SlideShare a Scribd company logo
Comparison of Confidence and
Prediction Interval Approaches in
Nonlinear Mixed-Effects Models
Teja Turk
Adviser: Dr. Lukas Meier
ETH Zurich
Department of Mathematics
Seminar for Statistics
January–June 2015
Motivating example
Nonlinear regression
Concentration measurements on the individual level
Time since drug administration (hours)
Concentration(mg/L)
0
100
200
300
0 5 10 15
1
0 5 10 15
2
0 5 10 15
3
0 5 10 15
4
0
100
200
300
5 6 7 8
0
100
200
300
9 10 11 12
Teja Turk ETH Zurich (D-MATH, SfS) 1/14
Motivating example
Nonlinear regression
Concentration measurements on the individual level - pooled fit
Time since drug administration (hours)
Concentration(mg/L)
0
100
200
300
0 5 10 15
1
0 5 10 15
2
0 5 10 15
3
0 5 10 15
4
0
100
200
300
5 6 7 8
0
100
200
300
9 10 11 12
Teja Turk ETH Zurich (D-MATH, SfS) 1/14
Motivating example
Nonlinear regression
Concentration measurements on the individual level - separate fits
Time since drug administration (hours)
Concentration(mg/L)
0
100
200
300
0 5 10 15
1
0 5 10 15
2
0 5 10 15
3
0 5 10 15
4
0
100
200
300
5 6 7 8
0
100
200
300
9 10 11 12
Teja Turk ETH Zurich (D-MATH, SfS) 1/14
Motivating example
Nonlinear mixed-effects model
Concentration measurements on the individual level
Time since drug administration (hours)
Concentration(mg/L)
0
100
200
300
0 5 10 15
1
0 5 10 15
2
0 5 10 15
3
0 5 10 15
4
0
100
200
300
5 6 7 8
0
100
200
300
9 10 11 12
Teja Turk ETH Zurich (D-MATH, SfS) 2/14
Motivating example
Nonlinear mixed-effects model
Concentration measurements on the individual level - population curve
Time since drug administration (hours)
Concentration(mg/L)
0
100
200
300
0 5 10 15
1
0 5 10 15
2
0 5 10 15
3
0 5 10 15
4
0
100
200
300
5 6 7 8
0
100
200
300
9 10 11 12
Teja Turk ETH Zurich (D-MATH, SfS) 2/14
Motivating example
Nonlinear mixed-effects model
Concentration measurements on the individual level - individual curves
Time since drug administration (hours)
Concentration(mg/L)
0
100
200
300
0 5 10 15
1
0 5 10 15
2
0 5 10 15
3
0 5 10 15
4
0
100
200
300
5 6 7 8
0
100
200
300
9 10 11 12
Teja Turk ETH Zurich (D-MATH, SfS) 2/14
Nonlinear mixed-effects model
Definition (Single level NLME model)
yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni}
bi ∼ N (0, Ψ)
εij ∼ N 0, σ2



independent
Teja Turk ETH Zurich (D-MATH, SfS) 3/14
Nonlinear mixed-effects model
Definition (Single level NLME model)
yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni}
bi ∼ N (0, Ψ)
εij ∼ N 0, σ2



independent
• β: fixed effects
Teja Turk ETH Zurich (D-MATH, SfS) 3/14
Nonlinear mixed-effects model
Definition (Single level NLME model)
yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni}
bi ∼ N (0, Ψ)
εij ∼ N 0, σ2



independent
• β: fixed effects
• bi: random effects
Teja Turk ETH Zurich (D-MATH, SfS) 3/14
Nonlinear mixed-effects model
Definition (Single level NLME model)
yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni}
bi ∼ N (0, Ψ)
εij ∼ N 0, σ2



independent
• β: fixed effects
• bi: random effects
• Ψ: variance-covariance matrix of random effects
Teja Turk ETH Zurich (D-MATH, SfS) 3/14
Nonlinear mixed-effects model
Definition (Single level NLME model)
yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni}
bi ∼ N (0, Ψ)
εij ∼ N 0, σ2



independent
• β: fixed effects
• bi: random effects
• Ψ: variance-covariance matrix of random effects
• σ2: within-group variance
Teja Turk ETH Zurich (D-MATH, SfS) 3/14
Confidence and prediction intervals
• linear approximation
• iterative approach
Teja Turk ETH Zurich (D-MATH, SfS) 4/14
Confidence and prediction intervals
• linear approximation
• iterative approach
• Confidence intervals: the distributions of
β, Ψ, σ ?
Teja Turk ETH Zurich (D-MATH, SfS) 4/14
Confidence and prediction intervals
• linear approximation
• iterative approach
• Confidence intervals: the distributions of
β, Ψ, σ ?
• Prediction intervals: the distribution of
yk0 :=



f xk0; β, 0 if k unobserved
f xk0; β, bk if k observed
?
Teja Turk ETH Zurich (D-MATH, SfS) 4/14
Bootstrap
Teja Turk ETH Zurich (D-MATH, SfS) 5/14
Bootstrap
Parametric
bi
εij
Random effects:
Errors:
bi ∼N 0,Ψ
εij ∼N 0,σ2
y∗
ij = f xij ; β, b∗
i + ε∗
ij
Teja Turk ETH Zurich (D-MATH, SfS) 5/14
Bootstrap
Parametric
bi
εij
Random effects:
Errors:
bi ∼N 0,Ψ
εij ∼N 0,σ2
y∗
ij = f xij ; β, b∗
i + ε∗
ij
Nonparametric
bi
rij
BLUPs:
Residuals:
· · ·
· · ·
...
...
i
y∗
ij = f xij ; β, b∗
i + r∗
ij
Teja Turk ETH Zurich (D-MATH, SfS) 5/14
Bootstrap
Parametric
bi
εij
Random effects:
Errors:
bi ∼N 0,Ψ
εij ∼N 0,σ2
y∗
ij = f xij ; β, b∗
i + ε∗
ij
Nonparametric
bi
rij
BLUPs:
Residuals:
· · ·
· · ·
...
...
i
y∗
ij = f xij ; β, b∗
i + r∗
ij
Case
fi
rij
Fitted values:
Residuals:
y∗
ij = f ∗
ij + r∗
ij
Teja Turk ETH Zurich (D-MATH, SfS) 5/14
Confidence interval approaches
• Bootstrap:
basic 2λ − q∗
1− α
2
, 2λ − q∗
α
2
percentile q∗
α
2
, q∗
1− α
2
normal λ − e∗
+ σ∗
zα
2
, λ − e∗
+ σ∗
z1− α
2
Teja Turk ETH Zurich (D-MATH, SfS) 6/14
Confidence interval approaches
• Bootstrap:
basic 2λ − q∗
1− α
2
, 2λ − q∗
α
2
percentile q∗
α
2
, q∗
1− α
2
normal λ − e∗
+ σ∗
zα
2
, λ − e∗
+ σ∗
z1− α
2
• Non-bootstrap:
intervals
Teja Turk ETH Zurich (D-MATH, SfS) 6/14
Confidence interval approaches
• Bootstrap:
basic 2λ − q∗
1− α
2
, 2λ − q∗
α
2
percentile q∗
α
2
, q∗
1− α
2
normal λ − e∗
+ σ∗
zα
2
, λ − e∗
+ σ∗
z1− α
2
• Non-bootstrap:
intervals
Wald:
λ − λ
se λ
∼ tdf
Teja Turk ETH Zurich (D-MATH, SfS) 6/14
Confidence interval approaches
• Bootstrap:
basic 2λ − q∗
1− α
2
, 2λ − q∗
α
2
percentile q∗
α
2
, q∗
1− α
2
normal λ − e∗
+ σ∗
zα
2
, λ − e∗
+ σ∗
z1− α
2
• Non-bootstrap:
intervals
Wald:
λ − λ
se λ
∼ tdf
adjusted Wald:
λ − λ
se λ
∼ m + s · tdf
Teja Turk ETH Zurich (D-MATH, SfS) 6/14
SSweibull
1 random effect
0.5
0.6
0.7
0.8
0.9
1.0
CR
A
D
lrc
pwr
ΨA,A
σ
2 uncorrelated random effects
A
D
lrc
pwr
ΨA,A
Ψpwr,pwr
σ
2 correlated random effects
A
D
lrc
pwr
ΨA,A
ΨA,pwr
Ψpwr,pwr
σ
intervals Wald adjusted Wald
1 random effect
0.5
0.6
0.7
0.8
0.9
1.0
CR
A
D
lrc
pwr
ΨA,A
σ 2 uncorrelated random effects
A
D
lrc
pwr
ΨA,A
Ψpwr,pwr
σ
2 correlated random effects
A
D
lrc
pwr
ΨA,A
ΨA,pwr
Ψpwr,pwr
σ
parametric: basic
parametric: perc
parametric: norm
case: basic
case: perc
case: norm
nonparametric: basic
nonparametric: perc
nonparametric: norm
Teja Turk ETH Zurich (D-MATH, SfS) 7/14
Coverage rate averaged over parameters and models
(95%-CI)
CR averaged over random
intervals
Wald
adjusted Wald
parametric: basic
parametric: perc
parametric: norm
case: basic
case: perc
case: norm
nonparametric: basic
nonparametric: perc
nonparametric: norm
dissProf
logPKcomp
sigEmax
SSasymp
SSasympOff
SSasympOrig
SSbiexp
SSfol
SSfpl
SSgompertz
SSlogis
SSmicmen
SSweibull
fixed varcov sigma
Teja Turk ETH Zurich (D-MATH, SfS) 8/14
Coverage rate averaged over parameters and models
(95%-CI)
CR averaged over random
intervals
Wald
adjusted Wald
parametric: basic
parametric: perc
parametric: norm
case: basic
case: perc
case: norm
nonparametric: basic
nonparametric: perc
nonparametric: norm
dissProf
logPKcomp
sigEmax
SSasymp
SSasympOff
SSasympOrig
SSbiexp
SSfol
SSfpl
SSgompertz
SSlogis
SSmicmen
SSweibull
0.4 0.5 0.6 0.7 0.8 0.9 1.0
CR
CR aggregated over the models
fixed varcov sigma
Teja Turk ETH Zurich (D-MATH, SfS) 8/14
Coverage rate by method and parameter type (CI)
0.2
0.4
0.6
0.8
1.0
CR
intervals
0.2
0.4
0.6
0.8
1.0
CR
Wald
0.50 0.80 0.95
0.2
0.4
0.6
0.8
1.0
1 − α
CR
adjusted Wald
parametric: basic
parametric: perc
0.50 0.80 0.95
1 − α
parametric: norm
case: basic
case: perc
0.50 0.80 0.95
1 − α
case: norm
nonparametric: basic
nonparametric: perc
0.50 0.80 0.95
1 − α
nonparametric: norm
fixed varcov sigma
Teja Turk ETH Zurich (D-MATH, SfS) 9/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Bootstrap:
• linear approximation
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Bootstrap:
• linear approximation
• prediction error sample:
yk0−yk0−e∗
s∗ ∼ z
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Bootstrap:
• linear approximation
• prediction error sample:
yk0−yk0−e∗
s∗ ∼ z
Observed group
Var fk0 β, bk − fk0(β, bk)
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Bootstrap:
• linear approximation
• prediction error sample:
yk0−yk0−e∗
s∗ ∼ z
Observed group
Var fk0 β, bk − fk0(β, bk)
Non-bootstrap:
• the Delta method:
fk0 β, bk − fk0(β, bk )
• the FOCE method:
fk0(β, bk ) at β, bk
• the FO method:
fk0 β, bk , fk0(β, bk ) at (β, 0)
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Bootstrap:
• linear approximation
• prediction error sample:
yk0−yk0−e∗
s∗ ∼ z
Observed group
Var fk0 β, bk − fk0(β, bk)
Non-bootstrap:
• the Delta method:
fk0 β, bk − fk0(β, bk )
• the FOCE method:
fk0(β, bk ) at β, bk
• the FO method:
fk0 β, bk , fk0(β, bk ) at (β, 0)
Bootstrap:
• the Delta method
• the FOCE method
• the FO method
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
Prediction interval approaches
Unobserved group
Var fk0 β, 0 + Var[fk0(β, bk)]
Non-bootstrap:
• linear approximation:
fk0 β, 0 , fk0(β, bk ) at (β, 0)
• distribution-free approach:
empirical quantiles of the population level
residuals
Bootstrap:
• linear approximation
• prediction error sample:
yk0−yk0−e∗
s∗ ∼ z
Observed group
Var fk0 β, bk − fk0(β, bk)
Non-bootstrap:
• the Delta method:
fk0 β, bk − fk0(β, bk )
• the FOCE method:
fk0(β, bk ) at β, bk
• the FO method:
fk0 β, bk , fk0(β, bk ) at (β, 0)
Bootstrap:
• the Delta method
• the FOCE method
• the FO method
• prediction error sample
Teja Turk ETH Zurich (D-MATH, SfS) 10/14
SSasympOff: diag_2
0.80
0.85
0.90
0.95
1.00
1.05
1.10
CR
unobserved: nonboot
Lin. approximation Distr.-free
unobserved: boot
Lin. approximation Pred. error sample
16.67 50 66.67 105 120 150
0.80
0.85
0.90
0.95
1.00
1.05
1.10
CR
observed: nonboot
FOCE method
FO method
Delta method
16.67 50 66.67 105 120 150
observed: boot
Pred. error sample
FOCE method
FO method
Delta method
Teja Turk ETH Zurich (D-MATH, SfS) 11/14
Coverage rate averaged over parameters and models
(95%-PI)
CR averaged over random
Unobs.: nonBLA
Unobs.: nonBDF
Unobs.: BLA
Unobs.: BPES
Obs.: nonBFOCE
Obs.: nonBFO
Obs.: nonB∆
Obs.: BPES
Obs.: BFOCE
Obs.: BFO
Obs.: B∆
dissProf
logPKcomp
sigEmax
SSasymp
SSasympOff
SSasympOrig
SSbiexp
SSfol
SSfpl
SSgompertz
SSlogis
SSmicmen
SSweibull
interpolation extrapolation
Teja Turk ETH Zurich (D-MATH, SfS) 12/14
Coverage rate averaged over parameters and models
(95%-PI)
CR averaged over random
Unobs.: nonBLA
Unobs.: nonBDF
Unobs.: BLA
Unobs.: BPES
Obs.: nonBFOCE
Obs.: nonBFO
Obs.: nonB∆
Obs.: BPES
Obs.: BFOCE
Obs.: BFO
Obs.: B∆
dissProf
logPKcomp
sigEmax
SSasymp
SSasympOff
SSasympOrig
SSbiexp
SSfol
SSfpl
SSgompertz
SSlogis
SSmicmen
SSweibull
0.75 0.80 0.85 0.90 0.95 1.00
CR
CR aggregated over the models
interpolation extrapolation
Teja Turk ETH Zurich (D-MATH, SfS) 12/14
Coverage rate by method and parameter type (PI)
0.4
0.6
0.8
1.0
CR
Unobs.: nonBLA Unobs.: nonBDF Unobs.: BLA Unobs.: BPES
0.4
0.6
0.8
1.0
CR
Obs.: nonBFOCE Obs.: nonBFO Obs.: nonB∆
0.50 0.80 0.95
1 − α
Obs.: BPES
0.50 0.80 0.95
0.4
0.6
0.8
1.0
1 − α
CR
Obs.: BFOCE
0.50 0.80 0.95
1 − α
Obs.: BFO
0.50 0.80 0.95
1 − α
Obs.: B∆
interpolation extrapolation
Teja Turk ETH Zurich (D-MATH, SfS) 13/14
Conclusions
• differences in performance of CIs between the fixed effects,
the variance-covariance components and σ
Teja Turk ETH Zurich (D-MATH, SfS) 14/14
Conclusions
• differences in performance of CIs between the fixed effects,
the variance-covariance components and σ
• no significant differences in performance of PIs between the
interpolation and extrapolation covariate points
Teja Turk ETH Zurich (D-MATH, SfS) 14/14
Conclusions
• differences in performance of CIs between the fixed effects,
the variance-covariance components and σ
• no significant differences in performance of PIs between the
interpolation and extrapolation covariate points
• parametric bootstrap successfully used for both CIs and PIs
Teja Turk ETH Zurich (D-MATH, SfS) 14/14
Conclusions
• differences in performance of CIs between the fixed effects,
the variance-covariance components and σ
• no significant differences in performance of PIs between the
interpolation and extrapolation covariate points
• parametric bootstrap successfully used for both CIs and PIs
• CIs tend to be too narrow or shifted
Teja Turk ETH Zurich (D-MATH, SfS) 14/14
Conclusions
• differences in performance of CIs between the fixed effects,
the variance-covariance components and σ
• no significant differences in performance of PIs between the
interpolation and extrapolation covariate points
• parametric bootstrap successfully used for both CIs and PIs
• CIs tend to be too narrow or shifted
• PIs tend to be too wide
Teja Turk ETH Zurich (D-MATH, SfS) 14/14
Coverage rate averaged over parameters (95%-CI)
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
dissProf
logPKcomp
sigEmax
SSasymp
SSasympOff
SSasympOrig
SSbiexp
SSfol
SSfpl
SSgompertz
SSlogis
SSmicmen
SSweibull
intervals
Wald
adjusted Wald
parametric: basic
parametric: perc
parametric: norm
case: basic
case: perc
case: norm
nonparametric: basic
nonparametric: perc
nonparametric: norm
fixed varcov sigma
Teja Turk ETH Zurich (D-MATH, SfS)
Coverage rate averaged over subjects (95%-PI)
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_1
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
diag_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
symm_2
dissProf
logPKcomp
sigEmax
SSasymp
SSasympOff
SSasympOrig
SSbiexp
SSfol
SSfpl
SSgompertz
SSlogis
SSmicmen
SSweibull
Unobs.: nonBLA
Unobs.: nonBDF
Unobs.: BLA
Unobs.: BPES
Obs.: nonBFOCE
Obs.: nonBFO
Obs.: nonB∆
Obs.: BPES
Obs.: BFOCE
Obs.: BFO
Obs.: B∆
interpolation extrapolation
Teja Turk ETH Zurich (D-MATH, SfS)

More Related Content

PDF
Estimation of the score vector and observed information matrix in intractable...
PDF
Imprecision in learning: an overview
PDF
Estimation of the score vector and observed information matrix in intractable...
PDF
asymptotics of ABC
PPTX
5 8 к
PDF
Architecting Security across global networks
PDF
Coves delToll
PPTX
5 клас урок 8
Estimation of the score vector and observed information matrix in intractable...
Imprecision in learning: an overview
Estimation of the score vector and observed information matrix in intractable...
asymptotics of ABC
5 8 к
Architecting Security across global networks
Coves delToll
5 клас урок 8

Viewers also liked (6)

PPTX
C1 Topic 1 Language and Communication
PDF
Geografija 7-klas-bojko
PDF
BK 7210 Urban analysis and design principles – ir. Evelien Brandes
PDF
Geografija 6-klas-skuratovych
PPTX
Introduction to Web Architecture
PPTX
Principles of Teaching:Different Methods and Approaches
C1 Topic 1 Language and Communication
Geografija 7-klas-bojko
BK 7210 Urban analysis and design principles – ir. Evelien Brandes
Geografija 6-klas-skuratovych
Introduction to Web Architecture
Principles of Teaching:Different Methods and Approaches
Ad

Similar to Presentation (20)

PDF
Formulas statistics
PDF
Nonparametric testing for exogeneity with discrete regressors and instruments
PDF
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
PDF
the ABC of ABC
PPTX
PPT
comparison of two population means - chapter 8
PPT
comparison of two population means - chapter 8
PDF
Laplace's Demon: seminar #1
PDF
Incremental and Multi-feature Tensor Subspace Learning applied for Background...
PDF
Bayesian Hierarchical Models
PPTX
Lecture 11 Paired t test.pptx
PPT
Presentation lab meeting NRE
PDF
Estimation of the score vector and observed information matrix in intractable...
PPT
Ttestrrrrrrrrrrrrrr2dfsssssssssssss008.ppt
PPTX
Resampling methods
PDF
MUMS Opening Workshop - UQ Data Fusion: An Introduction and Case Study - Robe...
PPTX
ders 3.3 Unit root testing section 3 .pptx
DOC
Ch 4 Slides.doc655444444444444445678888776
PDF
Dr.Dinesh-BIOSTAT-Tests-of-significance-1-min.pdf
Formulas statistics
Nonparametric testing for exogeneity with discrete regressors and instruments
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
the ABC of ABC
comparison of two population means - chapter 8
comparison of two population means - chapter 8
Laplace's Demon: seminar #1
Incremental and Multi-feature Tensor Subspace Learning applied for Background...
Bayesian Hierarchical Models
Lecture 11 Paired t test.pptx
Presentation lab meeting NRE
Estimation of the score vector and observed information matrix in intractable...
Ttestrrrrrrrrrrrrrr2dfsssssssssssss008.ppt
Resampling methods
MUMS Opening Workshop - UQ Data Fusion: An Introduction and Case Study - Robe...
ders 3.3 Unit root testing section 3 .pptx
Ch 4 Slides.doc655444444444444445678888776
Dr.Dinesh-BIOSTAT-Tests-of-significance-1-min.pdf
Ad

Presentation

  • 1. Comparison of Confidence and Prediction Interval Approaches in Nonlinear Mixed-Effects Models Teja Turk Adviser: Dr. Lukas Meier ETH Zurich Department of Mathematics Seminar for Statistics January–June 2015
  • 2. Motivating example Nonlinear regression Concentration measurements on the individual level Time since drug administration (hours) Concentration(mg/L) 0 100 200 300 0 5 10 15 1 0 5 10 15 2 0 5 10 15 3 0 5 10 15 4 0 100 200 300 5 6 7 8 0 100 200 300 9 10 11 12 Teja Turk ETH Zurich (D-MATH, SfS) 1/14
  • 3. Motivating example Nonlinear regression Concentration measurements on the individual level - pooled fit Time since drug administration (hours) Concentration(mg/L) 0 100 200 300 0 5 10 15 1 0 5 10 15 2 0 5 10 15 3 0 5 10 15 4 0 100 200 300 5 6 7 8 0 100 200 300 9 10 11 12 Teja Turk ETH Zurich (D-MATH, SfS) 1/14
  • 4. Motivating example Nonlinear regression Concentration measurements on the individual level - separate fits Time since drug administration (hours) Concentration(mg/L) 0 100 200 300 0 5 10 15 1 0 5 10 15 2 0 5 10 15 3 0 5 10 15 4 0 100 200 300 5 6 7 8 0 100 200 300 9 10 11 12 Teja Turk ETH Zurich (D-MATH, SfS) 1/14
  • 5. Motivating example Nonlinear mixed-effects model Concentration measurements on the individual level Time since drug administration (hours) Concentration(mg/L) 0 100 200 300 0 5 10 15 1 0 5 10 15 2 0 5 10 15 3 0 5 10 15 4 0 100 200 300 5 6 7 8 0 100 200 300 9 10 11 12 Teja Turk ETH Zurich (D-MATH, SfS) 2/14
  • 6. Motivating example Nonlinear mixed-effects model Concentration measurements on the individual level - population curve Time since drug administration (hours) Concentration(mg/L) 0 100 200 300 0 5 10 15 1 0 5 10 15 2 0 5 10 15 3 0 5 10 15 4 0 100 200 300 5 6 7 8 0 100 200 300 9 10 11 12 Teja Turk ETH Zurich (D-MATH, SfS) 2/14
  • 7. Motivating example Nonlinear mixed-effects model Concentration measurements on the individual level - individual curves Time since drug administration (hours) Concentration(mg/L) 0 100 200 300 0 5 10 15 1 0 5 10 15 2 0 5 10 15 3 0 5 10 15 4 0 100 200 300 5 6 7 8 0 100 200 300 9 10 11 12 Teja Turk ETH Zurich (D-MATH, SfS) 2/14
  • 8. Nonlinear mixed-effects model Definition (Single level NLME model) yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni} bi ∼ N (0, Ψ) εij ∼ N 0, σ2    independent Teja Turk ETH Zurich (D-MATH, SfS) 3/14
  • 9. Nonlinear mixed-effects model Definition (Single level NLME model) yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni} bi ∼ N (0, Ψ) εij ∼ N 0, σ2    independent • β: fixed effects Teja Turk ETH Zurich (D-MATH, SfS) 3/14
  • 10. Nonlinear mixed-effects model Definition (Single level NLME model) yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni} bi ∼ N (0, Ψ) εij ∼ N 0, σ2    independent • β: fixed effects • bi: random effects Teja Turk ETH Zurich (D-MATH, SfS) 3/14
  • 11. Nonlinear mixed-effects model Definition (Single level NLME model) yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni} bi ∼ N (0, Ψ) εij ∼ N 0, σ2    independent • β: fixed effects • bi: random effects • Ψ: variance-covariance matrix of random effects Teja Turk ETH Zurich (D-MATH, SfS) 3/14
  • 12. Nonlinear mixed-effects model Definition (Single level NLME model) yij = f (xij; β, bi) + εij, i ∈ {1, . . . , M} , j ∈ {1, . . . , ni} bi ∼ N (0, Ψ) εij ∼ N 0, σ2    independent • β: fixed effects • bi: random effects • Ψ: variance-covariance matrix of random effects • σ2: within-group variance Teja Turk ETH Zurich (D-MATH, SfS) 3/14
  • 13. Confidence and prediction intervals • linear approximation • iterative approach Teja Turk ETH Zurich (D-MATH, SfS) 4/14
  • 14. Confidence and prediction intervals • linear approximation • iterative approach • Confidence intervals: the distributions of β, Ψ, σ ? Teja Turk ETH Zurich (D-MATH, SfS) 4/14
  • 15. Confidence and prediction intervals • linear approximation • iterative approach • Confidence intervals: the distributions of β, Ψ, σ ? • Prediction intervals: the distribution of yk0 :=    f xk0; β, 0 if k unobserved f xk0; β, bk if k observed ? Teja Turk ETH Zurich (D-MATH, SfS) 4/14
  • 16. Bootstrap Teja Turk ETH Zurich (D-MATH, SfS) 5/14
  • 17. Bootstrap Parametric bi εij Random effects: Errors: bi ∼N 0,Ψ εij ∼N 0,σ2 y∗ ij = f xij ; β, b∗ i + ε∗ ij Teja Turk ETH Zurich (D-MATH, SfS) 5/14
  • 18. Bootstrap Parametric bi εij Random effects: Errors: bi ∼N 0,Ψ εij ∼N 0,σ2 y∗ ij = f xij ; β, b∗ i + ε∗ ij Nonparametric bi rij BLUPs: Residuals: · · · · · · ... ... i y∗ ij = f xij ; β, b∗ i + r∗ ij Teja Turk ETH Zurich (D-MATH, SfS) 5/14
  • 19. Bootstrap Parametric bi εij Random effects: Errors: bi ∼N 0,Ψ εij ∼N 0,σ2 y∗ ij = f xij ; β, b∗ i + ε∗ ij Nonparametric bi rij BLUPs: Residuals: · · · · · · ... ... i y∗ ij = f xij ; β, b∗ i + r∗ ij Case fi rij Fitted values: Residuals: y∗ ij = f ∗ ij + r∗ ij Teja Turk ETH Zurich (D-MATH, SfS) 5/14
  • 20. Confidence interval approaches • Bootstrap: basic 2λ − q∗ 1− α 2 , 2λ − q∗ α 2 percentile q∗ α 2 , q∗ 1− α 2 normal λ − e∗ + σ∗ zα 2 , λ − e∗ + σ∗ z1− α 2 Teja Turk ETH Zurich (D-MATH, SfS) 6/14
  • 21. Confidence interval approaches • Bootstrap: basic 2λ − q∗ 1− α 2 , 2λ − q∗ α 2 percentile q∗ α 2 , q∗ 1− α 2 normal λ − e∗ + σ∗ zα 2 , λ − e∗ + σ∗ z1− α 2 • Non-bootstrap: intervals Teja Turk ETH Zurich (D-MATH, SfS) 6/14
  • 22. Confidence interval approaches • Bootstrap: basic 2λ − q∗ 1− α 2 , 2λ − q∗ α 2 percentile q∗ α 2 , q∗ 1− α 2 normal λ − e∗ + σ∗ zα 2 , λ − e∗ + σ∗ z1− α 2 • Non-bootstrap: intervals Wald: λ − λ se λ ∼ tdf Teja Turk ETH Zurich (D-MATH, SfS) 6/14
  • 23. Confidence interval approaches • Bootstrap: basic 2λ − q∗ 1− α 2 , 2λ − q∗ α 2 percentile q∗ α 2 , q∗ 1− α 2 normal λ − e∗ + σ∗ zα 2 , λ − e∗ + σ∗ z1− α 2 • Non-bootstrap: intervals Wald: λ − λ se λ ∼ tdf adjusted Wald: λ − λ se λ ∼ m + s · tdf Teja Turk ETH Zurich (D-MATH, SfS) 6/14
  • 24. SSweibull 1 random effect 0.5 0.6 0.7 0.8 0.9 1.0 CR A D lrc pwr ΨA,A σ 2 uncorrelated random effects A D lrc pwr ΨA,A Ψpwr,pwr σ 2 correlated random effects A D lrc pwr ΨA,A ΨA,pwr Ψpwr,pwr σ intervals Wald adjusted Wald 1 random effect 0.5 0.6 0.7 0.8 0.9 1.0 CR A D lrc pwr ΨA,A σ 2 uncorrelated random effects A D lrc pwr ΨA,A Ψpwr,pwr σ 2 correlated random effects A D lrc pwr ΨA,A ΨA,pwr Ψpwr,pwr σ parametric: basic parametric: perc parametric: norm case: basic case: perc case: norm nonparametric: basic nonparametric: perc nonparametric: norm Teja Turk ETH Zurich (D-MATH, SfS) 7/14
  • 25. Coverage rate averaged over parameters and models (95%-CI) CR averaged over random intervals Wald adjusted Wald parametric: basic parametric: perc parametric: norm case: basic case: perc case: norm nonparametric: basic nonparametric: perc nonparametric: norm dissProf logPKcomp sigEmax SSasymp SSasympOff SSasympOrig SSbiexp SSfol SSfpl SSgompertz SSlogis SSmicmen SSweibull fixed varcov sigma Teja Turk ETH Zurich (D-MATH, SfS) 8/14
  • 26. Coverage rate averaged over parameters and models (95%-CI) CR averaged over random intervals Wald adjusted Wald parametric: basic parametric: perc parametric: norm case: basic case: perc case: norm nonparametric: basic nonparametric: perc nonparametric: norm dissProf logPKcomp sigEmax SSasymp SSasympOff SSasympOrig SSbiexp SSfol SSfpl SSgompertz SSlogis SSmicmen SSweibull 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CR CR aggregated over the models fixed varcov sigma Teja Turk ETH Zurich (D-MATH, SfS) 8/14
  • 27. Coverage rate by method and parameter type (CI) 0.2 0.4 0.6 0.8 1.0 CR intervals 0.2 0.4 0.6 0.8 1.0 CR Wald 0.50 0.80 0.95 0.2 0.4 0.6 0.8 1.0 1 − α CR adjusted Wald parametric: basic parametric: perc 0.50 0.80 0.95 1 − α parametric: norm case: basic case: perc 0.50 0.80 0.95 1 − α case: norm nonparametric: basic nonparametric: perc 0.50 0.80 0.95 1 − α nonparametric: norm fixed varcov sigma Teja Turk ETH Zurich (D-MATH, SfS) 9/14
  • 28. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 29. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 30. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 31. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Bootstrap: • linear approximation Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 32. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Bootstrap: • linear approximation • prediction error sample: yk0−yk0−e∗ s∗ ∼ z Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 33. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Bootstrap: • linear approximation • prediction error sample: yk0−yk0−e∗ s∗ ∼ z Observed group Var fk0 β, bk − fk0(β, bk) Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 34. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Bootstrap: • linear approximation • prediction error sample: yk0−yk0−e∗ s∗ ∼ z Observed group Var fk0 β, bk − fk0(β, bk) Non-bootstrap: • the Delta method: fk0 β, bk − fk0(β, bk ) • the FOCE method: fk0(β, bk ) at β, bk • the FO method: fk0 β, bk , fk0(β, bk ) at (β, 0) Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 35. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Bootstrap: • linear approximation • prediction error sample: yk0−yk0−e∗ s∗ ∼ z Observed group Var fk0 β, bk − fk0(β, bk) Non-bootstrap: • the Delta method: fk0 β, bk − fk0(β, bk ) • the FOCE method: fk0(β, bk ) at β, bk • the FO method: fk0 β, bk , fk0(β, bk ) at (β, 0) Bootstrap: • the Delta method • the FOCE method • the FO method Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 36. Prediction interval approaches Unobserved group Var fk0 β, 0 + Var[fk0(β, bk)] Non-bootstrap: • linear approximation: fk0 β, 0 , fk0(β, bk ) at (β, 0) • distribution-free approach: empirical quantiles of the population level residuals Bootstrap: • linear approximation • prediction error sample: yk0−yk0−e∗ s∗ ∼ z Observed group Var fk0 β, bk − fk0(β, bk) Non-bootstrap: • the Delta method: fk0 β, bk − fk0(β, bk ) • the FOCE method: fk0(β, bk ) at β, bk • the FO method: fk0 β, bk , fk0(β, bk ) at (β, 0) Bootstrap: • the Delta method • the FOCE method • the FO method • prediction error sample Teja Turk ETH Zurich (D-MATH, SfS) 10/14
  • 37. SSasympOff: diag_2 0.80 0.85 0.90 0.95 1.00 1.05 1.10 CR unobserved: nonboot Lin. approximation Distr.-free unobserved: boot Lin. approximation Pred. error sample 16.67 50 66.67 105 120 150 0.80 0.85 0.90 0.95 1.00 1.05 1.10 CR observed: nonboot FOCE method FO method Delta method 16.67 50 66.67 105 120 150 observed: boot Pred. error sample FOCE method FO method Delta method Teja Turk ETH Zurich (D-MATH, SfS) 11/14
  • 38. Coverage rate averaged over parameters and models (95%-PI) CR averaged over random Unobs.: nonBLA Unobs.: nonBDF Unobs.: BLA Unobs.: BPES Obs.: nonBFOCE Obs.: nonBFO Obs.: nonB∆ Obs.: BPES Obs.: BFOCE Obs.: BFO Obs.: B∆ dissProf logPKcomp sigEmax SSasymp SSasympOff SSasympOrig SSbiexp SSfol SSfpl SSgompertz SSlogis SSmicmen SSweibull interpolation extrapolation Teja Turk ETH Zurich (D-MATH, SfS) 12/14
  • 39. Coverage rate averaged over parameters and models (95%-PI) CR averaged over random Unobs.: nonBLA Unobs.: nonBDF Unobs.: BLA Unobs.: BPES Obs.: nonBFOCE Obs.: nonBFO Obs.: nonB∆ Obs.: BPES Obs.: BFOCE Obs.: BFO Obs.: B∆ dissProf logPKcomp sigEmax SSasymp SSasympOff SSasympOrig SSbiexp SSfol SSfpl SSgompertz SSlogis SSmicmen SSweibull 0.75 0.80 0.85 0.90 0.95 1.00 CR CR aggregated over the models interpolation extrapolation Teja Turk ETH Zurich (D-MATH, SfS) 12/14
  • 40. Coverage rate by method and parameter type (PI) 0.4 0.6 0.8 1.0 CR Unobs.: nonBLA Unobs.: nonBDF Unobs.: BLA Unobs.: BPES 0.4 0.6 0.8 1.0 CR Obs.: nonBFOCE Obs.: nonBFO Obs.: nonB∆ 0.50 0.80 0.95 1 − α Obs.: BPES 0.50 0.80 0.95 0.4 0.6 0.8 1.0 1 − α CR Obs.: BFOCE 0.50 0.80 0.95 1 − α Obs.: BFO 0.50 0.80 0.95 1 − α Obs.: B∆ interpolation extrapolation Teja Turk ETH Zurich (D-MATH, SfS) 13/14
  • 41. Conclusions • differences in performance of CIs between the fixed effects, the variance-covariance components and σ Teja Turk ETH Zurich (D-MATH, SfS) 14/14
  • 42. Conclusions • differences in performance of CIs between the fixed effects, the variance-covariance components and σ • no significant differences in performance of PIs between the interpolation and extrapolation covariate points Teja Turk ETH Zurich (D-MATH, SfS) 14/14
  • 43. Conclusions • differences in performance of CIs between the fixed effects, the variance-covariance components and σ • no significant differences in performance of PIs between the interpolation and extrapolation covariate points • parametric bootstrap successfully used for both CIs and PIs Teja Turk ETH Zurich (D-MATH, SfS) 14/14
  • 44. Conclusions • differences in performance of CIs between the fixed effects, the variance-covariance components and σ • no significant differences in performance of PIs between the interpolation and extrapolation covariate points • parametric bootstrap successfully used for both CIs and PIs • CIs tend to be too narrow or shifted Teja Turk ETH Zurich (D-MATH, SfS) 14/14
  • 45. Conclusions • differences in performance of CIs between the fixed effects, the variance-covariance components and σ • no significant differences in performance of PIs between the interpolation and extrapolation covariate points • parametric bootstrap successfully used for both CIs and PIs • CIs tend to be too narrow or shifted • PIs tend to be too wide Teja Turk ETH Zurich (D-MATH, SfS) 14/14
  • 46. Coverage rate averaged over parameters (95%-CI) diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 dissProf logPKcomp sigEmax SSasymp SSasympOff SSasympOrig SSbiexp SSfol SSfpl SSgompertz SSlogis SSmicmen SSweibull intervals Wald adjusted Wald parametric: basic parametric: perc parametric: norm case: basic case: perc case: norm nonparametric: basic nonparametric: perc nonparametric: norm fixed varcov sigma Teja Turk ETH Zurich (D-MATH, SfS)
  • 47. Coverage rate averaged over subjects (95%-PI) diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_1 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 diag_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 symm_2 dissProf logPKcomp sigEmax SSasymp SSasympOff SSasympOrig SSbiexp SSfol SSfpl SSgompertz SSlogis SSmicmen SSweibull Unobs.: nonBLA Unobs.: nonBDF Unobs.: BLA Unobs.: BPES Obs.: nonBFOCE Obs.: nonBFO Obs.: nonB∆ Obs.: BPES Obs.: BFOCE Obs.: BFO Obs.: B∆ interpolation extrapolation Teja Turk ETH Zurich (D-MATH, SfS)