,291903173t82526311242222
10200100131,9251,732535t8262302115241210100110023,8123,
8121,205t8274511114244310100111018,9787,182-
3,830t828320116241210100100034,6112,766-
1,336v8294921212242210410110141,09276494v830430111824
2210300110132,5151,257235v831242118242210300100131,237
989-
430t83232012124222104001000570135049v8333131136224210
400100044,4734,4731,355t8342811124242210400100034,1692,
501599t835340226322110100100161,7431,045135v8362801112
22221040010014776543104v8374211136224220400100033,446
3,101-1,708t83857211362243104000100114,31811,454-
5,352v8392723115442210201100062,3261,860519t8404621212
214211100000111,223856-
335v8412603124224310300110043,2351,617258t842310312122
3310101100012,7821,669366t843200119244210100100031,313
787154v8446511242440010400100003,3942,036258t845553011
2244310300110131,424854199t84627111621121040010010343
30898t8472601233322210200110062,7641,658189v8483922112
243110300100161,037622116t8493502110222111300001111,41
8992206v8503221118224110410100141,301650121t851280112
4222210400100041,4131,413426t852431216224210300110011,
203842162t8533111136242211400000042,3021,841-
888v8544211148244310401000017,7635,434-
2,226t855241111214211040110014626563-
231t8562711124143210301100033,5521,776-
894t8574120248213220400110043,9792,785481t858272123644
1210400100012,8202,256-
1,037t8594711118232110400110101,217973-
395t8603101218423210201100012,7752,220-
689t8613301118211210400100142,0511,435343t862212213024
2211200000033,4412,752-
1,151t8633603242442210400110134,0423,233650v8643401112
231220400100041,4931,045266t86538311242332204010000194
7947-
411t8662821230012210200100064,2212,954414v867431121244
4211300010014,8434,358-
1,482t8686411124244111401000142,3841,430322t86935021924
4210300110042,7532,202503t8702401218422210400100041,80
01,440233t871252119244210400100141,2061,085296t87231302
24422210300110043,1481,574135t873592114813421140000006
6,4166,416-
3,914t874450126433320100110016,7616,0841,037t8752600121
232210100100025,2482,624487t8763101124222210210110111,
393835178v8772821312444211100010033,6173,255535v87838
04236424310400110025,7114,568987t879502114834421040000
0056,2244,979-
4,477v88054002243442104001100171750183t88155211421203
10101010029,2838,3542,423t88243111362303102001000015,85
715,8574,387v8834710136244210300000028,3355,001-
2,571t8846311224444210400110022,9571,774277t88559111924
3210300100141,3641,091276v8862911115222210300110013,95
92,771-
1,073t8873700236224210300100067,4094,445671v8882711192
21310300010011,422995-
316v8893401236444310400110016,6143,307261v89033001152
43111101000132,1861,530374v8914601215321110100100023,5
943,594824t8923312124210210100100032,3592,123-
1,023t8935800130244210400110041,8671,120242v8944221160
242210400000056,2885,659-
3,994t8954301118211120400100031,5331,073-
566t8964511128222110300100014,0062,804-
1,282t8972900142243211200010047,1665,0161,013v898470122
4344120400100012,5382,284-
904t8992911124220310400010026,5793,947794t900231114524
2210400010041,8451,476-
884t9012821230420310400100015,2344,187-
1,605t9023103124224220300110043,4302,401637t90363112603
44210300110066,8363,418-
2,339t90424211923221040010014458412127t905280211222221
0400100142,0731,243224t9062311236441111400010036,2293,7
37-
1,801t9072500136242210400100042,3941,436283t90822211302
11210200100033,8323,448857t9092811212033210400100101,1
081,108-
368t9103620220343321301010027,0575,645807t911352311422
4210100110161,410846144t9123623112433310300110012,3662
,366810v9132911212422210300100113,4993,149-
1,351t9144431112222111200010041,8811,128264v9154604218
444210400100041,5821,582344t916340026422120100100141,8
981,328218v9173121224444210400110161,935967-
865t91865112214442104001001157145687t9193321218042210
101110033,2442,919702t9204021118334310400110034,2973,43
7-
1,255t9215504112223210300101021,4131,271384t92264011102
42210200110011,3641,364373t9232211124211210401000033,1
491,889323v9243911130234220110100042,5221,765376t92522
0111824021130000014433346-
116t9265702311440110400100141,1541,154219t927250022422
421040010004999999197t9282902124242311400010041,9011,3
30310t9294811124341210401100141,024614-
325v9303224221423210300110032,7451,647171v93122211924
21114000001127622050t9322711215344110100100033,6433,64
3855t933282116244220400100041,068640152v9343121110222
110400100031,521912207t935322429434220400000051,136681
-538t9362311130243211400000132,4061,924-
1,024v9374021118243211200000133,0012,700699v9385202264
421104001000136225341t939270129223210300100061,4491,15
9200v9404304224412110400100141,5161,061172t94128333124
2321040011011939751-
250t9423320118222210400100011,042729-
364t9435511318440020200000001,190833-
394t944263111211101040010016609548-
349t9456124215332210301100001,512907-
338v9463201118221210300110044,5942,756556t947350122433
3110300110024,6793,275604t9484411215444220400110031,47
8886137v949260116232211210000013,5183,5181,046t9502832
26444220200110011,3231,058166t951450213922431040011002
8,5885,152948t9523600264442104000000470035029t95341111
624112030011011662595182v9544531118211110101100033,04
93,049902v9553500248413210200010028,8587,0861,010v9563
121218421110200100131,9281,735-
849v9573111148222210300110046,7584,054-
1,503v958270122423111040010000937655103t9596011212434
210300100032,2461,572-
654t9603201124322210100000063,8633,476975t961450011524
4220401000021,300780130v96249011122221104001001164032
044t963640019244110100100153,8321,916323v9642611242323
220301110044,3703,933-
1,461v965401111224212140000005684615-
487v9664121118414210200110036,3615,0881,098t9674731130
444210400100043,0171,810323t9682601118211210300100141,
4531,162293v9693114112232220100100013,6513,285882t9704
031115244311400010051,9051,143208v9713721192221202001
00142,1182,118630t9723122220044210301110026,1484,918809
t9733634224442210200110161,275892116t97426222300421114
00000064,2802,568-
1,974t9753301115223210200100023,0291,817366v9763511212
43421040010001691414-
225t9776301212444110200110141,6551,489288t978672111824
0210200110003,8723,8721,149v9792711140432210401110055,
9984,198-
3,572t980352019221010400100111,549929192t9812621215011
011200000111,7781,066-
428v9822611118232210401100141,345807-
352t9833820148342220400010066,6816,0121,714t98446012244
34210400100142,6112,349482t985571111224411040110014709
425-
142v986260219222221110001113,5772,146481t9872411112244
21140000003652456112v9883600230433210200100046,7424,0
45459t9894000228141221311010127,8247,0411,536v99042111
18232210200100034,1533,322-
1,278v991332019222110100100113,1952,556679v99239111242
24311400010033,3452,676-
971v9934311212322120400100111,344940158v9944600224442
320200110026,8425,473894t9953102224244210200100043,621
3,258-
1,327t9963022124244210400000033,0691,841322t99740112114
22120100100113,9392,363324t9982522115122211200000011,2
64884-
286t9994821224424110400100041,7431,394202t100027221454
40210300100024,5764,1181,200v
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
Data DictionaryVar. #Variable NameDescriptionVariable
TypeCode Description1OBS#Observation
No.NumericalSequence number in dataset2AGEAge in
yearsNumerical3CHK_ACCTChecking account
statusCategorical0 : < 0 1: 0 < ...< 2002 : => 2003: no
checking account4SAV_ACCTAverage balance in savings
accountCategorical0 : < 1001 : 100<= ... < 5002 : 500<= ... <
10003 : =>10004 : unknown/ no savings
account5NUM_CREDITSNumber of existing
creditsNumerical6DURATIONDuration of credit in
monthsNumerical7HISTORYCredit historyCategorical0: no
credits taken
1: all credits at this bank paid back duly 2: existing credits paid
back duly till now 3: delay in paying off in the past 4: critical
account 8PRESENT_RESIDENTPresent resident since -
yearsCategorical0: <= 1 year1<…<=2 years2<…<=3
years3:>4years9EMPLOYMENTPresent employment
sinceCategorical0 : unemployed1: < 1 year2 : 1 <= ... < 4 years
3 : 4 <=... < 7 years4 : >= 7 years10JOBNature of
jobCategorical0 : unemployed/ unskilled - non-resident1 :
unskilled - resident2 : skilled employee / official3 :
management/ self-employed/highly qualified employee/
officer11NUM_DEPENDENTSNumber of people for whom
liable to provide maintenanceNumerical12RENTApplicant rents
Binary 0: No, 1: Yes13INSTALL_RATEInstallment rate as % of
disposable incomeNumerical14GUARANTORApplicant has a
guarantorBinary 0: No, 1: Yes15OTHER_INSTALLApplicant
has other installment plan creditBinary 0: No, 1:
Yes16OWN_RESApplicant owns residenceBinary 0: No, 1:
Yes17TELEPHONEApplicant has phone in his or her
nameBinary 0: No, 1: Yes18FOREIGNForeign workerBinary 0:
No, 1: Yes19REAL_ESTATEApplicant owns real estateBinary
0: No, 1: Yes20TYPEPurpose of CreditCategorical0: Other1:
New Car2: Used Car3: Furniture4: Durable5: Education6:
Retraining21AMOUNT_REQUESTEDCredit Amount Applied
forNumerical22CREDIT_EXTENDEDCredit
MadeNumerical23NPVNet Profit from the Loan (Net Loss if
Negative)Numerical24Splitting VariableA variable added to
ensure a balanced partitionCategoricalt: training record, v:
validation record
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_
_x000D__x000D_

More Related Content

DOCX
Sheet1Washer ThicknessKevinYuxuanBolt DimensionsKevinYuxuanSample .docx
PDF
Phase 2 of Predicting Payment default on Vehicle Loan EMI
DOCX
READ MEIf you need assistance using Excel, you can access a tutori.docx
PPTX
MDS_mod
PDF
Principles of Business Forecasting 1st Edition Ord Solutions Manual
PDF
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
PPT
customer_profiling_based_on_fuzzy_principals_linkedin
DOCX
SOC-436 Topic 2 Power in America Worksheet Scoring Guide.docx
Sheet1Washer ThicknessKevinYuxuanBolt DimensionsKevinYuxuanSample .docx
Phase 2 of Predicting Payment default on Vehicle Loan EMI
READ MEIf you need assistance using Excel, you can access a tutori.docx
MDS_mod
Principles of Business Forecasting 1st Edition Ord Solutions Manual
Predictive Analysis - Using Insight-informed Data to Determine Factors Drivin...
customer_profiling_based_on_fuzzy_principals_linkedin
SOC-436 Topic 2 Power in America Worksheet Scoring Guide.docx

Similar to Week 2 Individual Assignment 2 Quantitative Analysis of Credit - .docx (19)

PDF
Microsoft MCSE 70-467 it exams dumps
PPTX
ESMA 650 Fall2023 Topic C02 Cost Estimation Methods.pptx
PPT
William Schaffrans Bus Intelligence Portfolio
PDF
Transform Financial Reporting Using Master Row Sets in Oracle E-Business Suite
PPTX
Telecom Churn Analysis
PDF
1645 track2 short
DOCX
PA 1c. Decision VariablesabcdCalculated values0.21110.531110.09760.docx
PPTX
What-If Analysis: Exploring Scenarios and Goals with Spreadsheets
PDF
Machine Learning Model for M.S admissions
DOCX
Assignment Exercise 6–1 Allocating Indirect CostsStudy .docx
PDF
50 MS Excel Tips and Tricks
DOC
Statistics project2
PDF
Principles of Business Forecasting 1st Edition Ord Solutions Manual
PPTX
Sql query analyzer & maintenance
PDF
BIG MART SALES PREDICTION USING MACHINE LEARNING
PPTX
managing reward/copensation with the help of computers
PPTX
managing reward with computers
DOCX
Sheet1HCM3002 Economics of HealthcareChoose a Health Plan (Part 2).docx
PPTX
Lesson 8 the Prescriptive-Analytics.pptx
Microsoft MCSE 70-467 it exams dumps
ESMA 650 Fall2023 Topic C02 Cost Estimation Methods.pptx
William Schaffrans Bus Intelligence Portfolio
Transform Financial Reporting Using Master Row Sets in Oracle E-Business Suite
Telecom Churn Analysis
1645 track2 short
PA 1c. Decision VariablesabcdCalculated values0.21110.531110.09760.docx
What-If Analysis: Exploring Scenarios and Goals with Spreadsheets
Machine Learning Model for M.S admissions
Assignment Exercise 6–1 Allocating Indirect CostsStudy .docx
50 MS Excel Tips and Tricks
Statistics project2
Principles of Business Forecasting 1st Edition Ord Solutions Manual
Sql query analyzer & maintenance
BIG MART SALES PREDICTION USING MACHINE LEARNING
managing reward/copensation with the help of computers
managing reward with computers
Sheet1HCM3002 Economics of HealthcareChoose a Health Plan (Part 2).docx
Lesson 8 the Prescriptive-Analytics.pptx
Ad

More from jessiehampson (20)

DOCX
Milestones Navigating Late Childhood to AdolescenceFrom the m.docx
DOCX
Migration and RefugeesMany immigrants in the region flee persecu.docx
DOCX
Min-2 pagesThe goal is to develop a professional document, take .docx
DOCX
Mingzhi HuFirst Paper352020POLS 203Applicati.docx
DOCX
Miller, 1 Sarah Miller Professor Kristen Johnson C.docx
DOCX
Migrating to the Cloud Please respond to the following1. .docx
DOCX
Mike, Ana, Tiffany, Josh and Annie are heading to the store to get.docx
DOCX
Michelle Wrote; There are several different reasons why an inter.docx
DOCX
Midterm Lad Report 7Midterm Lab ReportIntroductionCell.docx
DOCX
MicroEssay Identify a behavioral tendency that you believe.docx
DOCX
MILNETVisionMILNETs vision is to leverage the diverse mili.docx
DOCX
midtermAnswer all question with proper number atleast 1 and half.docx
DOCX
Midterm QuestionIs the movement towards human security a true .docx
DOCX
MGT526 v1Wk 2 – Apply Organizational AnalysisMGT526 v1Pag.docx
DOCX
Microsoft Word Editing Version 1.0Software Requirement Speci.docx
DOCX
Microsoft Windows implements access controls by allowing organiz.docx
DOCX
MGT520 Critical Thinking Writing Rubric - Module 10 .docx
DOCX
Midterm PaperThe Midterm Paper is worth 100 points. It will .docx
DOCX
Miami Florida is considered ground zero for climate change, in parti.docx
DOCX
MGT230 v6Nordstrom Case Study AnalysisMGT230 v6Page 2 of 2.docx
Milestones Navigating Late Childhood to AdolescenceFrom the m.docx
Migration and RefugeesMany immigrants in the region flee persecu.docx
Min-2 pagesThe goal is to develop a professional document, take .docx
Mingzhi HuFirst Paper352020POLS 203Applicati.docx
Miller, 1 Sarah Miller Professor Kristen Johnson C.docx
Migrating to the Cloud Please respond to the following1. .docx
Mike, Ana, Tiffany, Josh and Annie are heading to the store to get.docx
Michelle Wrote; There are several different reasons why an inter.docx
Midterm Lad Report 7Midterm Lab ReportIntroductionCell.docx
MicroEssay Identify a behavioral tendency that you believe.docx
MILNETVisionMILNETs vision is to leverage the diverse mili.docx
midtermAnswer all question with proper number atleast 1 and half.docx
Midterm QuestionIs the movement towards human security a true .docx
MGT526 v1Wk 2 – Apply Organizational AnalysisMGT526 v1Pag.docx
Microsoft Word Editing Version 1.0Software Requirement Speci.docx
Microsoft Windows implements access controls by allowing organiz.docx
MGT520 Critical Thinking Writing Rubric - Module 10 .docx
Midterm PaperThe Midterm Paper is worth 100 points. It will .docx
Miami Florida is considered ground zero for climate change, in parti.docx
MGT230 v6Nordstrom Case Study AnalysisMGT230 v6Page 2 of 2.docx
Ad

Recently uploaded (20)

PDF
Computing-Curriculum for Schools in Ghana
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
Cell Types and Its function , kingdom of life
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Empowerment Technology for Senior High School Guide
PDF
Complications of Minimal Access Surgery at WLH
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Trump Administration's workforce development strategy
PDF
RMMM.pdf make it easy to upload and study
Computing-Curriculum for Schools in Ghana
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Final Presentation General Medicine 03-08-2024.pptx
Unit 4 Skeletal System.ppt.pptxopresentatiom
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Cell Types and Its function , kingdom of life
Chinmaya Tiranga quiz Grand Finale.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Empowerment Technology for Senior High School Guide
Complications of Minimal Access Surgery at WLH
LDMMIA Reiki Yoga Finals Review Spring Summer
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Digestion and Absorption of Carbohydrates, Proteina and Fats
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Hazard Identification & Risk Assessment .pdf
Trump Administration's workforce development strategy
RMMM.pdf make it easy to upload and study

Week 2 Individual Assignment 2 Quantitative Analysis of Credit - .docx