Locus and Complex Numbers
Locus and Complex Numbers
       f  z  , find the locus of  or z
      given some condition for  or z
Locus and Complex Numbers
       f  z  , find the locus of  or z
      given some condition for  or z
      (Make the condition the subject)
Locus and Complex Numbers
          f  z  , find the locus of  or z
         given some condition for  or z
          (Make the condition the subject)
    is purely real  Im   0, arg   0 or 
Locus and Complex Numbers
          f  z  , find the locus of  or z
         given some condition for  or z
          (Make the condition the subject)
    is purely real  Im   0, arg   0 or 
                                                   
    is purely imaginary  Re   0, arg   
                                                   2
Locus and Complex Numbers
            f  z  , find the locus of  or z
           given some condition for  or z
            (Make the condition the subject)
      is purely real  Im   0, arg   0 or 
                                                     
     is purely imaginary  Re   0, arg   
                                                     2
       linear function 
  arg                      locus is an arc of a circle
       linear function 
Locus and Complex Numbers
            f  z  , find the locus of  or z
           given some condition for  or z
            (Make the condition the subject)
      is purely real  Im   0, arg   0 or 
                                                     
     is purely imaginary  Re   0, arg   
                                                     2
       linear function 
  arg                      locus is an arc of a circle
       linear function 
                                        
                   * minor arc if  
                                        2
Locus and Complex Numbers
            f  z  , find the locus of  or z
           given some condition for  or z
            (Make the condition the subject)
      is purely real  Im   0, arg   0 or 
                                                     
     is purely imaginary  Re   0, arg   
                                                     2
       linear function 
  arg                      locus is an arc of a circle
       linear function 
                                        
                   * minor arc if  
                                        2
                                        
                   * major arc if  
                                        2
Locus and Complex Numbers
            f  z  , find the locus of  or z
           given some condition for  or z
            (Make the condition the subject)
      is purely real  Im   0, arg   0 or 
                                                     
     is purely imaginary  Re   0, arg   
                                                     2
       linear function 
  arg                      locus is an arc of a circle
       linear function 
                                         
                   * minor arc if  
                                         2
                                        
                   * major arc if  
                                         2
                                         
                   * semicircle if  
                                         2
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

         z2
      w
          z
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

          z2
      w
            z
     zw  z  2
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

           z2
      w
             z
     zw  z  2
    z w  1  2
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

           z2
      w
             z
     zw  z  2
    z w  1  2
             2
      z
          w  1
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

           z2                                   2
      w                                              4
             z                                 w  1
     zw  z  2
    z w  1  2
             2
      z
          w  1
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

           z2                                   2
      w                                              4
             z                                 w  1
     zw  z  2                                   2
    z w  1  2                                      4
                                                w 1
             2
      z
          w  1
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

           z2                                   2
      w                                              4
             z                                 w  1
     zw  z  2                                   2
    z w  1  2                                      4
                                                w 1
             2
      z                                        w 1 
                                                         1
          w  1                                        2
z2
e.g .i  Find the locus of w if w        ,z 4
                                        2

           z2                                   2
      w                                              4
             z                                 w  1
     zw  z  2                                   2
    z w  1  2                                      4
                                                w 1
             2
      z                                        w 1 
                                                         1
          w  1                                        2
                                                                             1
                                locus is a circle, centre 1,0  and radius
                                                                             2
                                                     1
                                i.e.  x  1  y 
                                             2   2

                                                     4
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
    x  1  iy  x  1  iy
w              
    x  1  iy  x  1  iy
z 1
ii  Find the locus of z if w            and w is purely real
                                      z 1
    x  1  iy  x  1  iy
w               
    x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
z 1
ii  Find the locus of z if w            and w is purely real
                                      z 1
    x  1  iy  x  1  iy
w               
    x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
If w is purely real then Imw  0
z 1
ii  Find the locus of z if w            and w is purely real
                                      z 1
     x  1  iy  x  1  iy
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
If w is purely real then Imw  0
   i.e.   x  1 y   x  1 y  0
z 1
ii  Find the locus of z if w            and w is purely real
                                      z 1
     x  1  iy  x  1  iy
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
If w is purely real then Imw  0
   i.e.   x  1 y   x  1 y  0
             xy  y  xy  y  0
z 1
ii  Find the locus of z if w            and w is purely real
                                      z 1
     x  1  iy  x  1  iy
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
If w is purely real then Imw  0
   i.e.   x  1 y   x  1 y  0
             xy  y  xy  y  0
                         2y  0
                            y0
z 1
ii  Find the locus of z if w            and w is purely real
                                      z 1
     x  1  iy  x  1  iy
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
If w is purely real then Imw  0
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2
                  x  12  y 2
If w is purely real then Imw  0
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg
                                                       
                                                         z  1
                                                                0 or 
                  x  12  y 2                        z 1

If w is purely real then Imw  0
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2     i.e. arg
                                                           
                                                             z  1
                                                                    0 or 
                  x  12  y 2                            z 1

If w is purely real then Imw  0             arg z  1  arg z  1  0 or 
                                                               y
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0                                                x
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2     i.e. arg
                                                           
                                                             z  1
                                                                    0 or 
                  x  12  y 2                            z 1

If w is purely real then Imw  0             arg z  1  arg z  1  0 or 
                                                               y
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0                           -1         1         x
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2     i.e. arg
                                                           
                                                             z  1
                                                                    0 or 
                  x  12  y 2                            z 1

If w is purely real then Imw  0             arg z  1  arg z  1  0 or 
                                                               y
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0                           -1         1         x
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2     i.e. arg
                                                           
                                                             z  1
                                                                    0 or 
                  x  12  y 2                            z 1

If w is purely real then Imw  0             arg z  1  arg z  1  0 or 
                                                               y
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0                           -1         1         x
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2     i.e. arg
                                                           
                                                             z  1
                                                                    0 or 
                  x  12  y 2                            z 1

If w is purely real then Imw  0             arg z  1  arg z  1  0 or 
                                                               y
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0                           -1         1         x
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
                                              locus is y  0, excluding  1,0 
z 1
ii  Find the locus of z if w         and w is purely real
                                   z 1
     x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w                
     x  1  iy  x  1  iy
 
   x 2  1  i x  1 y  i x  1 y  y 2     i.e. arg
                                                           
                                                             z  1
                                                                    0 or 
                  x  12  y 2                            z 1

If w is purely real then Imw  0             arg z  1  arg z  1  0 or 
                                                               y
   i.e.   x  1 y   x  1 y  0
          xy  y  xy  y  0
                      2y  0
                         y0                           -1         1         x
 locus is y  0, excluding 1,0 
 z  1  0, bottom of fraction  0 
                                          locus is y  0, excluding  1,0 
 Note : locus is y  0, excluding 1,0  only
 i.e. answer the original question
 z 
iii  Find the locus of z if arg      
                                  z  4 6
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
                         
  arg z  arg z  4  
                         6
                y




                            x
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
                         
  arg z  arg z  4  
                         6
                y




                           4x


                      
                       6
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
                         
  arg z  arg z  4  
                         6
                y




                           4x


                      
                       6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
                         
  arg z  arg z  4  
                         6
                y


                     2
                             4x


                      
                         6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
                         
  arg z  arg z  4  
                         6
                y


                     2
                             r 4x
                   (2,y)
                      
                         6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z 
              
        z  4 6
                         
  arg z  arg z  4  
                         6
                y


                     2
                             r 4x
                   (2,y)
                                    30
                      
                         6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60
              
        z  4 6                       2
                           
  arg z  arg z  4  
                           6
              y


                           2
                                   r 4x
                     (2,y)
                                          30
                           
                               6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60
              
        z  4 6                       2
                                       y  2 tan 60
  arg z  arg z  4  
                         6
                y                         2 3



                      2
                              r 4x
                    (2,y)
                                     30
                       
                          6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60
              
        z  4 6                       2
                                       y  2 tan 60
  arg z  arg z  4  
                         6
                y                         2 3
                                      centre is 2,2 3 

                      2
                              r 4x
                    (2,y)
                                     30
                       
                          6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60           r 2  2 2  2 3 
                                                                              2
              
        z  4 6                       2
                                       y  2 tan 60
  arg z  arg z  4  
                         6
                y                         2 3
                                      centre is 2,2 3 

                      2
                              r 4x
                    (2,y)
                                     30
                       
                          6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60           r 2  2 2  2 3 
                                                                              2
              
        z  4 6                       2
                                                            r 2  16
  arg z  arg z  4                  y  2 tan 60
                         6                                    r4
                y                         2 3
                                      centre is 2,2 3 

                      2
                              r 4x
                    (2,y)
                                     30
                       
                          6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60                 r 2  2 2  2 3 
                                                                                    2
              
        z  4 6                       2
                                                                  r 2  16
  arg z  arg z  4                  y  2 tan 60
                         6                                          r4
                y                         2 3
                                      centre is 2,2 3 
                                          locus is the major arc of the circle
                      2
                                          x  2   y  2 3   16 formed by the
                                                2            2

                              r 4x
                                         chord joining 0,0  and 4,0  but not
                    (2,y)
                                     30 including these points.
                       
                          6

NOTE: arg z  arg z-4 
    below axis
 z 
iii  Find the locus of z if arg      
                                  z  4 6
  arg  z                           y
                                           tan 60                 r 2  2 2  2 3 
                                                                                    2
              
        z  4 6                       2
                                                                  r 2  16
  arg z  arg z  4                  y  2 tan 60
                         6                                          r4
                y                         2 3
                                      centre is 2,2 3 
                                          locus is the major arc of the circle
                      2
                                          x  2   y  2 3   16 formed by the
                                                2              2
                                 x
                              r4
                                         chord joining 0,0  and 4,0  but not
                    (2,y)
                                     30 including these points.
                       
                          6                         Exercise 4N; 5, 6
NOTE: arg z  arg z-4 
                                       Exercise 4O; 3 to 10, 12, 13a, 14a
    below axis

More Related Content

PPSX
Complex number
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
PPT
complex numbers
PDF
Lesson 27: Integration by Substitution (slides)
PPT
Linear Algebra and Matrix
PPT
Differentiation jan 21, 2014
PPTX
The fundamental theorem of calculus
DOCX
Polar coordinates
Complex number
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
complex numbers
Lesson 27: Integration by Substitution (slides)
Linear Algebra and Matrix
Differentiation jan 21, 2014
The fundamental theorem of calculus
Polar coordinates

What's hot (20)

PPT
Factoring quadratic expressions
PPT
Trigonometric identities simplify
PPTX
Chapter 3. linear equation and linear equalities in one variables
PPTX
Complex numbers org.ppt
PPT
Exponential growth and decay
PPT
Lesson 14 a - parametric equations
PPTX
application of complex numbers
PPT
Differential equations
PPT
3.2 Logarithmic Functions
PPTX
Calculus
PPTX
Polynomials
PPTX
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
PPTX
Polynomials (Algebra) - Class 10
PPTX
introduction to differential equations
PDF
Lesson 16: Derivatives of Exponential and Logarithmic Functions
PPTX
Polynomials
PPTX
Linear and exponential functions
PPTX
Equations with Variables on Both Sides
PPT
Parent function and Transformation.ppt
PPTX
Exponential and logarithmic functions
Factoring quadratic expressions
Trigonometric identities simplify
Chapter 3. linear equation and linear equalities in one variables
Complex numbers org.ppt
Exponential growth and decay
Lesson 14 a - parametric equations
application of complex numbers
Differential equations
3.2 Logarithmic Functions
Calculus
Polynomials
IMPROPER INTEGRALS AND APPLICATION OF INTEGRATION
Polynomials (Algebra) - Class 10
introduction to differential equations
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Polynomials
Linear and exponential functions
Equations with Variables on Both Sides
Parent function and Transformation.ppt
Exponential and logarithmic functions
Ad

Viewers also liked (7)

PDF
X2 t01 04 mod arg relations (2012)
PPT
5.9 complex numbers
PPT
PPT 7th grade math
PPT
Complex Number I - Presentation
PPTX
Algebraic expression
PPT
Algebraic expressions
PPTX
Electricity (ppt)
X2 t01 04 mod arg relations (2012)
5.9 complex numbers
PPT 7th grade math
Complex Number I - Presentation
Algebraic expression
Algebraic expressions
Electricity (ppt)
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
HVAC Specification 2024 according to central public works department
PDF
English Textual Question & Ans (12th Class).pdf
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
Empowerment Technology for Senior High School Guide
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PPTX
What’s under the hood: Parsing standardized learning content for AI
PPTX
Education and Perspectives of Education.pptx
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Race Reva University – Shaping Future Leaders in Artificial Intelligence
HVAC Specification 2024 according to central public works department
English Textual Question & Ans (12th Class).pdf
Share_Module_2_Power_conflict_and_negotiation.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Introduction to pro and eukaryotes and differences.pptx
International_Financial_Reporting_Standa.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Core Concepts of Personalized Learning and Virtual Learning Environments
Empowerment Technology for Senior High School Guide
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
What’s under the hood: Parsing standardized learning content for AI
Education and Perspectives of Education.pptx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf

X2 T01 12 locus & complex numbers 3

  • 2. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z
  • 3. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)
  • 4. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or 
  • 5. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or    is purely imaginary  Re   0, arg    2
  • 6. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or    is purely imaginary  Re   0, arg    2  linear function  arg      locus is an arc of a circle  linear function 
  • 7. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or    is purely imaginary  Re   0, arg    2  linear function  arg      locus is an arc of a circle  linear function   * minor arc if   2
  • 8. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or    is purely imaginary  Re   0, arg    2  linear function  arg      locus is an arc of a circle  linear function   * minor arc if   2  * major arc if   2
  • 9. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or    is purely imaginary  Re   0, arg    2  linear function  arg      locus is an arc of a circle  linear function   * minor arc if   2  * major arc if   2  * semicircle if   2
  • 10. z2 e.g .i  Find the locus of w if w  ,z 4 2
  • 11. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z
  • 12. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2
  • 13. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2
  • 14. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1
  • 15. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 2 w  4 z w  1 zw  z  2 z w  1  2 2 z w  1
  • 16. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 2 w  4 z w  1 zw  z  2 2 z w  1  2 4 w 1 2 z w  1
  • 17. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 2 w  4 z w  1 zw  z  2 2 z w  1  2 4 w 1 2 z w 1  1 w  1 2
  • 18. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 2 w  4 z w  1 zw  z  2 2 z w  1  2 4 w 1 2 z w 1  1 w  1 2 1  locus is a circle, centre 1,0  and radius 2 1 i.e.  x  1  y  2 2 4
  • 19. z 1 ii  Find the locus of z if w  and w is purely real z 1
  • 20. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy
  • 21. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2
  • 22. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0
  • 23. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0
  • 24. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0
  • 25. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0
  • 26. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 27. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 28. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 29. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 arg z  1  arg z  1  0 or  y i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0 x  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 30. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 arg z  1  arg z  1  0 or  y i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0 -1 1 x  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 31. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 arg z  1  arg z  1  0 or  y i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0 -1 1 x  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 32. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 arg z  1  arg z  1  0 or  y i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0 -1 1 x  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 33. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 arg z  1  arg z  1  0 or  y i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0 -1 1 x  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  locus is y  0, excluding  1,0 
  • 34. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg  z  1   0 or   x  12  y 2  z 1 If w is purely real then Imw  0 arg z  1  arg z  1  0 or  y i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0 -1 1 x  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  locus is y  0, excluding  1,0  Note : locus is y  0, excluding 1,0  only i.e. answer the original question
  • 35.  z  iii  Find the locus of z if arg   z  4 6
  • 36.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6
  • 37.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6
  • 38.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6  arg z  arg z  4   6 y x
  • 39.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6  arg z  arg z  4   6 y 4x  6
  • 40.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6  arg z  arg z  4   6 y 4x  6 NOTE: arg z  arg z-4   below axis
  • 41.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6  arg z  arg z  4   6 y 2 4x  6 NOTE: arg z  arg z-4   below axis
  • 42.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6  arg z  arg z  4   6 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis
  • 43.  z  iii  Find the locus of z if arg   z  4 6 arg  z    z  4 6  arg z  arg z  4   6 y 2 r 4x (2,y) 30  6 NOTE: arg z  arg z-4   below axis
  • 44.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60   z  4 6 2  arg z  arg z  4   6 y 2 r 4x (2,y) 30  6 NOTE: arg z  arg z-4   below axis
  • 45.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60   z  4 6 2  y  2 tan 60 arg z  arg z  4   6 y 2 3 2 r 4x (2,y) 30  6 NOTE: arg z  arg z-4   below axis
  • 46.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60   z  4 6 2  y  2 tan 60 arg z  arg z  4   6 y 2 3  centre is 2,2 3  2 r 4x (2,y) 30  6 NOTE: arg z  arg z-4   below axis
  • 47.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60 r 2  2 2  2 3  2   z  4 6 2  y  2 tan 60 arg z  arg z  4   6 y 2 3  centre is 2,2 3  2 r 4x (2,y) 30  6 NOTE: arg z  arg z-4   below axis
  • 48.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60 r 2  2 2  2 3  2   z  4 6 2  r 2  16 arg z  arg z  4   y  2 tan 60 6 r4 y 2 3  centre is 2,2 3  2 r 4x (2,y) 30  6 NOTE: arg z  arg z-4   below axis
  • 49.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60 r 2  2 2  2 3  2   z  4 6 2  r 2  16 arg z  arg z  4   y  2 tan 60 6 r4 y 2 3  centre is 2,2 3   locus is the major arc of the circle 2  x  2   y  2 3   16 formed by the 2 2 r 4x chord joining 0,0  and 4,0  but not (2,y) 30 including these points.  6 NOTE: arg z  arg z-4   below axis
  • 50.  z  iii  Find the locus of z if arg   z  4 6 arg  z  y  tan 60 r 2  2 2  2 3  2   z  4 6 2  r 2  16 arg z  arg z  4   y  2 tan 60 6 r4 y 2 3  centre is 2,2 3   locus is the major arc of the circle 2  x  2   y  2 3   16 formed by the 2 2 x r4 chord joining 0,0  and 4,0  but not (2,y) 30 including these points.  6 Exercise 4N; 5, 6 NOTE: arg z  arg z-4  Exercise 4O; 3 to 10, 12, 13a, 14a  below axis