Rectangular Hyperbola
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
      b b
           1
      a a
Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
      b b
            1
      a a
         b2  a 2
          ba
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
         a a
              b2  a 2
               ba
 hyperbola has the equation;
          x2 y2
           2
              2 1
          a a
          x2  y2  a2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;         a 2 e 2  1  a 2
         x2 y2
           2
              2 1
         a a
          x2  y2  a2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;         a 2 e 2  1  a 2
         x2 y2                              e2  1  1
           2
              2 1
         a a
                                               e2  2
          x2  y2  a2
                                                e 2
Rectangular Hyperbola
   A hyperbola whose asymptotes are perpendicular to each other
        b b
                 1
        a a
              b2  a 2
               ba
 hyperbola has the equation;         a 2 e 2  1  a 2
         x2 y2                              e2  1  1
           2
              2 1
         a a
                                               e2  2
          x2  y2  a2
                                                e 2
                                       eccentricity is 2
y       Y
    P  x, y 

                 x


      X
y       Y
                     In order to make the
    P  x, y        asymptotes the coordinate
                     axes we need to rotate the
                 x   curve 45 degrees
                     anticlockwise.
      X
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                               X
i.e. P x, y   x  iy is multiplied by cis 45
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
    x  iy 
                1       1 
                  i      
               2        2
y               Y
                                                   In order to make the
                           P  x, y               asymptotes the coordinate
                                                   axes we need to rotate the
                                            x      curve 45 degrees
                                                   anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
    x  iy 
                  1        1 
                     i      
                2           2
       1
           x  iy 1  i 
        2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                               In order to make the
                          P  x, y            asymptotes the coordinate
                                               axes we need to rotate the
                                           x   curve 45 degrees
                                               anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y             x y
    x  iy                         X                  Y
                2           2                    2                2
       1
           x  iy 1  i 
        2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                           In order to make the
                        P  x, y          asymptotes the coordinate
                                           axes we need to rotate the
                                       x   curve 45 degrees
                                           anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y            x y
    x  iy                         X                   Y
                2           2                    2               2
       1                                               x2  y2
           x  iy 1  i                      XY 
        2                                                 2
       1
           x  ix  iy  y 
        2
      x y x y
                      i
         2          2
y              Y
                                           In order to make the
                        P  x, y          asymptotes the coordinate
                                           axes we need to rotate the
                                       x   curve 45 degrees
                                           anticlockwise.
                                X
i.e. P x, y   x  iy is multiplied by cis 45
  x  iy cos 45  i sin 45 
                1 i 1                         x y            x y
    x  iy                         X                   Y
                2           2                    2               2
       1                                               x2  y2
           x  iy 1  i                      XY 
        2                                                 2
       1                                               a2
           x  ix  iy  y                     XY 
        2                                              2
      x y x y
                      i
         2          2
focus;  ae,0 
       2a,0 
focus;  ae,0 
        2a,0 

     1  1 i
  2a        
     2    2 
 a  ai
focus;  ae,0 
         2a,0 

     1  1 i
  2a            
     2      2 
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                      e
         2a,0                       a
                                  x
                                         2
     1  1 i
  2a            
     2      2 
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                         e
         2a,0                          a
                                  x
                                            2
     1  1 i
  2a                  directrices are || to y axis
     2      2 
                        when rotated || to y   x
 a  ai
  focus a, a 
a
 focus;  ae,0     directrix;   x
                                         e
         2a,0                          a
                                  x
                                            2
     1  1 i
  2a                  directrices are || to y axis
     2      2 
                        when rotated || to y   x
 a  ai
                       thus in form x  y  k  0
  focus a, a 
a
 focus;  ae,0       directrix;   x
                                           e
         2a,0                            a
                                    x
                                              2
     1  1 i
  2a                    directrices are || to y axis
     2      2 
                          when rotated || to y   x
 a  ai
                          thus in form x  y  k  0
  focus a, a                                          2a
                     Now distance between directrices is
                                                          2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
                                       k a
                                        k  a
a
 focus;  ae,0         directrix;   x
                                             e
         2a,0                              a
                                      x
                                                2
     1  1 i
  2a                      directrices are || to y axis
     2      2 
                             when rotated || to y   x
 a  ai
                             thus in form x  y  k  0
  focus a, a                                             2a
                      Now distance between directrices is
                                                              2
                                                            a
                      distance from origin to directrix is
                                                             2
                                   00k        a
                                             
                                        2        2
                                       k a
                                       k  a
                            directrices are x  y   a
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
 where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                          c
                    x  ct           y
                                          t
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                          c
                    x  ct           y
                                          t

  Tangent: x  t 2 y  2ct
The rectangular hyperbola with x and y axes as aymptotes,
has the equation;
                                1 2
                            xy  a
                                2
where;
          foci :  a, a 

         directrices : x  y   a
         eccentricity  2

Parametric Coordinates of xy  c 2
                                           c
                    x  ct            y
                                           t

  Tangent: x  t 2 y  2ct           Normal: t 3 x  ty  ct 4  1
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x



                             x
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
            y          y=x
                                             xy  4
                      2,2
                                             x2  4
                              x
    2,2                                   x  2
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4
   y
      x
   dy    4
       2
   dx    x
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4                   dy          4
   y        when x  2t ,  
      x                   dx        2t 2
   dy    4
       2                      1
                               2
   dx    x                       t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                             xy  4
                      2,2
                                             x2  4
                              x
    2,2                                   x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4                   dy          4                 2    1
   y        when x  2t ,                         y    2  x  2t 
      x                   dx        2t 2
                                                        t   t
   dy    4
       2                      1
                               2
   dx    x                       t
e.g. (i) (1991)
                  The hyperbola H is xy= 4
a) Sketch H showing where H intersects the axis of symmetry.
              y               y=x
                                              xy  4
                      2,2
                                              x2  4
                              x
    2,2                                    x  2

                              2t , 2  is x  t 2 y  4t
b) Show that the tangent at P        
                                   t
      4                   dy          4                    2      1
   y        when x  2t ,                          y    2  x  2t 
      x                   dx        2t 2
                                                           t     t
   dy    4                      1                t 2 y  2t   x  2t
       2                     2
   dx    x                       t                  x  t 2 y  4t
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
         2    2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
          2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
  P : x  t 2 y  4t
 Q : x  s 2 y  4s
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                2    2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
  P : x  t 2 y  4t
 Q : x  s 2 y  4s
   t   2
             s 2 y  4t  4 s
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                  2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t
   Q : x  s 2 y  4s
     t   2
               s 2 y  4t  4 s
t  s t  s  y  4t  s 
                          4
                      y
                         st
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                  2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t                    4t 2
                                       x       4t
   Q : x  s 2 y  4s                     st
     t   2
               s 2 y  4t  4 s
t  s t  s  y  4t  s 
                          4
                      y
                         st
 s, 2 
c) s  0, s  t , show that the tangents at P and Q 2 
                 2     2

                                                       s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t                    4t 2
                                       x       4t
   Q : x  s 2 y  4s                     st
     t   2
               s y  4t  4 s
                 2
                                     x
                                        4 st  4t 2  4t 2
                                              st
t  s t  s  y  4t  s           4 st
                         4            
                     y                 st
                        st
 2 s, 2 
c) s  0, s  t , show that the tangents at P and Q        
                 2     2

                                                         s

   intersect at M  4 st , 4 
                              
                    st st
    P : x  t 2 y  4t                           4t 2
                                              x       4t
   Q : x  s 2 y  4s                            st
     t   2
               s y  4t  4 s
                 2
                                             x
                                                4 st  4t 2  4t 2
                                                      st
t  s t  s  y  4t  s                   4 st
                         4                    
                     y                         st
                        st

                                      4 st , 4 
                               M is           
                                      st st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
          4 st                     4
       x                      y
          st                     st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4
    x
       st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4                      y
                                   4
    x
       st                        st
                                 x
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                      4
       x                        y
           st                      st
        1
     s
         t
    st  1
       4                        y
                                     4
    x
       st                          st
                                   x


                       y  x
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                      4
       x                        y
           st                      st
        1
     s
         t
    st  1
       4                        y
                                     4
    x
       st                          st
                                   x

                                     4
                       y  x           0, thus M  0,0 
                                    st
1
d) Suppose that s     , show that the locus of M is a straight
                     t
  line through the origin, but not including the origin.
           4 st                    4
       x                      y
           st                    st
        1
     s
         t
    st  1
       4                      y
                                   4
    x
       st                        st
                                 x

                                     4
                   y  x               0, thus M  0,0 
                                   st
           locus of M is y   x, excluding 0,0 
(ii) Show that PS  PS   2a


                                    P  x, y 

                    S          S                x
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 

                    S          S                x



 By definition of an ellipse;
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
                                                 M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
            e PM  PM 
               2a 
            e 
               e 
            2a
(ii) Show that PS  PS   2a
                         y
                                    P  x, y 
         M                                      M

                    S          S                     x
           a
     x                                         x
                                                      a
           e                                          e
 By definition of an ellipse;
 PS  PS   ePM  ePM 
            e PM  PM              Exercise 6D; 3, 4, 7, 10, 11a,
               2a 
            e 
                                          12, 14, 19, 21, 26, 29,
               e                              31, 43, 47
            2a

More Related Content

PDF
Xi maths ch3_trigo_func_formulae
PPT
Hyperbola (Advanced Algebra)
PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
Xi maths ch3_trigo_func_formulae
Hyperbola (Advanced Algebra)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)

More from Nigel Simmons (20)

PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
PDF
X2 t01 11 nth roots of unity (2012)
PDF
X2 t01 10 complex & trig (2013)
PDF
X2 t01 09 de moivres theorem
PDF
X2 t01 08 locus & complex nos 2 (2013)
PDF
X2 t01 07 locus & complex nos 1 (2013)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)
X2 t01 11 nth roots of unity (2012)
X2 t01 10 complex & trig (2013)
X2 t01 09 de moivres theorem
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Ad

Recently uploaded (20)

PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
semiconductor packaging in vlsi design fab
PPTX
Virtual and Augmented Reality in Current Scenario
PPTX
Module on health assessment of CHN. pptx
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Computer Architecture Input Output Memory.pptx
Hazard Identification & Risk Assessment .pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
semiconductor packaging in vlsi design fab
Virtual and Augmented Reality in Current Scenario
Module on health assessment of CHN. pptx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Introduction to pro and eukaryotes and differences.pptx
Environmental Education MCQ BD2EE - Share Source.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Unit 4 Computer Architecture Multicore Processor.pptx
What if we spent less time fighting change, and more time building what’s rig...
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Ad

X2 T03 05 rectangular hyperbola (2011)

  • 2. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other
  • 3. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a
  • 4. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba
  • 5. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; x2 y2 2  2 1 a a x2  y2  a2
  • 6. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a 2 e 2  1  a 2 x2 y2 2  2 1 a a x2  y2  a2
  • 7. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a 2 e 2  1  a 2 x2 y2 e2  1  1 2  2 1 a a e2  2 x2  y2  a2 e 2
  • 8. Rectangular Hyperbola A hyperbola whose asymptotes are perpendicular to each other b b   1 a a b2  a 2 ba  hyperbola has the equation; a 2 e 2  1  a 2 x2 y2 e2  1  1 2  2 1 a a e2  2 x2  y2  a2 e 2  eccentricity is 2
  • 9. y Y P  x, y  x X
  • 10. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X
  • 11. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45
  • 12. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45    x  iy  1 1   i   2 2
  • 13. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45    x  iy  1 1   i   2 2 1   x  iy 1  i  2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 14. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1   x  iy 1  i  2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 15. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1 x2  y2   x  iy 1  i  XY  2 2 1   x  ix  iy  y  2 x y x y   i 2 2
  • 16. y Y In order to make the P  x, y  asymptotes the coordinate axes we need to rotate the x curve 45 degrees anticlockwise. X i.e. P x, y   x  iy is multiplied by cis 45  x  iy cos 45  i sin 45   1 i 1  x y x y   x  iy   X  Y  2 2 2 2 1 x2  y2   x  iy 1  i  XY  2 2 1 a2   x  ix  iy  y  XY  2 2 x y x y   i 2 2
  • 17. focus;  ae,0    2a,0 
  • 18. focus;  ae,0    2a,0   1  1 i 2a   2 2   a  ai
  • 19. focus;  ae,0    2a,0   1  1 i 2a   2 2   a  ai  focus a, a 
  • 20. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a   2 2   a  ai  focus a, a 
  • 21. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai  focus a, a 
  • 22. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a 
  • 23. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2
  • 24. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2
  • 25. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2
  • 26. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2 k a k  a
  • 27. a focus;  ae,0  directrix; x e   2a,0  a x 2  1  1 i 2a  directrices are || to y axis  2 2   when rotated || to y   x  a  ai thus in form x  y  k  0  focus a, a  2a Now distance between directrices is 2 a  distance from origin to directrix is 2 00k a  2 2 k a k  a  directrices are x  y   a
  • 28. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2
  • 29. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2
  • 30. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t
  • 31. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t Tangent: x  t 2 y  2ct
  • 32. The rectangular hyperbola with x and y axes as aymptotes, has the equation; 1 2 xy  a 2 where; foci :  a, a  directrices : x  y   a eccentricity  2 Parametric Coordinates of xy  c 2 c x  ct y t Tangent: x  t 2 y  2ct Normal: t 3 x  ty  ct 4  1
  • 33. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry.
  • 34. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x x
  • 35. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2
  • 36. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t
  • 37. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 y x dy 4  2 dx x
  • 38. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 y when x  2t ,   x dx 2t 2 dy 4  2 1  2 dx x t
  • 39. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 2 1 y when x  2t ,   y    2  x  2t  x dx 2t 2 t t dy 4  2 1  2 dx x t
  • 40. e.g. (i) (1991) The hyperbola H is xy= 4 a) Sketch H showing where H intersects the axis of symmetry. y y=x xy  4 2,2 x2  4 x  2,2 x  2  2t , 2  is x  t 2 y  4t b) Show that the tangent at P   t 4 dy 4 2 1 y when x  2t ,   y    2  x  2t  x dx 2t 2 t t dy 4 1 t 2 y  2t   x  2t  2  2 dx x t x  t 2 y  4t
  • 41.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st
  • 42.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s
  • 43.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s t 2  s 2 y  4t  4 s
  • 44.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t Q : x  s 2 y  4s t 2  s 2 y  4t  4 s t  s t  s  y  4t  s  4 y st
  • 45.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s 2 y  4t  4 s t  s t  s  y  4t  s  4 y st
  • 46.  s, 2  c) s  0, s  t , show that the tangents at P and Q 2  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s y  4t  4 s 2 x 4 st  4t 2  4t 2 st t  s t  s  y  4t  s  4 st 4  y st st
  • 47.  2 s, 2  c) s  0, s  t , show that the tangents at P and Q  2 2  s intersect at M  4 st , 4    st st P : x  t 2 y  4t 4t 2 x  4t Q : x  s 2 y  4s st t 2  s y  4t  4 s 2 x 4 st  4t 2  4t 2 st t  s t  s  y  4t  s  4 st 4  y st st  4 st , 4   M is    st st
  • 48. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin.
  • 49. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st
  • 50. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1
  • 51. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 x st
  • 52. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x
  • 53. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x  y  x
  • 54. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x 4  y  x  0, thus M  0,0  st
  • 55. 1 d) Suppose that s  , show that the locus of M is a straight t line through the origin, but not including the origin. 4 st 4 x y st st 1 s t st  1 4 y 4 x st st  x 4  y  x  0, thus M  0,0  st  locus of M is y   x, excluding 0,0 
  • 56. (ii) Show that PS  PS   2a P  x, y  S S x
  • 57. (ii) Show that PS  PS   2a y P  x, y  S S x By definition of an ellipse;
  • 58. (ii) Show that PS  PS   2a y P  x, y  M S S x a x x a e e By definition of an ellipse; PS  PS   ePM
  • 59. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM 
  • 60. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM   e PM  PM   2a   e   e   2a
  • 61. (ii) Show that PS  PS   2a y P  x, y  M M S S x a x x a e e By definition of an ellipse; PS  PS   ePM  ePM   e PM  PM  Exercise 6D; 3, 4, 7, 10, 11a,  2a   e  12, 14, 19, 21, 26, 29,  e  31, 43, 47  2a