2. http://www.mathvn.com
ì32x - 2 y = 77
ï
25. í
x
y
ï3 - 2 = 7
î
ì2 x + 2 y = 12
26. í
îx + y = 5
x-y
ì x -y
2 - m 4 = m2 - m
ïm
27. í
víi m, n > 1.
x+y
x+y
ï 3
- n 6 = n2 - n
în
Bµi V: Gi¶i vµ biÖn luËn ph-¬ng tr×nh:
28. (m - 2).2 x + m.2 - x + m = 0 .
29. m.3x + m.3- x = 8
Bµi VI: T×m m ®Ó ph-¬ng tr×nh cã nghiÖm:
30. (m - 4).9 x - 2(m - 2).3x + m - 1 = 0
Bµi VII: Gi¶i c¸c bÊt ph-¬ng tr×nh sau:
31. 9
32. 2
x
6
x +2
<3
1
2x -1
³
1
3x +1
2
x2 - x
33. 1 < 5
< 25
2
34. (x - x + 1)x < 1
2
35. (x + 2x
36. (x 2 - 1)x
x -1
+ 3) x+1
2
+ 2x
<1
> x2 - 1
3
Bµi VIII: Gi¶i c¸c bÊt ph-¬ng tr×nh sau:
37. 3x + 9.3- x - 10 < 0
38. 5.4 x + 2.25x - 7.10 x £ 0
1
3 - 1 1 - 3x
40. 52 x + 5 < 5 x +1 + 5 x
41. 25.2 x - 10 x + 5x > 25
39.
1
x +1
³
42. 9 x - 3x+2 > 3x - 9
21-x + 1 - 2 x
43.
£0
2x - 1
Bµi IX: Cho bÊt ph-¬ng tr×nh: 4 x-1 - m.(2 x + 1) > 0
44. Gi¶i bÊt ph-¬ng tr×nh khi m=
16
.
9
2
3. http://www.mathvn.com
45. §Þnh m ®Ó bÊt ph-¬ng tr×nh tháa "x Î R .
Bµi X:
2
æ 1 öx
1
+2
æ 1 öx
è3ø
è3ø
46. Gi¶i bÊt ph-¬ng tr×nh: ç ÷ + 9. ç ÷
> 12
(*)
47. §Þnh m ®Ó mäi nghiÖm cña (*) ®Òu lµ nghiÖm cña bÊt ph-¬ng tr×nh:
2x 2 + ( m + 2 ) x + 2 - 3m < 0
Bµi XI: Gi¶i c¸c ph-¬ng tr×nh:
48. log5 x = log5 ( x + 6 ) - log5 ( x + 2 )
49. log5 x + log25 x = log 0,2 3
(
)
50. log x 2x 2 - 5x + 4 = 2
51. lg(x 2 + 2x - 3) + lg
52.
x+3
=0
x -1
1
.lg(5x - 4) + lg x + 1 = 2 + lg 0,18
2
Bµi XII: Gi¶i c¸c ph-¬ng tr×nh sau:
53.
1
2
+
=1
4 - lg x 2 + lg x
54. log 2 x + 10 log 2 x + 6 = 0
55.
log 0,04 x + 1 + log 0,2 x + 3 = 1
56. 3log x 16 - 4 log16 x = 2 log 2 x
57. log x2 16 + log2x 64 = 3
58. lg(lg x) + lg(lg x 3 - 2) = 0
Bµi XIII: Gi¶i c¸c ph-¬ng tr×nh sau:
æ
è
59. log3 ç log9 x +
(
(4
1
ö
+ 9 x ÷ = 2x
2
ø
)
(
+ 4 ) .log ( 4
)
60. log 2 4.3x - 6 - log 2 9 x - 6 = 1
61. log2
x +1
2
(
)
x
)
+ 1 = log
1
2
1
8
62. lg 6.5x + 25.20 x = x + lg25
(
63. 2 ( lg 2 - 1) + lg 5
(
)
x
) (
+ 1 = lg 51-
x
+5
)
64. x + lg 4 - 5x = x lg 2 + lg3
65. 5lg x = 50 - x lg5
3
4. http://www.mathvn.com
66. x - 1
log
2
lg2 x -lg x2
x
= x -1
3
log x
67. 3 3 + x 3 = 162
Bµi XIV: Gi¶i c¸c ph-¬ng tr×nh:
(
)
68. x + lg x 2 - x - 6 = 4 + lg ( x + 2 )
69. log3 ( x + 1) + log5 ( 2x + 1) = 2
70. ( x + 2 ) log32 ( x + 1) + 4 ( x + 1) log3 ( x + 1) - 16 = 0
log ( x +3 )
71. 2 5
=x
Bµi XV: Gi¶i c¸c hÖ ph-¬ng tr×nh:
ìlg x + lg y = 1
72. í
2
2
îx + y = 29
ìlog3 x + log3 y = 1 + log3 2
73. í
îx + y = 5
(
)
ìlg x 2 + y 2 = 1 + 3lg2
ï
74. í
ïlg ( x + y ) - lg ( x - y ) = lg3
î
ìlog 4 x - log 2 y = 0
ï
2
2
ïx - 5y + 4 = 0
î
75. í
ì x+y
ï y x = 32
76. í 4
ïlog3 ( x + y ) = 1 - log3 ( x + y )
î
ìlog x xy = log y x 2
ï
77. í
2 log x
ïy y = 4y + 3
î
Bµi XVI: Gi¶i vµ biÖn luËn c¸c ph-¬ng tr×nh:
78. lg é mx 2 + ( 2m - 3 ) x + m - 3ù = lg ( 2 - x )
ë
û
79. log3 a + log x a = log x a
3
80. logsin x 2.logsin2 x a = -1
81. log
a.log2
a
x
a2 - 4
=1
2a - x
Bµi XVII: T×m m ®Ó ph-¬ng tr×nh cã nghiÖm duy nhÊt:
(
)
82. log3 x 2 + 4ax + log 1 ( 2x - 2a - 1) = 0
3
4
6. http://www.mathvn.com
102.
x -1 ö
æ
log x+6 ç log 2
÷>0
x+2ø
3 è
103.
log2 x + log2 x £ 0
2
104.
log x 2.log x 2 >
16
1
log 2 x - 6
105.
2
log3 x - 4 log3 x + 9 ³ 2 log3 x - 3
106.
log2 x + 4 log2 x < 2 4 - log16 x 4
1
(
)
2
Bµi XX: Gi¶i c¸c bÊt ph-¬ng tr×nh:
107.
108.
109.
110.
2
6 log6 x + x log6 x £ 12
3
1
x 2-log2 2x-log2 x >
x
x
log 2 2 - 1 .log 1 2 x +1 - 2 > -2
(
(
)
(
2
)
)
(
2
log5 x 2 - 4x - 11 - log11 x 2 - 4x - 11
)
3
2 - 5x - 3x 2
³0
Bµi XXI: Gi¶i hÖ bÊt ph-¬ng tr×nh:
111.
ì
x2 + 4
>0
ï 2
í x - 16x + 64
ïlg x + 7 > lg(x - 5) - 2 lg2
î
(
)
(
)
ì( x - 1) lg2 + lg 2 x+1 + 1 < lg 7.2 x + 12
ï
112.
í
ïlog x ( x + 2 ) > 2
î
ìlog2 -x ( 2 - y ) > 0
ï
113.
í
ïlog 4-y ( 2x - 2 ) > 0
î
Bµi XXII: Gi¶i vµ biÖ luËn c¸c bÊt ph-¬ng tr×nh( 0 < a ¹ 1 ):
114.
x loga x +1 > a 2 x
1 + log 2 x
a
115.
>1
1 + log a x
1
2
116.
+
<1
5 - log a x 1 + loga x
1
117.
log x 100 - loga 100 > 0
2
Bµi XXIII:
6
7. http://www.mathvn.com
118.
(
)
(
Gi¶i bÊt ph-¬ng tr×nh ®ã.
Bµi XXIV: T×m m ®Ó hÖ bÊt ph-¬ng tr×nh cã nghiÖm:
119.
)
Cho bÊt ph-¬ng tr×nh loga x 2 - x - 2 > loga - x 2 + 2x + 3 cã nghiÖm x =
9
.
4
ìlg 2 x - m lg x + m + 3 £ 0
í
îx > 1
Bµi XXV: Cho bÊt ph-¬ng tr×nh:
x 2 - ( m + 3 ) x + 3m < ( x - m ) log 1 x
2
120.
Gi¶i bÊt ph-¬ng tr×nh khi m = 2.
121.
Gi¶i vµ biÖn luËn bÊt ph-¬ng tr×nh.
Bµi XXVI: Gi¶i vµ biÖn luËn bÊt ph-¬ng tr×nh:
122.
(
)
loga 1 - 8a - x ³ 2 (1 - x )
7
8. http://www.mathvn.com
Bµi tËp ph-¬ng tr×nh, bÊt ph-¬ng tr×nh mò vµ logarit – phÇn 2
1.
2.
3.
4.
5.
2 x .3 x -1.5 x -2 = 12
log 2 log 2 x = log 3 log 3 x
log 2 log 3 log 4 x = log 4 log 3 log 2 x
log 2 log 3 x + log 3 log 2 x = log 3 log 3 x
log 2 log x 3 ³ log 3 log x 2
x log2 ( 4 x ) ³ 8 x 2
2 2
7.
x lg x -3 lg x -4,5 = 10 -2 lg x
8.
x log x +1 ( x -1) + ( x - 1) log x +1 x £ 2
9.
5 lg x = 50 - x lg 5
log 2 x
log x
10. 6 6 + x 6 £ 12
log ( x +3 )
11. 2 5
=x
log 2 x
log x
12. 3 3 + x 3 = 162
6.
13.
14.
15.
16.
17.
18.
19.
20.
21.
x
x +2
= 36.32- x
1
1
> x +2
2
3 x +5 x - 6 3
1
1
³
3 x +1 - 1 1 - 3 x
8
2
1
2 x -1
1<5
³2
x 2 -x
1
3 x +1
< 25
æ5 2 ö
(0,08)
³ç
ç 2 ÷
÷
è
ø
log 2 x + log 2 x 8 £ 4
5
2
log 5 x + log 5 x = 1
x
log 5 5 x 2 . log 2 5 = 1
x
log x - 0 , 5 (2 x -1 )
log x - 0 , 5 x
( )
log x 5 x = - log x 5
23. log sin x 4. log sin 2 x 2 = 4
22.
24.
log cos x 4. log cos2 x 2 = 1
8
9. http://www.mathvn.com
25.
log 2 ( x +1) 4( x + 1) + 2 log x +1 ( x + 1) = 5
2
26.
log 3 x - log 3 x - 3 < 0
[
)]
(
log1 / 3 log 4 x 2 - 5 > 0
28. log1 / 3 x + 5 / 2 ³ log x 3
29. log x 2. log 2 x 2. log 2 4 x > 1
27.
30.
log 3
x2 - 4x + 3
x2 + x - 5
³0
x -1 ö
æ
log x +6 ç log 2
÷>0
x + 2ø
3 è
1
32. log x 2. log x / 16 2 >
log 2 x - 6
33. log x 2 2 x ³ 1
31.
(
)
log x log 9 3 x - 9 £ 1
3x + 2
35. log x
>1
x+2
36. log 3 x - x 2 (3 - x ) > 1
34.
(
[
)
)]
log x 5 x 2 - 8 x + 3 > 2
x
38. log x log 3 9 - 6 = 1
39. 3 log x 16 - 4 log16 x = 2 log 2 x
40. log x 2 16 + log 2 x 64 = 3
37.
41.
(
1
log1 / 3 2 x 2 - 3 x + 1
1 + log 2 x
a
42.
>1
1 + log a x
43.
(
>
1
log1 / 3 ( x + 1)
(0 < a ¹ 1)
)
log a 35 - x 3
> 3 víi 0 < a ¹ 1
log a (5 - x )
2 sin x -2 cos x +1
æ1ö
-ç ÷
è 10 ø
cos x -sin x -lg 7
+ 5 2 sin x -2 cos x +1 = 0
44.
2
45.
log 5 x 2 - 4 x - 11 - log11 x 2 - 4 x - 11
³0
2 - 5 x - 3x 2
(
)
2
(
)
3
9
10. (
http://www.mathvn.com
)
(
)
2 log 2+ 3 x 2 + 1 + x + log 2- 3 x 2 + 1 - x = 3
47. log 2 x + log 3 x + log 5 x = log 2 x log 3 x log 5 x
2
48. log1 / 5 ( x - 5) + 3 log 5 5 ( x - 5) + 6 log1 / 25 ( x - 5) + 2 £ 0
46.
(
)
49. Víi gi¸ trÞ nµo cña m th× bÊt ph-¬ng tr×nh log1 / 2 x - 2 x + m > -3 cã nghiÖm vµ
mäi nghiÖm cña nã ®Òu kh«ng thuéc miÒn x¸c ®Þnh cña hµm sè
(
2
)
y = log x x 3 + 1 log x +1 x - 2
1
log m 100 > 0
2
ì( x - 1) lg 2 + lg(2 x +1 + 1) < lg(7.2 x + 12)
51. í
îlog x ( x + 2 ) > 2
50. Gi¶i vµ biÖn luËn theo m: log x 100 -
x 1
+
2 2
52. T×m tËp x¸c ®Þnh cña hµm sè y =
æ- x 5ö
log a ç
+ ÷
è 2 2ø
53.
2
log 3 x - 4 log 3 x + 9 ³ 2 log 3 x - 3
54.
2
log1 / 2 x + 4 log 2 x < 2 4 - log16 x 4
55.
log 2
(
(
)
(0 < a ¹ 1)
)
x 2 + 3 - x 2 - 1 + 2 log 2 x £ 0
5 x - 51- x + 4 = 0
3 x + 9.3- x - 10 < 0
x -1
x
æ1ö
æ1ö
58. ç ÷ - ç ÷ > 2 log 4 8
è4ø
è 16 ø
56.
57.
æ1ö
59. ç ÷
è3ø
2
x
2/ x
æ1ö
+ 9.ç ÷
è3ø
2 +1 / x
3 x +3
x
8 -2
+ 12 = 0
2 x
61. 5
+ 5 < 5 x +1 + 5
60.
62.
63.
64.
> 12
x
5
16
= 10
2 2 x + 2 -2 x + 2 x + 2 - x = 20
(5 + 24 ) + (5 - 24 )
(3 + 5 ) + 16(3 - 5 ) = 2
x
x
x
x
x +3
10
11. http://www.mathvn.com
65.
66.
67.
(7 + 4 3 )
x
(
)
x
-3 2- 3 +2 = 0
( 7 - 4 3 ) + ( 7 + 4 3 ) ³ 14
( 2 - 3) + ( 2 + 3) = 4
x
x
x
x
(5 + 2 6 )
(
tan x
)
+ 5-2 6
1/ x
1/ x
69. 4 + 6
= 91 / x
x
x
x
70. 6.9 - 13.6 + 6.4 = 10
x
x
x
71. 5.4 + 2.25 - 7.10 £ 0
68.
72.
3
x
tan x
x
= 10
4 - 15 + 4 + 15 ³ 8
2
2
+1
x
3
2
- 34.15 2 x - x + 25 2 x - x +1 ³ 0
3 sin 2 x - 2 sin x
74. log 7- x 2
= log 7- x 2 2
sin 2 x cos x
2
75. log x +3 3 - 1 - 2 x + x = 1 / 2
76. log x 2 (2 + x ) + log 2 + x x = 2
73.
92 x-x
3
(
)
1
77.
log 2 (3 x - 1) +
78.
log 2 4 x + 4 = x - log 1 2 x +1 - 3
(
(9
)
x +1
log ( x + 3 ) 2
= 2 + log 2 ( x + 1)
(
)
2
)
log 3
- 4.3 - 2 = 3 x + 1
80. 1 + log 2 ( x - 1) = log x -1 4
79.
81.
82.
83.
x
(
) ( )
log (2 - 1) log (2 - 2 ) > -2
( 5 + 2) ³ ( 5 - 2)
log 2 4 x +1 + 4 . log 2 4 x + 1 = log1 /
2
1
8
x +1
x
2
1/ 2
x -1
x +1
x -1
21- x - 2 x + 1
84.
£0
2x - 1
x
x
æ
ö
æ
ö
85. log 3 ç sin - sin x ÷ + log 1 ç sin + cos 2 x ÷ = 0
2
2
è
ø
ø
3è
3
1
æ x -1ö
2
2
86. log 27 x - 5 x + 6 = log 3 ç
÷ + log 9 ( x - 3)
2
è 2 ø
(
)
11
12. http://www.mathvn.com
87. T×m m ®Ó tæng b×nh ph-¬ng c¸c nghiÖm cña ph-¬ng tr×nh
(
)
(
)
2 log 4 2 x 2 - x + 2 m - 4m 2 + log 1 x 2 + mx - 2 m 2 = 0
lín h¬n 1.
2
88. T×m c¸c gi¸ trÞ cña m ®Ó ph-¬ng tr×nh sau cã nghiÖm duy nhÊt:
log 5 +2 x 2 + mx + m + 1 + log 5 -2 x = 0 .
(
)
(
89. T×m m ®Ó ph-¬ng tr×nh 2 log 4 2 x - x + 2 m - 4 m
cã 2 nghiÖm u vµ v tho¶ m·n u2+v2>1
90. log cos x sin x ³ log sin 2 x cos x
93.
94.
95.
96.
97.
98.
2
) + log (x
1/ 2
2
)
+ mx - 2 m 2 = 0
x
15 + 1 = 4 x
91.
92.
2
x
2
2 = 3 +1
x
9 x = 5 x + 4 x + 2 20
2 2 x -1 + 32 x + 5 2 x +1 = 2 x + 3 x +1 + 5 x +2
x
1/ x
æ5ö æ2ö
ç ÷ + ç ÷ = 2,9 (*)
è2ø è5ø
1 + 2 x +1 + 3 x +1 < 6 x
3 log 3 1 + x + 3 x = 2 log 2 x
2x + 1
2 x 2 - 6 x + 2 = log 2
( x - 1)2
x
(
1- x 2
)
1-2 x
x -2
2x
2
x
x
100. x - 3 - 2 x + 2 1 - 2 = 0
x
x
x
101. 25.2 - 10 + 5 > 25
x
x
x +1
102. 12.3 + 3.15 - 5
= 20
99.
2
x
2
-2
(
x2
=
)
(
)
103. log2x+2log7x=2+log2x.log7x
104. 2 log 3 cot x = log 2 cos x
105. log x ( x + 1) = lg 1,5
ìlog 2 1 + 3 sin x = log 3 (3 cos y )
ï
ïlog 2 1 + 3 cos y = log 3 (3 sin x )
î
106. í
(
(
)
)
(
(
)
)
ìlog 2 1 + 3 1 - x 2 = log 3 1 - y 2 + 2
ï
107. í
ïlog 2 1 + 3 1 - y 2 = log 3 1 - x 2 + 2
î
(
)
108. lg x + x - 6 + x + x - 3 = lg( x + 3) + 3 x
2
2
12