2. ARTIFICIAL NEURON
2
Topics: connection weights, bias, activation function
• Neuron pre-activation (or input activation):
• Neuron (output) activation
• are the connection weights
• is the neuron bias
• is called the activation function
...
1
September 6
Abstrac
Math for my slides “Feedforward neural n
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd
• w
• {
Septe
Math for my slides “Feedforwar
• a(x) = b +
P
i wixi = b + w>
• h(x) = g(a(x)) = g(b +
P
i wi
• x1 xd
• w
• {
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(·) b
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(·) b
Abst
Math for my slides “Feedforward neu
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(·) b
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(·) b
hugo.larochelle@usherbrooke.ca
September 6, 2012
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(·) b
Abstract
Math for my slides “Feedforward neural network”.
x) = b +
P
i wixi = b + w>
x
(x) = g(a(x)) = g(b +
P
i wixi)
1 xd b w1 wd
·) b
(x) = g(a(x))
iversité de Sherbrooke
arochelle@usherbrooke.ca
September 6, 2012
Abstract
dforward neural network”.
+ w>
x
P
i wixi)
3. ACTIVATION FUNCTION
3
Topics: linear activation function
• Performs no input
squashing
• Not very interesting...
Abstract
Math for my slides “Feedforward neural n
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(a) = a
1
4. ACTIVATION FUNCTION
4
Topics: sigmoid activation function
• Squashes the neuron’s
pre-activation between
0 and 1
• Always positive
• Bounded
• Strictly increasing
Abstract
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(a) = a
• g(a) = sigm(a) = 1
1+exp( a)
exp(a) exp( a) exp(2a) 1
5. ACTIVATION FUNCTION
5
Topics: hyperbolic tangent (‘‘tanh’’) activation function
• Squashes the neuron’s
pre-activation between
-1 and 1
• Can be positive or
negative
• Bounded
• Strictly increasing
Math for my slides “Feedforward neural network”.
• a(x) = b +
P
i wixi = b + w>
x
• h(x) = g(a(x)) = g(b +
P
i wixi)
• x1 xd b w1 wd
• w
• {
• g(a) = a
• g(a) = sigm(a) = 1
1+exp( a)
• g(a) = tanh(a) = exp(a) exp( a)
exp(a)+exp( a) = exp(2a) 1
exp(2a)+1
6. ACTIVATION FUNCTION
6
Topics: rectified linear activation function
• Bounded below by 0
(always non-negative)
• Not upper bounded
• Strictly increasing
• Tends to give neurons
with sparse activities
• x1 xd b w1 wd
• w
• {
• g(a) = a
• g(a) = sigm(a) = 1
1+exp( a)
• g(a) = tanh(a) = exp(a) exp( a)
exp(a)+exp( a) = exp(2a) 1
exp(2a)+1
• g(a) = max(0, a)
• g(a) = reclin(a) = max(0, a)