SlideShare a Scribd company logo
Peter M. Lance, PhD
MEASURE Evaluation
University of North Carolina at
Chapel Hill
December 15, 2016
Within Models
Global, five-year, $180M cooperative agreement
Strategic objective:
To strengthen health information systems – the
capacity to gather, interpret, and use data – so
countries can make better decisions and sustain good
health outcomes over time.
Project overview
Improved country capacity to manage health
information systems, resources, and staff
Strengthened collection, analysis, and use of
routine health data
Methods, tools, and approaches improved and
applied to address health information challenges
and gaps
Increased capacity for rigorous evaluation
Phase IV Results Framework
Global footprint (more than 25 countries)
• The program impact evaluation challenge
• Randomization
• Selection on observables
• Within estimators
• Instrumental variables
• The program impact evaluation challenge
• Randomization
• Selection on observables
• Within estimators
• Instrumental variables
Within Models
Within Models
𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀
𝑌1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
− 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽1
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
+ 1 − 𝑃 ∙ 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
Cost of Participation
𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
Cost of Participation
𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
Benefit-Cost>0
𝑌1
− 𝑌0
− C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝑥 𝑃
Benefit-Cost>0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝜀
Benefit-Cost>0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝜀
Benefit-Cost>0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝜀
P and 𝜺 are independent
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
𝐸( 𝜏1) = 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝛽2 ∙ 𝑥𝑖 + 𝜀𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝛾1
𝑖=1
𝑛
𝑥
𝑖=1
𝑛
𝑥
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
The actual causal effect of
the omitted variable X on
Y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
Th”Effect” of P on x:
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
The actual causal effect of
the omitted variable X on
Y
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
𝑬 𝝉 𝟏 ≠ 𝜷
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
Th”Effect” of P on x:
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
The actual causal effect of
the omitted variable X on
Y
X
Y
P
X
Y
P
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
X, µ
Y
P
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜏2 ∙ 𝑥 + 𝜖
Error term now contains:
𝜇
Cost of articipation
𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥 + 𝜌2 ∙ 𝜇
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 + 𝜌2 ∙ 𝜇 > 0
𝑥 𝑃
𝜇 𝑃
𝑥 𝑃
𝜇 𝑃
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜏2 ∙ 𝑥 + 𝜖
Error term now contains:
𝜇
Within Models
Within Models
Within Models
(John)
WHAZZUP!!!!
(Ben)
This webinar is…
simply terrible
(John)
(John)
(Ben)
(John)
(Ben)
𝑃 = 1
𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛
1
𝑊𝑒𝑎𝑙𝑡ℎ𝑦
𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑃 = 0
𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛
0
𝑃𝑜𝑜𝑟
𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
X, µ
Y
P
(John)
(Ben)
𝑃 = 1
𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛
1
𝑊𝑒𝑎𝑙𝑡ℎ𝑦
𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑃 = 0
𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛
0
𝑃𝑜𝑜𝑟
𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏
(John)
(Ben)
𝑃 = 1
𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛
1
𝑊𝑒𝑎𝑙𝑡ℎ𝑦
𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑃 = 0
𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛
0
𝑃𝑜𝑜𝑟
𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏
(John)
(Ben)
𝑃 = 1
𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛
1
𝑊𝑒𝑎𝑙𝑡ℎ𝑦
𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑃 = 0
𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛
0
𝑃𝑜𝑜𝑟
𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏
?
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇
(John)
(Ben)
𝑃 = 1
𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛
1
𝑊𝑒𝑎𝑙𝑡ℎ𝑦
𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝑃 = 0
𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛
0
𝑃𝑜𝑜𝑟
𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏
?
t
P
t
P
t
1
0
P
t
1
0
P
t
1
0
P
t
1
0
X, µ
Y
P
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑡 = 1
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
𝑡 = 0
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑡 = 1
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
𝑡 = 0
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,1 − 𝑃𝐵𝑒𝑛,0
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛𝜇 𝐵𝑒𝑛 − 𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛0
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛0
𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛
𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛0
𝑃𝐵𝑒𝑛,𝑡, 𝑌𝐵𝑒𝑛,𝑡𝜇 𝐵𝑒𝑛
∆𝑃𝐵𝑒𝑛, ∆𝑌𝐵𝑒𝑛
𝜇 𝐵𝑒𝑛
Later folks!!!
It was
awesome!!
I…deeply regret my role
in this webinar
Within Models
𝑌𝑖𝑡
0
= 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
1
− 𝑌𝑖𝑡
0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌𝑖𝑡
1
− 𝑌𝑖𝑡
0
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
− 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌𝑖𝑡
1
− 𝑌𝑖𝑡
0
= 𝛽1
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌𝑖𝑡 = 𝑃𝑖𝑡 ∙ 𝑌𝑖𝑡
1
+ 1 − 𝑃𝑖𝑡 ∙ 𝑌𝑖𝑡
0
= 𝑃𝑖𝑡 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
+ 1 − 𝑃𝑖𝑡 ∙ 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌𝑖𝑡
= 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
Cost of Participation
𝐶𝑖𝑡 = 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖
Benefitit-Costit>0
𝑌𝑖𝑡
1
− 𝑌𝑖𝑡
0
− 𝐶𝑖𝑡 > 0
𝛽1 − 𝐶𝑖𝑡 > 0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖 > 0
Benefitit-Costit>0
𝑌𝑖𝑡
1
− 𝑌𝑖𝑡
0
− 𝐶𝑖𝑡 > 0
𝛽1 − 𝐶𝑖𝑡 > 0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖 > 0
Benefitit-Costit>0
𝑌𝑖𝑡
1
− 𝑌𝑖𝑡
0
− 𝐶𝑖𝑡 > 0
𝛽1 − 𝐶𝑖𝑡 > 0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖 > 0
𝑥𝑖𝑡 𝑃𝑖𝑡
𝜇𝑖 𝑃𝑖𝑡
X, µ
Y
P
(The Truth)
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
(What we can actually estimate)
𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡
(The $60,000 Question)
𝐸 𝛾1 = 𝛽1
?
(The Truth)
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
(What we can actually estimate)
𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡
(The $60,000 Question)
𝐸 𝛾1 = 𝛽1
?
(The Truth)
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
(What we can actually estimate)
𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡
(The $60,000 Question)
𝐸 𝛾1 = 𝛽1
?
(The Truth)
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
(What we can actually estimate)
𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡
(The $60,000 Question)
𝐸 𝛾1 = 𝛽1
?
(The Truth)
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
(What we can actually estimate)
𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡
(The $60,000 Question)
𝐸 𝛾1 ≠ 𝛽1
Uh Oh
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
Time
(t)
t=0 t=1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
Time
(t)
t=0 t=1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
Time
(t)
t=0 t=1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
𝑌𝑖1 − 𝑌𝑖0
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽0 − 𝛽0
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 0
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + 𝛽3 ∙ 𝜇𝑖 − 𝜇𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + 𝛽3 ∙ 0
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝜇𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝜇𝑖
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝜇𝑖
𝑌𝑖𝑡
0
= 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
0
= 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝛽00 ∙ 𝑡
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝜇𝑖
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
Time
(t)
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
Time
(t)
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
Time
(t)
t=1 t=2 ∙∙∙∙∙∙∙ t=T-1 t=T
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖
𝑌𝑖 =
𝑡=1
𝑇
𝑌𝑖𝑡
𝑇
𝑌𝑖𝑡=
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖
𝑌𝑖 =
𝑡=1
𝑇
𝑌𝑖
𝑇
𝑌𝑖𝑡= 0
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑃𝑖𝑡 = 𝑃𝑖𝑡 − 𝑃𝑖
𝑃𝑖 =
𝑡=1
𝑇
𝑃𝑖
𝑇
𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑥𝑖𝑡 = 𝑥𝑖𝑡 − 𝑥𝑖
𝑥𝑖 =
𝑡=1
𝑇
𝑥𝑖
𝑇
𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝜇𝑖𝑡 = 𝜇𝑖 − 𝜇𝑖 = 𝜇𝑖 − 𝜇𝑖 = 0
𝜇𝑖 =
𝑡=1
𝑇
𝜇𝑖
𝑇
= 𝜇𝑖
𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 0
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝜀𝑖𝑡 = 𝜀𝑖𝑡 − 𝜀𝑖
𝜀𝑖 =
𝑡=1
𝑇
𝜀𝑖
𝑇
𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙
𝑖=1
𝑁
𝑑𝑖 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
= 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙
𝑗=1
𝑁
𝑑𝑗 ∙ 𝜇 𝑗 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡
= 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 +
𝑗=1
𝑁
𝛽3 ∙ 𝑑𝑗 ∙ 𝜇 𝑗 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 +
𝑗=1
𝑁
𝑑𝑗 ∙ 𝛽3∙ 𝜇 𝑗 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 +
𝑗=1
𝑁
𝑑𝑗 ∙ 𝜑𝑗 + 𝜀𝑖𝑡
where 𝜑𝑗 = 𝛽3 ∙ 𝜇 𝑗
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 +
𝑗=1
𝑁−1
𝑑𝑗 ∙ 𝜑𝑗 + 𝜀𝑖𝑡
where 𝜑𝑗 = 𝛽3 ∙ 𝜇 𝑗
Big Caveats/Limitations/Drawbacks
1.Loss of information
2.Makes measurement error bias worse
3.Very limited options for limited dependent
variables
4.Rooted in a weird kind of paradox
Big Caveats/Limitations/Drawbacks
1.Loss of information
2.Makes measurement error bias worse
3.Very limited options for limited dependent
variables
4.Rooted in a weird kind of paradox
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
(1)
(2)
Big Caveats/Limitations/Drawbacks
1.Loss of information
2.Makes measurement error bias worse
3.Very limited options for limited dependent
variables
4.Rooted in a weird kind of paradox
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1
where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1
𝐸 𝛾1 ≠ 𝛽1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1
where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1
𝐸 𝛾1 ≠ 𝛽1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1
where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1
𝐸 𝛾1 ≠ 𝛽1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1
where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1
𝐸 𝛾1 < 𝛽1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1
where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1
𝐸 𝛾1 < 𝛽1
𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1
𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
𝑃𝑖
∆𝑃𝑖
t=2000 t=2002
True age 35 37
Measured age 33 39
Error -2 +2
Error
𝐓𝐫𝐮𝐞 𝐚𝐠𝐞
.0571 .054
Age2002-Age2000
True age difference 2
Measured age
difference
6
Error 4
Error
𝐓𝐫𝐮𝐞 difference
1.5
Big Caveats/Limitations/Drawbacks
1.Loss of information
2.Makes measurement error bias worse
3.Very limited options for limited dependent
variables
4.Rooted in a weird kind of paradox
Big Caveats/Limitations/Drawbacks
1.Loss of information
2.Makes measurement error bias worse
3.Very limited options for limited dependent
variables
4.Rooted in a weird kind of paradox
Difference-in-Differences
time
(t)
time
(t)t=0
Village 1 Village 2
t=0
time
(t)t=0
Village 1 Village 2
t=0
time
(t)t=0
Village 1 Village 2
t=0
time
(t)t=0
P=0 P=1
Village 1 Village 2
Village 1 Village 2
t=0
t=1
time
(t)t=0 t=1
Village 1 Village 2
Village 1 Village 2
t=0
t=1
time
(t)t=0 t=1
Village 1 Village 2
Village 1 Village 2
t=0
t=1
time
(t)t=0 t=1
P=0 P=1
Village 1 Village 2
Village 1 Village 2
t=0
t=1
time
(t)t=0 t=1
P=0 P=1
Y
t
Y
tt=0 t=1
Y
tt=0 t=1
E(Y|P=0,t=0)
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
A
A=E(Y|P=0,t=1)-E(Y|P=0,t=0)
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
E(Y|P=1,t=0)
A
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
E(Y|P=1,t=0)
E(Y|P=1,t=1)
A
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
E(Y|P=1,t=0)
E(Y|P=1,t=1)
B
A
B=E(Y|P=1,t=1)-E(Y|P=1,t=0)
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
E(Y|P=1,t=0)
E(Y|P=1,t=1)
B
A
A
B-A=E(Y|P=1,t=1)-E(Y|P=1,t=0)-(E(Y|P=0,t=1)-E(Y|P=0,t=0))
𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡
𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡
Controls for
fixed (ie underlying,
not time-varying)
differences between
program participants
and
non-participants
Y
tt=0 t=1
E(Y|P=0,t=0)
E(Y|P=0,t=1)
E(Y|P=1,t=0)
E(Y|P=1,t=1)
B
A
A
B-A=E(Y|P=1,t=1)-E(Y|P=1,t=0)-(E(Y|P=0,t=1)-E(Y|P=0,t=0))
𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡
Controls for
fixed (ie underlying,
not time-varying)
differences between
program participants
and
non-participants
Controls for
underlying time trend
common to
program participants
and
non-participants
𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡
Controls for
fixed (ie underlying,
not time-varying)
differences between
program participants
and
non-participants
Controls for
underlying time trend
common to
program participants
and
non-participants
𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡
Controls for
fixed (ie underlying,
not time-varying)
differences between
program participants
and
non-participants
Controls for
underlying time trend
common to
program participants
and
non-participants
Program impact
𝑌𝑖𝑡
= 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
Controls for
other time-varying
characteristics
𝑌𝑖𝑡
= 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
𝑐𝑜𝑟𝑟 𝜖𝑖𝑡, 𝜖𝑖𝑡+𝑗 ≠ 0
Bertrand, Duflo and Mullainathan
Basic Experiment:
Take a dataset (current population survey) with labor
market outcomes (ln(earnings)) for many women-years
(900,000) and “make up” a fake program. Then try to
evaluate the impact of these fake programs with a DID
regression.
The Result:
The null hypothesis that the policy had no effect at the 5
percent level rejected a stunning 50-70 percent of the time,
depending on the econometric approach.
𝑌𝑖𝑡
= 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
The “group mean”
fixed effect
𝑌𝑖𝑡
= 𝜔0 + 𝜔1 ∙
𝑖=1
𝑁
𝑑𝑖 ∙ 𝜇𝑖
+𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡
+𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
Dummy variable individual
fixed effect
𝑌𝑖𝑡
= 𝜔0 +
𝑖=1
𝑁
𝑑𝑖 ∙ 𝜔1 ∙ 𝜇𝑖
+𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡
+𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
𝑌𝑖𝑡
= 𝜔0 +
𝑖=1
𝑁
𝑑𝑖 ∙ 𝜔1𝑖
+𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡
+𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
where 𝜔1𝑖 = 𝜔1 ∙ 𝜇𝑖
Conclusion
Links:
The manual:
http://www.measureevaluation.org/resources/publications/ms-
14-87-en
The webinar introducing the manual:
http://www.measureevaluation.org/resources/webinars/metho
ds-for-program-impact-evaluation
My email:
pmlance@email.unc.edu
MEASURE Evaluation is funded by the U.S. Agency
for International Development (USAID) under terms
of Cooperative Agreement AID-OAA-L-14-00004 and
implemented by the Carolina Population Center, University
of North Carolina at Chapel Hill in partnership with ICF
International, John Snow, Inc., Management Sciences for
Health, Palladium Group, and Tulane University. The views
expressed in this presentation do not necessarily reflect
the views of USAID or the United States government.
www.measureevaluation.org

More Related Content

PPTX
PPTX
Fundamentals of Program Impact Evaluation
PPTX
Probability and Statistics
PDF
2016 05-25- HPEDSB Making Math Contextual, Visual and Concrete
PPTX
Data Quality Review (DQR) Methods and Tools: Holistic, Country-Led Data Qual...
PPTX
Implementing the Population Registration System: Progress Towards a Data Revo...
PPTX
Digital Data Ethics: Harnessing without Hurting
PPTX
Monitoring and Evaluating Male Engagement in Family Planning Programs
Fundamentals of Program Impact Evaluation
Probability and Statistics
2016 05-25- HPEDSB Making Math Contextual, Visual and Concrete
Data Quality Review (DQR) Methods and Tools: Holistic, Country-Led Data Qual...
Implementing the Population Registration System: Progress Towards a Data Revo...
Digital Data Ethics: Harnessing without Hurting
Monitoring and Evaluating Male Engagement in Family Planning Programs

Viewers also liked (20)

PPTX
RHIS Curriculum: Standardizing Core Competencies and Training Materials
PPTX
Collecting the PEPFAR OVC MER Essential Survey Indicators: Frequently Asked Q...
PPTX
Gender and PMTCT/EMTCT Participation in Malawi and Uganda under Option B+
PPTX
Evaluation of the Impact of Malaria Control Interventions on All-Cause Mortal...
PPTX
Lessons Learned Collecting Most Significant Change Stories in an Impact Evalu...
PPTX
Assessing HIV Service: Use and Information Systems for Key Populations in Nam...
PPTX
Evaluations of Gender-Integrated Reproductive Health Interventions: A Review ...
PPTX
Malaria Intervention Assessment in Four States of Nigeria: An Innovative, Co...
PPTX
Addressing Complexity in the Impact Evaluation of the Cross-Border Health Int...
PPTX
Developing Measures of Women’s Reproductive Empowerment in Sub-Saharan Afric...
PPTX
Evaluations of Structural Interventions for HIV Prevention
PPTX
Flexibility in Study Design: Impact Evaluation in Ukraine
PPTX
Using Routine Data to Improve ART Retention: Examples and Lessons Learned fro...
DOC
Excel Vba Basic Tutorial 1
PDF
Hit 101 3 excel pivot tables - slides
PPT
Applications for Measuring Maternal Mortality: Three Case Studies Using Verba...
PDF
Using data to save the lives of mothers and newborns
PPTX
A Model Using Household-Income and Household-Consumption Data to Estimate the...
PPTX
Disability weights measurement in the Global Burden of Disease Study 2010
PPT
Monitoring and Evaluation Workshops: An approach to improve malaria informati...
RHIS Curriculum: Standardizing Core Competencies and Training Materials
Collecting the PEPFAR OVC MER Essential Survey Indicators: Frequently Asked Q...
Gender and PMTCT/EMTCT Participation in Malawi and Uganda under Option B+
Evaluation of the Impact of Malaria Control Interventions on All-Cause Mortal...
Lessons Learned Collecting Most Significant Change Stories in an Impact Evalu...
Assessing HIV Service: Use and Information Systems for Key Populations in Nam...
Evaluations of Gender-Integrated Reproductive Health Interventions: A Review ...
Malaria Intervention Assessment in Four States of Nigeria: An Innovative, Co...
Addressing Complexity in the Impact Evaluation of the Cross-Border Health Int...
Developing Measures of Women’s Reproductive Empowerment in Sub-Saharan Afric...
Evaluations of Structural Interventions for HIV Prevention
Flexibility in Study Design: Impact Evaluation in Ukraine
Using Routine Data to Improve ART Retention: Examples and Lessons Learned fro...
Excel Vba Basic Tutorial 1
Hit 101 3 excel pivot tables - slides
Applications for Measuring Maternal Mortality: Three Case Studies Using Verba...
Using data to save the lives of mothers and newborns
A Model Using Household-Income and Household-Consumption Data to Estimate the...
Disability weights measurement in the Global Burden of Disease Study 2010
Monitoring and Evaluation Workshops: An approach to improve malaria informati...
Ad

Similar to Within Models (20)

PPTX
PDF
Two variable linear model
PDF
Curve fitting
PDF
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
PDF
Intro to Approximate Bayesian Computation (ABC)
PDF
MUMS Opening Workshop - Model Uncertainty and Uncertain Quantification - Merl...
PDF
Bayesian Inference: An Introduction to Principles and ...
PDF
Slides2 130201091056-phpapp01
PDF
Bayesian case studies, practical 2
PDF
from model uncertainty to ABC
PDF
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
PDF
CDT 22 slides.pdf
PDF
Asymptotic properties of bayes factor in one way repeated measurements model
PDF
Asymptotic properties of bayes factor in one way repeated measurements model
PDF
NCE, GANs & VAEs (and maybe BAC)
PDF
Presentation
PDF
1 - Linear Regression
PDF
Asymptotics of ABC, lecture, Collège de France
PDF
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Two variable linear model
Curve fitting
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Intro to Approximate Bayesian Computation (ABC)
MUMS Opening Workshop - Model Uncertainty and Uncertain Quantification - Merl...
Bayesian Inference: An Introduction to Principles and ...
Slides2 130201091056-phpapp01
Bayesian case studies, practical 2
from model uncertainty to ABC
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
CDT 22 slides.pdf
Asymptotic properties of bayes factor in one way repeated measurements model
Asymptotic properties of bayes factor in one way repeated measurements model
NCE, GANs & VAEs (and maybe BAC)
Presentation
1 - Linear Regression
Asymptotics of ABC, lecture, Collège de France
Scientific Computing with Python Webinar 9/18/2009:Curve Fitting
Ad

More from removed_62798267384a091db5c693ad7f1cc5ac (20)

PDF
Managing missing values in routinely reported data: One approach from the Dem...
PPTX
Use of Routine Data for Economic Evaluations
PPTX
Routine data use in evaluation: practical guidance
PPTX
Tuberculosis/HIV Mobility Study: Objectives and Background
PPTX
How to improve the capabilities of health information systems to address emer...
PPTX
LCI Evaluation Uganda Organizational Network Analysis
PPTX
Using Organizational Network Analysis to Plan and Evaluate Global Health Prog...
PPTX
Understanding Referral Networks for Adolescent Girls and Young Women
PDF
Data for Impact: Lessons Learned in Using the Ripple Effects Mapping Method
PPTX
Local Capacity Initiative (LCI) Evaluation
PPTX
Development and Validation of a Reproductive Empowerment Scale
PPTX
Sustaining the Impact: MEASURE Evaluation Conversation on Maternal and Child ...
PPTX
Using Most Significant Change in a Mixed-Methods Evaluation in Uganda
PPTX
Lessons Learned In Using the Most Significant Change Technique in Evaluation
PDF
Malaria Data Quality and Use in Selected Centers of Excellence in Madagascar:...
PDF
Evaluating National Malaria Programs’ Impact in Moderate- and Low-Transmissio...
PDF
Improved Performance of the Malaria Surveillance, Monitoring, and Evaluation ...
PPTX
Lessons learned in using process tracing for evaluation
PPTX
Use of Qualitative Comparative Analysis in the Assessment of the Actionable D...
PPTX
Sustaining the Impact: MEASURE Evaluation Conversation on Health Informatics
Managing missing values in routinely reported data: One approach from the Dem...
Use of Routine Data for Economic Evaluations
Routine data use in evaluation: practical guidance
Tuberculosis/HIV Mobility Study: Objectives and Background
How to improve the capabilities of health information systems to address emer...
LCI Evaluation Uganda Organizational Network Analysis
Using Organizational Network Analysis to Plan and Evaluate Global Health Prog...
Understanding Referral Networks for Adolescent Girls and Young Women
Data for Impact: Lessons Learned in Using the Ripple Effects Mapping Method
Local Capacity Initiative (LCI) Evaluation
Development and Validation of a Reproductive Empowerment Scale
Sustaining the Impact: MEASURE Evaluation Conversation on Maternal and Child ...
Using Most Significant Change in a Mixed-Methods Evaluation in Uganda
Lessons Learned In Using the Most Significant Change Technique in Evaluation
Malaria Data Quality and Use in Selected Centers of Excellence in Madagascar:...
Evaluating National Malaria Programs’ Impact in Moderate- and Low-Transmissio...
Improved Performance of the Malaria Surveillance, Monitoring, and Evaluation ...
Lessons learned in using process tracing for evaluation
Use of Qualitative Comparative Analysis in the Assessment of the Actionable D...
Sustaining the Impact: MEASURE Evaluation Conversation on Health Informatics

Recently uploaded (20)

DOC
Adobe Premiere Pro CC Crack With Serial Key Full Free Download 2025
PPTX
ca esophagus molecula biology detailaed molecular biology of tumors of esophagus
PPTX
Important Obstetric Emergency that must be recognised
PPTX
post stroke aphasia rehabilitation physician
PPTX
CME 2 Acute Chest Pain preentation for education
PPT
Copy-Histopathology Practical by CMDA ESUTH CHAPTER(0) - Copy.ppt
PDF
Human Health And Disease hggyutgghg .pdf
PPT
MENTAL HEALTH - NOTES.ppt for nursing students
PDF
Handout_ NURS 220 Topic 10-Abnormal Pregnancy.pdf
PPTX
SKIN Anatomy and physiology and associated diseases
PPTX
anal canal anatomy with illustrations...
PPT
Breast Cancer management for medicsl student.ppt
PDF
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
PPT
genitourinary-cancers_1.ppt Nursing care of clients with GU cancer
PPTX
LUNG ABSCESS - respiratory medicine - ppt
PPTX
Transforming Regulatory Affairs with ChatGPT-5.pptx
PPT
Obstructive sleep apnea in orthodontics treatment
PPTX
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
PPTX
Neuropathic pain.ppt treatment managment
PDF
NEET PG 2025 | 200 High-Yield Recall Topics Across All Subjects
Adobe Premiere Pro CC Crack With Serial Key Full Free Download 2025
ca esophagus molecula biology detailaed molecular biology of tumors of esophagus
Important Obstetric Emergency that must be recognised
post stroke aphasia rehabilitation physician
CME 2 Acute Chest Pain preentation for education
Copy-Histopathology Practical by CMDA ESUTH CHAPTER(0) - Copy.ppt
Human Health And Disease hggyutgghg .pdf
MENTAL HEALTH - NOTES.ppt for nursing students
Handout_ NURS 220 Topic 10-Abnormal Pregnancy.pdf
SKIN Anatomy and physiology and associated diseases
anal canal anatomy with illustrations...
Breast Cancer management for medicsl student.ppt
Therapeutic Potential of Citrus Flavonoids in Metabolic Inflammation and Ins...
genitourinary-cancers_1.ppt Nursing care of clients with GU cancer
LUNG ABSCESS - respiratory medicine - ppt
Transforming Regulatory Affairs with ChatGPT-5.pptx
Obstructive sleep apnea in orthodontics treatment
15.MENINGITIS AND ENCEPHALITIS-elias.pptx
Neuropathic pain.ppt treatment managment
NEET PG 2025 | 200 High-Yield Recall Topics Across All Subjects

Within Models

  • 1. Peter M. Lance, PhD MEASURE Evaluation University of North Carolina at Chapel Hill December 15, 2016 Within Models
  • 2. Global, five-year, $180M cooperative agreement Strategic objective: To strengthen health information systems – the capacity to gather, interpret, and use data – so countries can make better decisions and sustain good health outcomes over time. Project overview
  • 3. Improved country capacity to manage health information systems, resources, and staff Strengthened collection, analysis, and use of routine health data Methods, tools, and approaches improved and applied to address health information challenges and gaps Increased capacity for rigorous evaluation Phase IV Results Framework
  • 4. Global footprint (more than 25 countries)
  • 5. • The program impact evaluation challenge • Randomization • Selection on observables • Within estimators • Instrumental variables
  • 6. • The program impact evaluation challenge • Randomization • Selection on observables • Within estimators • Instrumental variables
  • 9. 𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀 𝑌1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
  • 10. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 11. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀 − 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 13. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 14. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀 + 1 − 𝑃 ∙ 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
  • 15. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
  • 16. Cost of Participation 𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
  • 17. Cost of Participation 𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
  • 18. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
  • 19. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
  • 20. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
  • 21. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
  • 23. Benefit-Cost>0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0 𝜀
  • 24. Benefit-Cost>0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0 𝜀
  • 25. Benefit-Cost>0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0 𝜀
  • 26. P and 𝜺 are independent
  • 27. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 28. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 29. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 30. 𝐸( 𝜏1) = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 31. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝛽2 ∙ 𝑥𝑖 + 𝜀𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 32. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 33. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 34. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 35. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 36. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 37. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 38. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 39. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝛾1 𝑖=1 𝑛 𝑥 𝑖=1 𝑛 𝑥 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 40. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 41. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 42. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
  • 43. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y
  • 44. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y The actual causal effect of the omitted variable X on Y
  • 45. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y Th”Effect” of P on x: 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖 The actual causal effect of the omitted variable X on Y
  • 46. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 47. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 48. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 49. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 50. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 𝑬 𝝉 𝟏 ≠ 𝜷
  • 51. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y Th”Effect” of P on x: 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖 The actual causal effect of the omitted variable X on Y
  • 52. X Y P
  • 53. X Y P
  • 54. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 56. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜏2 ∙ 𝑥 + 𝜖 Error term now contains: 𝜇
  • 57. Cost of articipation 𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥 + 𝜌2 ∙ 𝜇
  • 58. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 + 𝜌2 ∙ 𝜇 > 0
  • 61. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜏2 ∙ 𝑥 + 𝜖 Error term now contains: 𝜇
  • 68. (John) (Ben) 𝑃 = 1 𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛 1 𝑊𝑒𝑎𝑙𝑡ℎ𝑦 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑃 = 0 𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛 0 𝑃𝑜𝑜𝑟 𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑
  • 70. (John) (Ben) 𝑃 = 1 𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛 1 𝑊𝑒𝑎𝑙𝑡ℎ𝑦 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑃 = 0 𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛 0 𝑃𝑜𝑜𝑟 𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏
  • 71. (John) (Ben) 𝑃 = 1 𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛 1 𝑊𝑒𝑎𝑙𝑡ℎ𝑦 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑃 = 0 𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛 0 𝑃𝑜𝑜𝑟 𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏
  • 72. (John) (Ben) 𝑃 = 1 𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛 1 𝑊𝑒𝑎𝑙𝑡ℎ𝑦 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑃 = 0 𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛 0 𝑃𝑜𝑜𝑟 𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏 ?
  • 73. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥 + 𝛽3 ∙ 𝜇
  • 74. (John) (Ben) 𝑃 = 1 𝑌𝐵𝑒𝑛 = 𝑌𝐵𝑒𝑛 1 𝑊𝑒𝑎𝑙𝑡ℎ𝑦 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑃 = 0 𝑌𝐽𝑜ℎ𝑛 = 𝑌𝐽𝑜ℎ𝑛 0 𝑃𝑜𝑜𝑟 𝑈𝑛 − 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝒀 𝑩𝒆𝒏 − 𝒀 𝑱𝒐𝒉𝒏 ?
  • 75. t
  • 76. P t
  • 82. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑡 = 1 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 𝑡 = 0
  • 83. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑡 = 1 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 𝑡 = 0
  • 85. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,1 − 𝑃𝐵𝑒𝑛,0
  • 86. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 ∆𝑃𝐵𝑒𝑛
  • 87. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 ∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛
  • 88. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 ∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛𝜇 𝐵𝑒𝑛 − 𝜇 𝐵𝑒𝑛
  • 89. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 ∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛0
  • 90. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 ∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛0
  • 91. 𝑃𝐵𝑒𝑛,1 𝑌𝐵𝑒𝑛,1𝜇 𝐵𝑒𝑛 𝑃𝐵𝑒𝑛,0 𝑌𝐵𝑒𝑛,0𝜇 𝐵𝑒𝑛 ∆𝑃𝐵𝑒𝑛 ∆𝑌𝐵𝑒𝑛0
  • 93. Later folks!!! It was awesome!! I…deeply regret my role in this webinar
  • 95. 𝑌𝑖𝑡 0 = 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
  • 96. 𝑌𝑖𝑡 1 − 𝑌𝑖𝑡 0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 97. 𝑌𝑖𝑡 1 − 𝑌𝑖𝑡 0 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 − 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 98. 𝑌𝑖𝑡 1 − 𝑌𝑖𝑡 0 = 𝛽1 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 99. 𝑌𝑖𝑡 = 𝑃𝑖𝑡 ∙ 𝑌𝑖𝑡 1 + 1 − 𝑃𝑖𝑡 ∙ 𝑌𝑖𝑡 0 = 𝑃𝑖𝑡 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 + 1 − 𝑃𝑖𝑡 ∙ 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 100. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
  • 101. Cost of Participation 𝐶𝑖𝑡 = 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖
  • 102. Benefitit-Costit>0 𝑌𝑖𝑡 1 − 𝑌𝑖𝑡 0 − 𝐶𝑖𝑡 > 0 𝛽1 − 𝐶𝑖𝑡 > 0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖 > 0
  • 103. Benefitit-Costit>0 𝑌𝑖𝑡 1 − 𝑌𝑖𝑡 0 − 𝐶𝑖𝑡 > 0 𝛽1 − 𝐶𝑖𝑡 > 0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖 > 0
  • 104. Benefitit-Costit>0 𝑌𝑖𝑡 1 − 𝑌𝑖𝑡 0 − 𝐶𝑖𝑡 > 0 𝛽1 − 𝐶𝑖𝑡 > 0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥𝑖𝑡 + 𝜌2 ∙ 𝜇𝑖 > 0
  • 108. (The Truth) 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 (What we can actually estimate) 𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡 (The $60,000 Question) 𝐸 𝛾1 = 𝛽1 ?
  • 109. (The Truth) 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 (What we can actually estimate) 𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡 (The $60,000 Question) 𝐸 𝛾1 = 𝛽1 ?
  • 110. (The Truth) 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 (What we can actually estimate) 𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡 (The $60,000 Question) 𝐸 𝛾1 = 𝛽1 ?
  • 111. (The Truth) 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 (What we can actually estimate) 𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡 (The $60,000 Question) 𝐸 𝛾1 = 𝛽1 ?
  • 112. (The Truth) 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 (What we can actually estimate) 𝑌𝑖𝑡 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖𝑡 + 𝛾2 ∙ 𝑥𝑖𝑡 + 𝜖𝑖𝑡 (The $60,000 Question) 𝐸 𝛾1 ≠ 𝛽1
  • 113. Uh Oh
  • 114. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 Time (t) t=0 t=1
  • 115. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 Time (t) t=0 t=1
  • 116. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 Time (t) t=0 t=1
  • 117. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0
  • 118. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 𝑌𝑖1 − 𝑌𝑖0
  • 119. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖
  • 120. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽0 − 𝛽0
  • 121. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 0
  • 122. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖
  • 123. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖
  • 124. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + 𝛽3 ∙ 𝜇𝑖 − 𝜇𝑖
  • 125. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + 𝛽3 ∙ 0
  • 126. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
  • 127. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖
  • 128. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 𝜇𝑖
  • 129. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 𝜇𝑖
  • 130. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 𝜇𝑖
  • 131. 𝑌𝑖𝑡 0 = 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
  • 132. 𝑌𝑖𝑡 0 = 𝛽0 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝛽00 ∙ 𝑡
  • 133. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 𝜇𝑖
  • 134. ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 Time (t)
  • 135. ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 Time (t)
  • 136. ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 Time (t) t=1 t=2 ∙∙∙∙∙∙∙ t=T-1 t=T
  • 137. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
  • 138. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖 𝑌𝑖 = 𝑡=1 𝑇 𝑌𝑖𝑡 𝑇 𝑌𝑖𝑡=
  • 139. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌𝑖 𝑌𝑖 = 𝑡=1 𝑇 𝑌𝑖 𝑇 𝑌𝑖𝑡= 0
  • 140. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑃𝑖𝑡 = 𝑃𝑖𝑡 − 𝑃𝑖 𝑃𝑖 = 𝑡=1 𝑇 𝑃𝑖 𝑇 𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡
  • 141. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑥𝑖𝑡 = 𝑥𝑖𝑡 − 𝑥𝑖 𝑥𝑖 = 𝑡=1 𝑇 𝑥𝑖 𝑇 𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡
  • 142. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝜇𝑖𝑡 = 𝜇𝑖 − 𝜇𝑖 = 𝜇𝑖 − 𝜇𝑖 = 0 𝜇𝑖 = 𝑡=1 𝑇 𝜇𝑖 𝑇 = 𝜇𝑖 𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 0
  • 143. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝜀𝑖𝑡 = 𝜀𝑖𝑡 − 𝜀𝑖 𝜀𝑖 = 𝑡=1 𝑇 𝜀𝑖 𝑇 𝑌𝑖𝑡= 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝜀𝑖𝑡
  • 144. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝑖=1 𝑁 𝑑𝑖 ∙ 𝜇𝑖 + 𝜀𝑖𝑡
  • 145. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝑗=1 𝑁 𝑑𝑗 ∙ 𝜇 𝑗 + 𝜀𝑖𝑡
  • 146. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝑗=1 𝑁 𝛽3 ∙ 𝑑𝑗 ∙ 𝜇 𝑗 + 𝜀𝑖𝑡
  • 147. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝑗=1 𝑁 𝑑𝑗 ∙ 𝛽3∙ 𝜇 𝑗 + 𝜀𝑖𝑡
  • 148. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝑗=1 𝑁 𝑑𝑗 ∙ 𝜑𝑗 + 𝜀𝑖𝑡 where 𝜑𝑗 = 𝛽3 ∙ 𝜇 𝑗
  • 149. 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖𝑡 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖𝑡 + 𝛽2 ∙ 𝑥𝑖𝑡 + 𝑗=1 𝑁−1 𝑑𝑗 ∙ 𝜑𝑗 + 𝜀𝑖𝑡 where 𝜑𝑗 = 𝛽3 ∙ 𝜇 𝑗
  • 150. Big Caveats/Limitations/Drawbacks 1.Loss of information 2.Makes measurement error bias worse 3.Very limited options for limited dependent variables 4.Rooted in a weird kind of paradox
  • 151. Big Caveats/Limitations/Drawbacks 1.Loss of information 2.Makes measurement error bias worse 3.Very limited options for limited dependent variables 4.Rooted in a weird kind of paradox
  • 152. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 (1) (2)
  • 153. Big Caveats/Limitations/Drawbacks 1.Loss of information 2.Makes measurement error bias worse 3.Very limited options for limited dependent variables 4.Rooted in a weird kind of paradox
  • 154. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1 where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1 𝐸 𝛾1 ≠ 𝛽1
  • 155. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1 where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1 𝐸 𝛾1 ≠ 𝛽1
  • 156. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1 where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1 𝐸 𝛾1 ≠ 𝛽1
  • 157. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1 where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1 𝐸 𝛾1 < 𝛽1
  • 158. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖1 = 𝛾0 + 𝛾1 ∙ 𝑃𝑖1 + 𝛾2 ∙ 𝑥𝑖1 + 𝛾3 ∙ 𝜇𝑖 + 𝜖𝑖1 where 𝑃𝑖1 = 𝑃𝑖1 + 𝜏𝑖1 𝐸 𝛾1 < 𝛽1
  • 159. 𝑌𝑖1 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖1 + 𝛽2 ∙ 𝑥𝑖1 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖1 𝑌𝑖0 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖0 + 𝛽2 ∙ 𝑥𝑖0 + 𝛽3 ∙ 𝜇𝑖 + 𝜀𝑖0 ∆𝑌𝑖 = 𝛽1 ∙ ∆𝑃𝑖 + 𝛽2 ∙ ∆𝑥𝑖 + ∆𝜀𝑖 𝑃𝑖 ∆𝑃𝑖
  • 160. t=2000 t=2002 True age 35 37 Measured age 33 39 Error -2 +2 Error 𝐓𝐫𝐮𝐞 𝐚𝐠𝐞 .0571 .054 Age2002-Age2000 True age difference 2 Measured age difference 6 Error 4 Error 𝐓𝐫𝐮𝐞 difference 1.5
  • 161. Big Caveats/Limitations/Drawbacks 1.Loss of information 2.Makes measurement error bias worse 3.Very limited options for limited dependent variables 4.Rooted in a weird kind of paradox
  • 162. Big Caveats/Limitations/Drawbacks 1.Loss of information 2.Makes measurement error bias worse 3.Very limited options for limited dependent variables 4.Rooted in a weird kind of paradox
  • 166. Village 1 Village 2 t=0 time (t)t=0
  • 167. Village 1 Village 2 t=0 time (t)t=0
  • 168. Village 1 Village 2 t=0 time (t)t=0 P=0 P=1
  • 169. Village 1 Village 2 Village 1 Village 2 t=0 t=1 time (t)t=0 t=1
  • 170. Village 1 Village 2 Village 1 Village 2 t=0 t=1 time (t)t=0 t=1
  • 171. Village 1 Village 2 Village 1 Village 2 t=0 t=1 time (t)t=0 t=1 P=0 P=1
  • 172. Village 1 Village 2 Village 1 Village 2 t=0 t=1 time (t)t=0 t=1 P=0 P=1
  • 173. Y t
  • 182. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡
  • 183. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡 Controls for fixed (ie underlying, not time-varying) differences between program participants and non-participants
  • 185. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡 Controls for fixed (ie underlying, not time-varying) differences between program participants and non-participants Controls for underlying time trend common to program participants and non-participants
  • 186. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡 Controls for fixed (ie underlying, not time-varying) differences between program participants and non-participants Controls for underlying time trend common to program participants and non-participants
  • 187. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜖𝑖𝑡 Controls for fixed (ie underlying, not time-varying) differences between program participants and non-participants Controls for underlying time trend common to program participants and non-participants Program impact
  • 188. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡 Controls for other time-varying characteristics
  • 189. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡 𝑐𝑜𝑟𝑟 𝜖𝑖𝑡, 𝜖𝑖𝑡+𝑗 ≠ 0
  • 190. Bertrand, Duflo and Mullainathan Basic Experiment: Take a dataset (current population survey) with labor market outcomes (ln(earnings)) for many women-years (900,000) and “make up” a fake program. Then try to evaluate the impact of these fake programs with a DID regression. The Result: The null hypothesis that the policy had no effect at the 5 percent level rejected a stunning 50-70 percent of the time, depending on the econometric approach.
  • 191. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑃𝑖 + 𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 + 𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡 The “group mean” fixed effect
  • 192. 𝑌𝑖𝑡 = 𝜔0 + 𝜔1 ∙ 𝑖=1 𝑁 𝑑𝑖 ∙ 𝜇𝑖 +𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 +𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡 Dummy variable individual fixed effect
  • 193. 𝑌𝑖𝑡 = 𝜔0 + 𝑖=1 𝑁 𝑑𝑖 ∙ 𝜔1 ∙ 𝜇𝑖 +𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 +𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡
  • 194. 𝑌𝑖𝑡 = 𝜔0 + 𝑖=1 𝑁 𝑑𝑖 ∙ 𝜔1𝑖 +𝜔2 ∙ 𝑡 + 𝜔3 ∙ 𝑃𝑖 ∙ 𝑡 +𝜔4 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡 where 𝜔1𝑖 = 𝜔1 ∙ 𝜇𝑖
  • 196. Links: The manual: http://www.measureevaluation.org/resources/publications/ms- 14-87-en The webinar introducing the manual: http://www.measureevaluation.org/resources/webinars/metho ds-for-program-impact-evaluation My email: pmlance@email.unc.edu
  • 197. MEASURE Evaluation is funded by the U.S. Agency for International Development (USAID) under terms of Cooperative Agreement AID-OAA-L-14-00004 and implemented by the Carolina Population Center, University of North Carolina at Chapel Hill in partnership with ICF International, John Snow, Inc., Management Sciences for Health, Palladium Group, and Tulane University. The views expressed in this presentation do not necessarily reflect the views of USAID or the United States government. www.measureevaluation.org