2. Outline
• Simple linear regression model
– Model parameters
– Distribution of error terms
• Estimation of regression parameters
– Method of least squares
– Maximum likelihood
3. Data for Simple Linear
Regression
• Observe i=1,2,...,n pairs of variables
• Each pair often called a case
• Yi = ith
response variable
• Xi = ith
explanatory variable
4. Simple Linear Regression
Model
• Yi = b0 + b1Xi + ei
• b0 is the intercept
• b1 is the slope
• ei is a random error term
– E(ei)=0 and s2
(ei)=s2
– ei and ej are uncorrelated
5. Simple Linear Normal Error
Regression Model
• Yi = b0 + b1Xi + ei
• b0 is the intercept
• b1 is the slope
• ei is a Normally distributed random error
with mean 0 and variance σ2
• ei and ej are uncorrelated → indep
6. Model Parameters
• β0 : the intercept
• β1 : the slope
• σ2 :
the variance of the error term
7. Features of Both
Regression Models
• Yi = β0 + β1Xi + ei
• E (Yi) = β0 + β1Xi + E(ei) = β0 + β1Xi
• Var(Yi) = 0 + var(ei) = σ2
– Mean of Yi determined by value of Xi
– All possible means fall on a line
– The Yi vary about this line
8. Features of Normal Error
Regression Model
• Yi = β0 + β1Xi + ei
• If ei is Normally distributed then
Yi is N(β0 + β1Xi , σ2
) (A.36)
• Does not imply the collection of Yi are
Normally distributed
9. Fitted Regression Equation
and Residuals
• Ŷi = b0 + b1Xi
–b0 is the estimated intercept
–b1 is the estimated slope
• ei : residual for ith
case
• ei = Yi – Ŷi = Yi – (b0 + b1Xi)
11. Plot the residuals
proc gplot data=a2;
plot resid*year vref=0;
where lean ne .;
run;
Continuation of pisa.sas
Using data set from output statement
vref=0 adds horizontal line to plot at zero
13. Least Squares
• Want to find “best” b0 and b1
• Will minimize Σ(Yi – (b0 + b1Xi) )2
• Use calculus: take derivative with
respect to b0 and with respect to b1
and set the two resulting equations
equal to zero and solve for b0 and b1
• See KNNL pgs 16-17
14. Least Squares Solution
• These are also maximum likelihood estimators
for Normal error model, see KNNL pp 30-32
X
b
Y
b
X
X
Y
Y
X
X
b
1
0
2
i
i
i
1
)
(
)
)(
(
15. Maximum Likelihood
2
i 0 1 i
2
i 0 1 i
Y X
1
2
i
1 2 n
0 1
Y ~ X ,
1
2
(likelihood function)
Find and which maximizes
N
f e
L f f f
L
17. Standard output from Proc REG
Analysis of Variance
Source DF
Sum of
Squares
Mean
Square F Value Pr > F
Model 1 15804 15804 904.12 <.0001
Error 11 192.2857
1
17.48052
Corrected Total 12 15997
Root MSE 4.18097 R-Square 0.9880
Dependent Mean 693.69231 Adj R-Sq 0.9869
Coeff Var 0.60271
MSE
dfe
s
18. Properties of Least Squares
Line
• The line always goes through
•
• Other properties on pgs 23-24
)
Y
,
X
(
0
)
)
((
))
(
(
0
1
1
0
1
0
1
0
b
X
b
Y
n
X
nb
nb
Y
n
X
b
b
Y
X
b
b
Y
e
i
i
i
i
i
19. Background Reading
• Chapter 1
– 1.6 : Estimation of regression function
– 1.7 : Estimation of error variance
– 1.8 : Normal regression model
• Chapter 2
– 2.1 and 2.2 : inference concerning ’s
• Appendix A
– A.4, A.5, A.6, and A.7